Spelling suggestions: "subject:"calcul dde structure électronique"" "subject:"calcul dee structure électronique""
1 |
Etude par calcul de structure électronique des dégâts d'irradiation dans le combustible nucléaire U02 : comportement des défauts ponctuels et gaz de fission / Study by electronic structure calculations of the radiation damage in the UO2 nuclear fuel : behaviour of the point defects and fission gasesVathonne, Emerson 20 October 2014 (has links)
Le dioxyde d'uranium (UO2) est le combustible nucléaire le plus largement répandu dans le monde pour alimenter les centrales nucléaires et plus particulièrement les réacteurs à eau pressurisée (REP). En réacteur, la fission des atomes d'uranium crée des produits de fission et des défauts ponctuels dans le matériau combustible. La compréhension de l'évolution de ces dégâts d'irradiation nécessite une approche de modélisation multi-échelle, de l'échelle de la pastille combustible à l'échelle atomique. Nous avons utilisé une méthode de calcul de structure électronique (DFT), pour modéliser les dégâts d'irradiation dans UO2 à l'échelle atomique. Un terme d'interaction Coulombienne de type Hubbard est ajouté au formalisme de la DFT standard pour prendre en compte les fortes corrélations des électrons 5f dans l'UO2. Cette méthode a été utilisée pour étudier les défauts ponctuels dans différents états de charge ainsi que l'incorporation et la diffusion du krypton dans le dioxyde d'uranium. Cette étude nous a permis d'obtenir des données clés pour les modèles aux échelles supérieures mais aussi pour interpréter des résultats expérimentaux. En parallèle de cette étude, trois pistes d'amélioration de l'état de l'art des calculs pour la description de l'UO2 ont été explorées : la prise en compte du couplage spin-orbite, l'application de fonctionnelles permettant la prise en compte des interactions non locales telles que les interactions de van der Waals importantes pour les gaz rares et l'utilisation de la théorie de champ dynamique moyen (Dynamical Mean Field Theory) combinée à la DFT afin de prendre en compte les corrélations dynamiques des électrons 5f. / Uranium dioxide (UO2) is worldwide the most widely used fuel in nuclear plants in the world and in particular in pressurized water reactors (PWR). In-pile the fission of uranium nuclei creates fission products and point defects in the fuel. The understanding of the evolution of these radiation damages requires a multi-scale modelling approach of the nuclear fuel, from the scale of the pellet to the atomic scale. We used an electronic structure calculation method based on the density functional theory (DFT) to model radiation damage in UO2 at the atomic scale. A Hubbard-type Coulomb interaction term is added to the standard DFT formalism to take into account the strong correlations of the 5f electrons in UO2. This method is used to study point defects with various charge states and the incorporation and diffusion of krypton in uranium dioxide. This study allowed us to obtain essential data for higher scale models but also to interpret experimental results. In parallel of this study, three ways to improve the state of the art of electronic structure calculations of UO2 have been explored: the consideration of the spin-orbit coupling neglected in current point defect calculations, the application of functionals allowing one to take into account the non-local interactions such as van der Waals interactions important for rare gases and the use of the Dynamical Mean Field Theory combined to the DFT method in order to take into account the dynamical effects in the 5f electron correlations.
|
2 |
Calcul des propriétés de transport de matériaux thermoélectriquesChaput, Laurent 16 June 2006 (has links) (PDF)
Un module de calcul des coefficients de transport a été implementé, puis appliqué à différents systèmes tels que le zinc pur, les phases MAX 312, les demi-Heusler, ou les Skutterudites. Dans ce travail nous montrons en particulier que des approximations simples pour les processus de diffusion suffisent à évaluer ces coefficients avec une précision raisonnable. Ainsi le coût de calcul reste suffisamment modeste pour envisager l'utilisation de ces calculs dans la recherche de nouveaux matériaux thermoélectriques. De plus nous montrons que le calcul des vitesses des électrons par la technique de différentiation spectrale donne de bons résultats ce qui accélère encore le calcul. Nous terminons ce travail par un chapitre sur l'approximation de l'échange exact pour le calcul de la structure électronique des systèmes fortement corrélés
|
3 |
Etude par calcul de structure électronique des dioxydes d'uranium et de cérium contenant des défauts et des impuretés / Theoretical study using electronic structure calculations of uranium and cerium dioxides containing defects and impuritiesShi, Lei 04 November 2016 (has links)
Le dioxyde d'uranium (UO2) est le combustible nucléaire le plus largement utilisé dans les réacteurs nucléaires à travers le monde. En conditions d’exploitation, UO2 est soumis au flux de neutrons et subit des réactions en chaîne de fission nucléaire, ce qui crée un grand nombre de produits de fission et des défauts ponctuels. L'étude du comportement des produits de fission et des défauts ponctuels est importante pour comprendre les propriétés du combustible sous irradiation. Nous effectuons des calculs de structure électronique basés sur la théorie de la fonctionnelle de la densité (DFT) pour modéliser les dégâts d’irradiation à l'échelle atomique. La méthode DFT+U est utilisé pour décrire les fortes corrélations des électron 4f du cérium et des électrons 5f de l’uranium dans les matériaux étudiés (UO2, CeO2 et (U, Ce)O2). (U, Ce)O2 est étudié car il est considéré comme un matériau modèle peu radioactif d'oxydes d’actinides mixtes comme (U, Pu)O2 qui est le combustible d'oxydes mixtes (MOX) utilisé dans les réacteurs à eau légère et les réacteurs à neutrons rapides. Le dioxyde de cérium (CeO2) est étudié pour des données de référence de (U, Ce)O2. Nous effectuons une étude DFT+U des défauts ponctuels et des produits de fission gazeux (Xe et Kr) dans CeO2 et comparons nos résultats à ceux déjà existants pour l’UO2. Nous étudions les propriétés en volume, ainsi que le comportement des défauts pour (U, Ce)O2, et comparons nos résultats à ceux de (U, Pu)O2. En outre, pour l'étude des défauts dans UO2, des améliorations méthodologiques sont explorées considérant l'effet de couplage spin-orbite et l’effet de taille finie de la supercellule de modélisation. / Uranium dioxide (UO2) is the most widely used nuclear fuel in existing nuclear reactors around the world. While in service for energy supply, UO2 is submitted to the neutron flux and undergoes nuclear fission chain reactions, which create large number of fission products and point defects. The study of the behavior of the fission products and point defects is important to understand the fuel properties under irradiation. We conduct electronic structure calculations based on the density functional theory (DFT) to model this radiation damage at the atomic scale. The DFT+U method is used to describe the strong correlation of the 4f electrons of cerium and 5f electrons of uranium in the materials studied (UO2, CeO2 and (U, Ce)O2). (U, Ce)O2 is studied because it is considered as a low radioactive model material of mixed actinide oxides such as the MOX fuel (U, Pu)O2 used in light water reactors and fast neutron reactors. Cerium dioxide (CeO2) is studied to provide reference data of (U, Ce)O2. We perform a DFT+U study of point defects and gaseous fission products (Xe and Kr) in CeO2 and compare our results to the existing ones of UO2We study the bulk properties as well as the behavior of defects for (U, Ce)O2, and compare our results to the ones of (U, Pu)O2. Furthermore, for the study of defects in UO2, methodological improvements are explored considering the spin-orbit coupling effect and the finite-size effect of the simulation supercell.
|
4 |
Couplage Spin-Orbite et Interaction de Coulomb dans l'Iridate de Strontium Sr2IrO4Martins, Cyril 26 November 2010 (has links) (PDF)
Cette thèse s'intéresse à l'interaction entre le couplage spin-orbite et les corrélations électroniques dans la matière condensée. En effet, de plus en plus de matériaux - tels que les isolants topologiques ou les oxydes de métaux de transition 5d à base d'iridium - présentent des propriétés pour lesquels l'interaction spin-orbite joue un rôle essentiel. Parmi eux, l'iridate de strontium (Sr2IrO4) a récemment été décrit comme un "isolant de Mott régi par les effets spin-orbite": dans cette image, l'interaction de Coulomb entre les électrons et le couplage spin-orbite se combinent pour rendre le composé isolant. Nous avons étudié la phase isolante paramagnétique de ce matériau avec l'approche LDA+DMFT, une méthode qui combine la théorie de la fonctionnelle de la densité dans l'approximation de la densité locale (LDA) avec la théorie du champ moyen dynamique (DMFT). Sr2IrO4 s'est avéré être un isolant de Mott pour une valeur raisonnable des corrélations électroniques une fois que le couplage spin-orbite et les distorsions structurales du cristal ont été pris en compte. En outre, nos résultats mettent en évidence les rôles respectifs joués par ces deux éléments dans l'obtention d'un état isolant et montrent que seule leur action conjointe permet d'ouvrir un gap de Mott dans un tel composé. Afin de réaliser cette étude, le couplage spin-orbite a dû être inclus au sein du formalisme LDA+DMFT. L'intérêt d'un tel développement technique dépasse le cas de Sr2IrO4, cette implémentation, dite "LDA+SO+DMFT", pouvant être aussi utilisée pour prendre en compte les corrélations électroniques dans d'autres oxydes de métaux de transition 5d ou même au sein des isolants topologiques.
|
5 |
Identification of equilibrium and irradiation-induced defects in nuclear ceramics : electronic structure calculations of defect properties and positron annihilation characteristics / Calcul de structure électronique des propriétés des défauts et caractéristiques d' annihilation de positions dans les céramiques nucléaires : identification des défauts d'équilibre et créés par l'irradiationWiktor, Julia 02 October 2015 (has links)
Durant l'irradiation en réacteur la fission des atomes d'actinides entraine la création de grandes quantités de défauts, qui affecte les propriétés physiques et chimiques des matériaux dans le réacteur, en particulier les matériaux combustibles ou de structure. Une des méthodes non destructives pouvant être utilisées pour caractériser les défauts induits par irradiation, vides ou contenant les produits de fission, est la spectroscopie d'annihilation de positons (SAP). Cette technique expérimentale consiste à détecter le rayonnement généré lors de l'annihilation du paire électron-positon dans un échantillon et en déduire les propriétés de la matière étudiée. Les positons peuvent être piégés dans les défauts de type lacunaire dans les solides, et en mesurant leur temps de vie et les distribution de moment du rayonnement d'annihilation, on peut obtenir des informations sur les volumes libres et les environnements chimiques des défauts. Dans ce travail, des calculs de structure électronique des caractéristiques d'annihilation de positons ont été effectués en utilisant la théorie de la fonctionnelle de la densité à deux composants (TCDFT). Pour calculer les distributions de moment rayonnement d'annihilation, nous avons implémenté les méthodes nécessaires dans le code de calcul libre ABINIT. Les résultats théoriques ont été utilités pour contribuer à l'identification des défauts d'irradiation dans deux céramiques nucléaires, le carbure de silicium (SiC) et le dioxyde d'uranium (UO2). / During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO2).
|
6 |
Modélisation du comportement électrochimique de matériaux pour batteries au lithium à partir de calculs de premiers principesRocquefelte, Xavier 02 October 2001 (has links) (PDF)
Le fonctionnement d'une électrode positive de batterie au lithium repose sur la possibilité d'intercaler de façon réversible du lithium au sein du matériau qui la constitue. Une telle réaction conduit souvent à une perte de la cristallinité du matériau. Une démarche théorique permettant d'accéder à la structure du composé et à la modélisation de son comportement électrochimique est présentée dans ce mémoire. La première partie expose les fondements de la DFT (Density Functional Theory), et les mérites respectifs des méthodes FLAPW (Full potential Linearized Augmented Plane Waves) et PP/PW (Pseudopotential / Plane Waves). La seconde partie rappelle quelques concepts fondamentaux d'électrochimie comme le processus d'intercalation, les aspects thermodynamiques et les relations avec la structure électronique. Ensuite, une démarche basée sur l'optimisation de la géométrie de différentes hypothèses structurales est présentée. Cette démarche a été appliquée à l'étude d'un composé modèle LiMoS2, et a ensuite été étendue à des composés d'intérêt industriel tels que LixV2O5 (0 ≤ x ≤ 3). Ainsi, pour LiMoS2 et ω-Li3V2O5, les structures optimisées permettent de simuler des diagrammes de diffraction RX en très bon accord avec l'expérience. Ceci a donc permis, dans le cas de LixV2O5, une modélisation des premières décharges partant de α-V2O5 et de γ'-V2O5. Afin de mieux comprendre l'origine de la distorsion dans LiMoS2 et des variations de potentiel des courbes électrochimiques de LixV2O5, une analyse de la liaison chimique a également été réalisée. Ces résultats mettent clairement en évidence le fait qu'une approche couplant calculs de premiers principes et expériences constitue une aide efficace à la détermination de la structure de composés mal cristallisés. Une telle démarche contribue à la compréhension des transformations structurales induites par l'intercalation du lithium dans des oxydes de vanadium et peut ainsi être utile à la recherche de nouveaux matériaux de batteries.
|
7 |
Computational and experimental studies of sp3-materials at high pressure / Étude théoriques et expérimentales de matériaux sp3 à haute pressionFlores Livas, José 18 September 2012 (has links)
Nous présentons des études expérimentales et théoriques de disiliciures alcalino-terreux, le disilane (Si2H6) et du carbone à haute pression. Nous étudions les disiliciures et en particulier le cas d’une phase plane de BaSI2 qui a une structure hexagonale avec des liaisons sp3 entre les atomes de silicium. Cet environnement électronique conduit à un gaufrage de feuilles du silicium. Nous démontrons alors une amélioration de la température de transition supraconductrice de 6 à 8.9 K lorsque les couches de silicium s’aplanissent dans cette structure. Des calculs ab initio basés sur DFT ont guidé la recherche expérimentale et permettent d’expliquer comment les propriétés électroniques et des phonons sont fortement affectés par les fluctuations du flambage des plans de silicium. Nous avons aussi étudié les phases cristallines de disilane à très haute pression et une nouvelle phase métallique est proposé en utilisant les méthodes de prédiction de structure cristalline. Les températures de transition calculées donnant un supraconducteur autour de 20 K à 100 GPa. Ces valeurs sont significativement plus faibles comparées à celles avancées dans la littérature. Finalement, nous présentons des études de structures de carbone à haute pression à travers une recherche de structure systématique. Nous avons trouvé une nouvelle forme allotropique du carbone avec une symétrie Cmmm que nous appelons Z-carbone. Cette phase est prévue pour être plus stable que le graphite pour des pressions supérieures à 10 GPa. Des expériences et simulation de rayon-X et spectre Raman sugèrent l’existence de Z-carbone dans des micro-domaines de graphite sous pression / We present experimental and theoretical studies of sp3 materials, alkaline-earth-metal (AEM) disilicides, disilane (Si2H6) and carbon at high pressure. First, we study the AEM disilicides and in particular the case of a layered phase of BaSi2 which has an hexagonal structure with sp3 bonding of the silicon atoms. This electronic environment leads to a natural corrugated Si-sheets. Extensive ab initio calculations based on DFT guided the experimental research and permit explain how electronic and phonon properties are strongly affected by changes in the buckling of the silicon plans. We demonstrate experimentally and theoretically an enhancement of superconducting transition temperatures from 6 to 8.9 K when silicon planes flatten out in this structure. Second, we investigated the crystal phases of disilane at the megabar range of pressure. A novel metallic phase of disilane is proposed by using crystal structure prediction methods. The calculated transition temperatures yielding a superconducting Tc of around 20 K at 100 GPa and decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted Tc’s and put serious drawbacks in the possibility of high-Tc superconductivity based on silicon-hydrogen systems. Third, we studied the sp3-carbon structures at high pressure through a systematic structure search. We found a new allotrope of carbon with Cmmm symmetry which we refer to as Z-carbon. This phase is predicted to be more stable than graphite for pressures above 10 GPa and is formed by sp3-bonds. Experimental and simulated XRD, Raman spectra suggest the existence of Z-carbon in micro-domains of graphite under pressure
|
Page generated in 0.0898 seconds