• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • 2
  • 2
  • Tagged with
  • 29
  • 29
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Composição bromatológica e perfil fermentativo da cana-de-açúcar in natura e ensilada hidrolisada com cal virgem

Gregório, Hirla Carneiro dos Santos 29 May 2008 (has links)
The objective of the present work was to evaluate the effects of different levels (0; 1; 1,5 and 2%) of calcium oxide (CaO) and different hydrolysis time (0, 6, 12, 24 and 48 hours) on the fresh and ensiled sugarcane bromatological composition and on its fermentative perfile. The present work was carried out in a completely randomized experimental design with three replicates per treatment and variance analyses was made with Sisvar program (Tukey Test at 5% of significance). Amounts of sugarcane (IAC 86-2480) were treated with 0; 1; 1,5 and 2% of CaO and samples were collected of each treatment after 0, 6, 12, 24 and 48 hours of CaO addition. Part of treated sugarcane was ensiled in experimental silos which were opened 30 days later. The following variables were analyzed: dry mater (DM), crude protein (CP), crude fiber (CF), acid detergent fiber (ADF), neutral detergent fiber (NDF), liginin (LIG), etereo extract (EE), mineral material (MM), not nitrogen extract (NNE), phosphor (P), calcium (Ca), cellulose ( CEL), hemicellulose (HEM), total digestive nutrients (TDN), volatile fatty acid (VFA), lactate, amoniacal nitrogen (N-NH3) and pH. To fresh sugarcane the treatment with 1% of CaO was able to reduce CF, ADF and NDF and to increase MM, Ca and P, on time 0. After 6 h of hydrolysis with 1; 1,5 or 2% of CaO LIG was reduced and after 24h DM was increased and CEL and HEM were reduced. To ensiled sugarcane the treatment with 1 and 1,5% of CaO was able to increase DS, MM and NNE and to reduce NDF, ADF, LIG, CEL and HEM. Addition of CaO essentiality on higher levels was able to reduce acetic acid concentration and to increase propionic, butyric and lactic acid concentrations and to increase N-NH3 and pH. Higher levels of CP were observed for the non additived forage. / O objetivo do presente trabalho foi avaliar os efeitos de diferentes níveis (0; 1; 1,5 e 2%) de óxido de cálcio (CaO) e de diferentes tempos de hidrólise (0, 6, 12, 24 e 48 horas) na composição bromatológica da cana-de-açúcar fresca e ensilada e no perfil fermentativo dessa forrageira. Utilizou-se o delineamento inteiramente casualizado com três repetições para cada tratamento e as análises de variância foram feitas através do programa Sisvar (Teste de Tukey, 5% de significância). Amontoados de cana (variedade IAC 86-2480) foram tratados com 0; 1; 1,5 e 2% de CaO e amostras foram coletadas de cada tratamento após 0, 6, 12, 24 e 48 horas da adição de cal virgem. Parte da cana tratada foi ensilada em silos de laboratório os quais foram abertos 30 dias mais tarde. As seguintes variáveis foram analisadas: matéria seca (MS), proteína bruta (PB), fibra bruta (FB), fibra em detergente ácido (FDA), fibra em detergente neutro (FDN), lignina (LIG), extrato etéreo (EE), matéria mineral (MM), extrato não nitrogenado (ENN), fósforo (P), cálcio (Ca), celulose (CEL), hemicelulose (HEM), nutrientes digestíveis totais (NDT), ácidos graxos voláteis (AGV), lactato, nitrogênio amoniacal (N-NH3) e pH. Para a cana-de-açúcar fresca o tratamento com 1% de CaO foi suficiente para reduzir FB, FDA e FDN e aumentar MM, Ca e P, no tempo 0. Após 6h de hidrólise com 1; 1,5 ou 2% de CaO a LIG foi reduzida e após 24 h a MS aumentou e CEL e HEM diminuíram. A adição de cal principalmente nas maiores doses foi capaz de reduzir a concentração de ácido acético e aumentar as concentrações dos ácidos propiônico, butírico, lático, N-NH3 e pH. Os maiores teores de PB foram observados na forragem não aditivada. / Mestre em Ciências Veterinárias
22

Avaliação e tratamento de oocistos de Cryptosporidium spp. e cistos de Giardia spp. presentes na água de lavagem dos filtros e no resíduo flotado gerados pela tecnologia de ciclo completo com flotação por ar dissolvido / Evaluation and treatment of oocysts of Cryptosporidium spp. and cysts of Giardia spp. present in the wash water of the filters and in the float residue generated by the complete cycle technology with flotation by dissolved air

Hugo Guilherme Silva 16 March 2018 (has links)
O presente trabalho avaliou o uso e a detecção de óxido de cálcio e ozônio para a inativação de cistos de Giardia spp. e oocistos de Cryptosporidium parvum presentes nos resíduos e na água de lavagem dos filtros gerados após a utilização da tecnologia de ciclo completo com flotação por ar dissolvido (coagulação, floculação, flotação e filtração) em escala de bancada, usando o cloreto de polialumínio PAC como coagulante. Para os ensaios analíticos de recuperação dos protozoários e validação do método foram utilizados as suspensões e o Easyseed® nas matrizes ALF e resíduos. A quantificação dos protozoários foi realizada pelo método de centrifugação direta com a adição de solução de dispersão detergente ICN 7X (MP BIO®) a 1,0% na amostra com a etapa de separação imunomagnética – IMS. As recuperações nos ensaios de qualidade utilizando as suspensões de protozoários foram de 19,86% ± 16,29 e 43,95% ± 11,21, para oocistos de Cryptosporidium e cistos de Giardia respectivamente na matriz ALF, enquanto que para a matriz resíduo foram de 8,16% ± 30,24 para Cryptosporidium e 32,54% ± 46,48 para Giardia. Para os ensaios de recuperação empregando o Easyseed® os valores da matriz ALF foram 2,25% ± 1,37 para Cryptosporidium e 3,75% ± 2,25 para Giardia. No resíduo, a recuperação foi de 4,5% ± 1,50 para Cryptosporidium e 49% ± 1 para Giardia. Para os ensaios com óxido de cálcio na matriz resíduo, a primeira condição com dosagem de 23 mg cal/100mL no tempo de contato de 3 dias a 25° C, não foram encontrados protozoário positivo para o teste IP (iodeto de propídeo), o que deixa esta condição satisfatória. Na segunda condição, com dosagem de 16 mg cal/100mL e tempo de contato de 3 dias a 25°C, foram encontrados protozoários negativos para IP. Para as condições de desinfecção, utilizando ozônio, com tempos de contato 5 min e 10 min e dosagens de 10 mg O3.L-1 e 7,5 mg O3.L-1, respectivamente, poucos organismos foram detectados. Portanto, destaca-se a dificuldade em avaliar a permeabilidade dos protozoários após os ensaios de desinfecção realizados. Faz-se necessário realizar novos ensaios com outras dosagens e tempos de contato. / The present work evaluated the use of calcium oxide and ozone for the inactivation of Giardia spp. and Cryptosporidium parvum oocysts present in the wastes and in the wash water of the filters obtained after the use of the complete cycle technology with dissolved air flotation (coagulation, flocculation, flotation and filtration) on a bench scale using polyaluminium chloride - PAC as a coagulant. For the analytical tests of protozoan recovery and validation of the method, suspensions and Easyseed ® were used in the ALF and residues matrices. Protozoan quantification was performed by the direct centrifugation method with the addition of detergent dispersion solution ICN 7X (MP BIO ®) at 1.0% in the sample with the immunomagnetic separation step - IMS. The recoveries in the quality assays using the protozoal suspensions were 19.86% ± 16.29 and 43.95% ± 11.21 for Cryptosporidium oocysts and Giardia cysts respectively in the ALF matrix, whereas for the residue matrix were 8.16% ± 30.24 for Cryptosporidium and 32.54 ± 46.48 for Giardia. For the recovery assays using Easyseed ® the ALF matrix values were 2.25% ± 1.37 for Cryptosporidium and 3.75% ± 2.25 for Giardia. In the residue, recovery was 4.5% ± 1.50 for Cryptosporidium and 49% ± 1 for Giardia. For the calcium oxide assays in the residue matrix, the first condition with a dosage of 23 mg cal/100mL at the contact time of 3 days at 25°C, no positive protozoan was found for the IP (propidium iodide) test, which leaves is a satisfactory condition. In the second condition with a dosage of 16 mg cal/100mL and contact time of 3 days at 25°C, negative protozoa were found for IP. For the disinfection conditions using ozone with contact times 5 min and 10 min and dosages of 10 mg O3.L-1 and 7.5 mg O3.L-1, respectively, few organisms were detected. Therefore, the difficulty in evaluating the permeability of protozoa after the disinfection tests carried out. Realization of new tests with other dosages and contact times.
23

High temperature reactive separation process for combined carbon dioxide and sulfur dioxide capture from flue gas and enhanced hydrogen production with in-situ carbon dioxide capture using high reactivity calcium and biomineral sorbents

Iyer, Mahesh Venkataraman 06 January 2006 (has links)
No description available.
24

Transparent Glass Nono/Microcrystal Composites In MO-Bi2O3-B2O3(M= Sr, Ca) System And Their Physical Properties

Majhi, Koushik 09 1900 (has links)
Transparent glass-ceramics have been of industrial interest because of their multifarious applications. These are becoming increasingly important because of the flexibility that is associated with this route of fabricating intricate sizes and shapes as per the requirement. A number of glass-ceramics, based on well known ferroelectric crystalline phases (LiNbO3, LaBGeO5, SrBi2Nb2O9, Bi2WO6 etc.) were fabricated and their polar and electro-optic properties were reported. Keeping the potential applications of transparent glass-nano/microcrystal composites in view, attempts were made to fabricate SrBi2B2O7 and CaBi2B2O7 glasses and glass-nano/microcrystal composites. An attempt has been made to employ strontium bismuth borate SrBi2B2O7 (SBBO) as a reactive host glass matrix for growing the nanocrystals of ferroelectric oxides belonging to the Aurivillius family. The in situ nucleation and growth of SrBi2Nb2O9 (SBN) nanocrystals in a reactive SrBi2B2O7-Nb2O5 system and its influence on various physical (dielectric, pyroelectric and optical) properties were investigated. The strategy has been to visualize the formation of nanocrystalline SrBi2Nb2O9 as a result of the simple chemical reaction between glassy SrBi2B2O7 and Nb2O5. Indeed at lower concentrations of Nb2O5 transparent glasses were obtained which upon heat-treatment at appropriate temperatures yielded nanocrystalline SrBi2Nb2O9 phase in a transparent glass matrix. Textured SrBi2Nb2O9 ceramics were obtained by quenching the melts of SrBi2B2O7-Nb2O5 in equimolar ratio and their physical properties were studied. A strong anisotropy in physical properties (which are akin to single crystals) were demonstrated in the textured ceramics.
25

Gas Phase And Electrocatalytic Reaction Over Pt, Pd Ions Substituted CeO2, TiO2 Catalysts and Electronic Interaction Between Noble Metal Ions And The Reducible Oxide

Sharma, Sudanshu 04 1900 (has links)
Among the various heterogeneous catalytic reactions three way catalysis (TWC), catalytic combustion of hydrogen, water gas shift reaction (WGS) and preferential oxidation of CO (PROX) in the hydrogen rich stream are some of the important reactions receiving the attention presently. Three-way catalysis (TWC) involves simultaneous removal of the three pollutants (i.e., CO, NOx, and HCs) from the automobile exhaust. Catalytic combustion of hydrogen by oxygen or hydrogen-oxygen recombination reaction is an industrially important reaction. It has variety of application such as in sealed lead acid batteries and nuclear reactors. Water gas shift (WGS) reaction is of specific importance to produce hydrogen from carbonaceous material. PROX is an important step to further purify hydrogen produced form WGS. Hydrogen purified using PROX can be directly fed to polymer electrolyte membrane fuel cells. By and large, noble metals Pt, Pd, Rh, Ru and some of their alloys are dispersed on oxide or high surface area carbon are the active catalysts. An alternative approach can be to make Pt2+, Pd2+, Rh3+, Ru4+ ions substituted in reducible support such as CeO2, Ce1-xTixO2-δ and TiO2 to increase the dispersion and bring down the cost. In this thesis we have followed this new approach and show that noble metal ionic catalysts are superior to noble metal nano particles. In the 1st chapter we present an overview of heterogeneous catalysis and important heterogeneous catalytic reactions. Monolithic catalyst and various ways to coat catalysts for application have been reviewed. Metal-support interaction till date is also reviewed. In the 2nd chapter, synthesis of noble metal ionic catalysts by solution combustion method is described. Coating of washcoat and active catalyst phase over ceramic honeycomb by a new combustion method is described. Solution combustion reaction and characterization of the catalyst by x-ray diffraction, x-ray photoelectron spectroscopy, temperature programmed reduction and reaction is given. We have fabricated experimental systems to carryout catalytic reaction and in this chapter they have been presented. In the 3rd chapter, we report a new process of coating of active exhaust catalyst over -Al2O3 coated cordierite honeycomb. The process consists of (a) growing  -Al2O3 on cordierite by solution combustion of Al(NO3)3 and oxylyldihydrazide (ODH) at 600 0C. Active catalyst phase, Ce0.98Pd0.02O2- is coated on - Al2O3 coated cordierite again by combustion of ceric ammonium nitrate and ODH with 1.2  10-3 M PdCl2 solution at 500 0C. In this way a coat layer over cordierite ceramic has been achieved and catalyst has the active sites in the form of Pd2+ ions rather than Pd metal. Weight of the active catalyst can be varied from 0.02 to 2 wt% which is sufficient but can be loaded even up to 12 wt% by repeating dip dry combustion [1]. Adhesion of catalyst to cordierite surface is via oxide growth on oxide ceramic which is very strong. 100 % conversion of CO is achieved below 80 oC at a space velocity of 880 h-1. At much higher space velocity of 21000h-1, 100 % conversion is obtained below 245 oC. Activation energy for CO oxidation is 8.4 kcal/mol. At a space velocity of 880 h-1 100% NO conversion is attained below 185 oC and 100 % conversion of ‘HC’(C2H2) below 220 oC. At the same space velocity 3-way catalytic performance over Ce0.98Pd0.02O2- coated monolith shows 100% conversion of all the pollutants below 220 o C with 15% excess oxygen. Catalytic activity of cordierite honeycomb coated by this new coating method for the oxidation of major hydrocarbons in exhaust gas is discussed further in this chapter. ‘HC’ oxidation over the monolith catalyst is carried out with a mixture having the composition, 470 ppm of both propene and propane and 870 ppm of both ethylene and acetylene with the varying amount of O2. 3-way catalytic test is done by putting hydrocarbon mixture along with CO (10000ppm), NO (2000ppm) and O2 (15000ppm). Below 350 oC full conversion is achieved [2]. A comparison of the results shows that Ce1-xPdxO2-δ far superior to other catalysts. In this method, handling of nano material powder is avoided. In the 4th chapter we present a detailed study on the catalytic combustion of hydrogen by oxygen (hydrogen oxygen recombination reaction). Ever since Michel Faraday showed H2 + O2 recombination reaction over platinum metal plates, Pt metal has remained the only room temperature recombination catalyst. In search of an alternative catalyst, we discovered a new Pt free Ti0.99Pd0.01O2- compound which shows high rates of this reaction above 45 oC compared to Ce0.98Pt0.02O2-, Pt/Al2O3 and Pd/Al2O3. High rates of H2+O2 recombination over Pt and Pd ion respectively in CeO2 and TiO2 is due to the protonic type H2+ adsorption on Pt2+ or Pd2+ and dissociative chemisorption of O2 on the electron rich oxide ion vacancies [3]. In the case of Ce0.98Pt0.02O2-, H2/Pt ratio in a TPR experiment is ~2.3 at 0 oC. In the case of Ti0.99Pd0.01O2- also, H2 adsorption occurs below 0 oC and H2 / Pd ratio is ~2.2. Thus, more than 4-5 H atoms are adsorbed per metal ion. This is attributed to hydrogen spillover. H2 is known to be adsorbed as hydride ion (H-) over Pt, Pd, Rh, Ru, Os and Ir metals. Proton NMR studies of H2 adsorbed on Pd metal have shown upfield i.e. negative shift of 12 ppm with respect to TMS. We have studied proton NMR of Ti0.99Pd0.01O2- + H2 which show a downfield shift of 11.35 ppm confirming H+ or H2+ kind of species over Pd2+ ion in Ti0.99Pd0.01O2-. In Ce0.98Pt0.02O2- also H2 adsorption led to H2+ like species observed at 8 ppm and DFT calculations indeed showed H2+ kind species. H2+ is a precursor for dissociation and can readily induce O2 dissociation leading to high rates of recombination. In the 5th chapter we report water gas shift reaction (WGS) and preferential oxidation of CO (PROX) over Ti0.99Pt0.01O2-, Ce0.83Ti0.15Pt0.02O2- and Ce0.98Pt0.02O2-δ. The water gas shift reaction (WGS) is an important reaction to produce hydrogen. In this study, we have synthesized nano crystalline catalysts where Pt ion is substituted in the +2 state in TiO2, CeO2 and Ce1-xTixO2-δ. The catalysts have been characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS) and it has been shown that Pt2+ ions in these reducible oxides of the form Ti0.99Pt0.01O2-, Ce0.83Ti0.15Pt0.02O2- and Ce0.98Pt0.02O2-δ are highly active. These catalysts were tested for the water gas shift reaction both in presence and absence of hydrogen. It is shown that Ti0.99Pt0.01O2- exhibits higher catalytic activity than Ce0.83Ti0.15Pt0.02O2- and Ce0.98Pt0.02O2-δ [4]. Further, experiments were conducted to determine the deactivation of these catalysts by performing the daily startup and shutdown of the reactor for over 24 hours. There was no sintering of Pt and no carbonate formation and, therefore, the catalyst did not deactivate even after prolonged reaction. There was no carbonate formation because of the highly acidic nature of Ce4+, Ti4+ ions in the catalysts. Further, PROX activity of these catalysts has been studied. Ce0.83Ti0.15Pt0.02O2- and Ce0.98Pt0.02O2-δ showed high activity, large operating temperature window and low working temperature proving them to be highly effective PROX catalysts. In the 6th chapter we study the electrocatalysis of formic acid electro-oxidation and simultaneously mapping the electronic states of the electrodes by X-ray photoelectron spectroscopy (XPS). Ionically dispersed platinum in Ce1-xPtxO2-δ and Ce1-x-yTiyPtxO2-δ is very active towards oxygen evolution and formic acid oxidation. Higher electro-catalytic activity of Pt2+ ions in CeO2 and Ce1-xTixO2 compared to Pt0 in Pt/C is due to Pt2+ ion interaction with the supports, CeO2 and Ce1-xTixO2 respectively [5]. Further, ionic platinum does not suffer from CO poisoning effect unlike Pt0 in Pt/C. Utilization of lattice oxygen from the electrodes during the reaction has been demonstrated. This lattice oxygen exchange is responsible to convert CO to CO2 in the lower potential region to remove CO poisoning effect. In 7th chapter we repeat our study on the noble metal ion reducible oxide interaction in Ce1-xPtxO2- and Ce1-xPdxO2- (x= 0.02) system by a novel electrochemical method combined with XPS. Working electrodes made of CeO2 and Ce0.98Pt0.02O2- mixed with 30% carbon are cycled between 0.0-1.2 V in potentio-static (chronoamperometry) and potentio-dynamic (cyclic voltametry) mode with reference to saturated calomel electrode (SCE). Reversible oxidation of Pt0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y= 0.35) after applying +1.2 V which is not reversible. But Ce0.98Pt0.02O2- reaches a steady state with Pt2+: Pt4+ in the ratio of 0.60: 0.40 and Ce4+: Ce3+ in the ratio of 0.55: 0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V which is reversible [6]. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2- forms a stable electrode for oxidation of H2O to O2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction of Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple. Similar studies have been performed with Ce0.98Pd0.02O2- catalyst to show the redox coupling between Pd2+/Pd0 and Ce4+/Ce3+ redox couples. We expect similar redox coupling for Pd, Pt ions substituted TiO2, and Ce1-xTixO2. In the final chapter 8, a critical review and conclusion on the results presented in the thesis is presented. The combustion synthesized catalysts reported in this thesis stabilizes the Pt and Pd metals in their ionic state rather than zero valent metallic state. Thus, the catalysts are uniform solid catalysts. High activity and stability of these catalysts are shown to be due to the electronic interaction between noble metal ions and the reducible oxide. Redox couples Pt0/Pt2+, Pt2+/Pt4+ and Pd0/Pd2+ interact with Ce4+/Ce3+, Ti4+/Ti3+ couples such that metal is oxidized and the support is reduced. This has been established in the thesis by a combined use of electrochemistry and XPS thus solving a long standing problem of metal support interaction in catalysis. We hope that the results presented in the thesis is a worthwhile contribution to catalysis. (For mathematical equations pl refer pdf file.)
26

Vápenné malty modifikované jemně mletým cihelným střepem / Lime Mortars Modified by Fine Ground Brick Body

Šmerdová, Ludmila January 2013 (has links)
Natural pozzolanic materials played an important role in Ancient architecture. In the last decades and nowadays it is artifical pozzolan which especially finds its use as an additive to mortar and concrete to improve some, especially the mechanical properties. This master thesis deals with study of pozzolan type of fine brick powder which is a by-product of the production of calibrated bricks. Along with studying pozzolanic activity of brick powder, lime mortar with different proportions of brick powder as an additive or replacement of lime dust are investigated. What is observed is its impact on the consistency of these mortar, water absorption, strength in time or fracture-mechanical parameters of mortar. The results may indicate the possible potential use of this source of pozzolanic admixture in lime mortar and plaster which are nowadays mainly used for the restoration of facades of historic buildings.
27

Development of Calcium-Based Durable Sorbents with High Carbon Dioxide Uptake Efficiency at High Temperatures

Lu, Hong 04 August 2009 (has links)
No description available.
28

Croissance et propriétés de couches minces d’oxydes pour microsources d’énergie / Growth and properties of oxide thin films for energy microdevices

Tchiffo Tameko, Cyril 15 December 2016 (has links)
Cette thèse concerne la réalisation des films minces d’oxydes et l’étude de leurs propriétés physiques pour les cellules photovoltaïques (PV) et les modules thermoélectriques. Dans une première partie, les propriétés de l’oxyde de titane TiOx (1,45<x<2) sont mises en évidence pour une utilisation en tant qu’oxyde transparent conducteur optiquement actif à disposer en face avant des cellules PV ou, comme couche de couplage optique à intercaler entre le métal réflecteur et la couche absorbante d’une cellule PV. Les couches sont déposées par ablation laser pulse (PLD). Cette méthode permet d’obtenir des couches stoechiométriques ou déficitaires en oxygène grâce au contrôle de la pression d’oxygène pendant le dépôt. Les couches sont dopées par Nb pour un gain en conductivité électrique et/ou par Nd pour la conversion des photons UV en photons du Proche IR. Les films d’une part, isolants, transparents et luminescents ou d’autre part, conducteurs et absorbants ont été obtenus. La présence de polarons et/ou de bipolarons dans les couches TiO₁,₄₅₋₁,₆₀ explique la discontinuité observée sur leurs courbes de thermoconductivité. Une seconde partie du manuscrit concerne la thermoelectricité ou il est question de modifier les propriétés des cobaltites de calcium pour la conversion en énergie électrique des gradients de température faibles, centres autour de 300-365 K. Le contrôle de la concentration en oxygène des films a permis d’obtenir les phases polymorphes CaxCoO₂, Ca₃Co₄O₉, et Ca₃Co₄O₆,₄₋₆,₈ présentant des comportements semiconducteurs ou métalliques en fonction de la température de dépôt. Les films Ca₃Co₄O₆,₄₋₆,₈ montrent de faibles résistivités (3,8-6 mΩ.cm) et des coefficients de Seebeck élevés (S) ≥ 1000 μV/K qui doivent être confirmes pour que de tels films soient utilisés dans les thermogénérateurs. / This thesis concerns the realization of oxide thin films and the study of their properties for photovoltaic or thermoelectric devices. In the first part, the TiOx properties are studied for use as an optically active transparent conductive oxide to put in front of the PV cells or, as optical coupling layer to interpose between the metal reflector and the absorbent layer of a PV cell. The layers are deposited by pulsed laser deposition (PLD). This method allows to get stoichiometric or oxygen deficient layers by controlling the oxygen partial pressure during the growth. The layers are doped with Nb to enhance electrical conductivity and/or with Nd for the conversion of Ultra-Violet photons to Near Infra-Red photons. Insulating and transparent layers, luminescent layers or conducting and absorbent layers are obtained. The TiO₁,₄₅₋₁,₆₀ films show polaronic or bipolaronic conductivity and exhibited the jump of electrical conductivity with jump height and temperature depending on the nature of the dopants. A second part of the manuscript concerns thermoelectricity in which the properties of cobalt calcium oxide are modulated for an efficient conversion of low temperature gradients centered at 300-365K. The control of the oxygen concentration of films allows to obtain the polymorphic phases CaxCoO₂,Ca₃Co₄O₉ and Ca₃Co₄O₆,₄₋₆,₈ having metallic or semiconducting behavior depending on the deposition temperature. The Ca₃Co₄O₆,₄₋₆,₈ films show high Seebeck coefficients (S) ≥ 1 000 μV/K and low electrical resistivity (3.8 to 6 mΩ.cm). Such interesting values have to be confirmed by additional experiments in order to be used as thermoelectric films.
29

Důsledky tvorby anortitu v keramickém střepu / Results of Anorthite Creation in ceramic Body

Beránková, Karla January 2012 (has links)
Anorthite is crystalline phase in the ceramic body. Is acquired on burning a mixture of calcium ceramic raw material. This work deals with the influence on the resulting properties of anorthite ceramic body, especially flexural strength, porosity, shrinkage, thermal expansion coefficient. And the influence of different CaO sources on the properties. As a source of CaO was used calcium carbonate, calcium hydroxide and fluid fly ash.

Page generated in 0.0634 seconds