Spelling suggestions: "subject:"cancer biology"" "subject:"devancer biology""
371 |
Autophagy-Independent Role for Beclin 1 in the Regulation of Growth Factor Receptor Signaling: A DissertationRohatgi, Rasika 15 January 2015 (has links)
Beclin 1 is a haplo-insufficient tumor suppressor that is decreased in many human tumors. The function of Beclin 1 in cancer has been attributed primarily to its role in the degradative process of autophagy. However, the role of autophagy itself in tumorigenesis is context-dependent and can be both preventive and promoting. Due to its dual function in cancer a better understanding of this process is necessary to develop potential novel cancer therapies. To gain insight into the role of autophagy in breast carcinoma, I analyzed the autophagydependency of different subtypes of breast cancer. My results implicate that triple-negative breast carcinoma cells are more dependent on autophagy than luminal breast carcinoma cells. Chemical inhibition of autophagy decreased the tumorigenicity of triple-negative breast carcinoma cells with regard to proliferation and anchorage-independent growth. However, RNAi-mediated suppression of two autophagy genes, ATG5 and Beclin 1, revealed different outcomes. While suppression of ATG5 decreased glycolysis, Beclin 1 depletion did not affect the glycolytic rates. These results suggest autophagy-independent pro-tumorigenic effects of loss of Beclin 1 in cancer.
Beclin 1 is a core component of the Vps34/Class III PI3K (PI3KC3) and Vps15/p150 complex that regulates multiple membrane trafficking events. I describe a novel mechanism of action for Beclin 1 in breast cancer involving its control of growth factor receptor signaling. I identify a specific stage of early endosome maturation that is regulated by Beclin 1, the transition of APPL1- containing phosphatidyIinositol 3-phosphate-negative (PI3P-) endosomes to PI3P+ endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P-/APPL+ signaling competent compartment. As a result, suppression of BECN1 sustains growth factor stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, Beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Taken together my data identify a novel role for Beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of Beclin 1 expression would enhance breast cancer progression independent of its impact on autophagy.
|
372 |
A Study of Single-stranded DNA Gaps in the Response to Replication Stress and Synthetic LethalityCong, Ke 03 January 2022 (has links)
Mutations in the hereditary breast/ovarian cancer genes BRCA1/2 were shown to be synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). This toxicity is assumed to derive from PARPi-induced DNA double strand breaks (DSBs) that necessitate BRCA function in homologous recombination (HR) and/or fork protection (FP). However, PARPi accelerates replication forks. While high-speed replication could cause DSBs, the finding that PARPi leads to single-stranded DNA (ssDNA) gaps/nicks suggests replication gaps could also or alone be the cause of synthetic lethality.
Here, we demonstrate that PARPi toxicity derives from replication gaps. Isogenic cells deficient in BRCA1 or the BRCA1-associated FANCJ, with common DNA repair defects in HR and FP, exhibit opposite responses to PARPi. Deficiency in FANCJ, a helicase also mutated in hereditary breast/ovarian cancer and Fanconi anemia, causes aberrant accumulation of fork remodeling factor HLTF and limits unrestrained DNA synthesis with ssDNA gaps. Thus, we predict replication gaps as a distinguishing factor and further uncouple HR, FP and fork speed from PARPi response. BRCA-deficient cells display excessive gaps that are diminished upon resistance, restored upon re-sensitization and when targeted augment synthetic lethality with PARPi. Furthermore, we define the source of gaps to defects in Okazaki fragment processing (OFP). Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1 but aberrantly low XRCC1 indicating a defective backup OFP pathway. Remarkably, 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. Collectively, our study highlights unprotected lagging strand gaps as a determinant of synthetic lethality, providing a new paradigm and biomarker for PARPi toxicity.
|
373 |
Defining Mutation-Specific NRAS Functions that Drive MelanomagenesisMurphy, Brandon M. January 2021 (has links)
No description available.
|
374 |
PHARMACOLOGICAL TARGETING OF FGFR IN METASTATIC BREAST CANCER IS AUGMENTED BY DNMT1 INHIBITIONMitchell G Ayers (18990533) 02 August 2024 (has links)
<p dir="ltr">Metastatic breast cancer (BC) remains a dauting therapeutic challenge due to the heterogeneity and cellular plasticity that exists. Because of these, BC resistance to targeted therapies and immune checkpoint blockade (ICB) present major challenges in the clinical setting. As a result, incomplete clearance of BC during a therapeutic regimen can lead to the persistence of minimal residual disease (MRD) which greatly contributes to tumor relapse. Here we develop a powerful in vivo model of lung metastasis in which we can achieve robust pulmonary tumor regression in response to the fibroblast growth factor receptor (FGFR) inhibitor, pemigatinib.</p><p dir="ltr">To enhance the efficacy of ICB, tumors must first be converted from an immune “cold” environment to an immune “hot” environment. Using our in vivo model of lung metastasis, we demonstrated that pemigatinib can significantly increase the presence of infiltrating T-cells into the lungs while suppressing the presence of MDSCs both locally in the lungs and systemically. Taken together, pemigatinib is an ideal candidate to prime these immune “cold” tumors for combination with ICB.</p><p dir="ltr">Upon establishment of MRD by pemigatinib in our in vivo model we observe upregulation of an alternate growth factor receptor, platelet-derived growth factor receptor (PDGFR). Functionally, upon FGFR inhibition, there is increased response to pulmonary fibroblast derived PDGF ligand, fueling survival of MRD. We demonstrated that knockdown of PDGFR significantly delayed tumor growth reinitiation in an in vitro 3D culture following pemigatinib as well as delayed tumor relapse in our pulmonary metastasis model.</p><p dir="ltr">To limit cellular plasticity and reduce survival of MRD, we propose a novel dual-targeted approach utilizing pemigatinib, in conjunction with inhibition of DNMT1 using the reversible inhibitor GSK3484862. We used our in vivo model of lung metastasis after treatment with pemigatinib as a model of cellular plasticity to targeted therapy. This combination therapy prevented growth factor plasticity and delayed tumor recurrence. Through prevention of PDGFR upregulation induced by pemigatinib.</p><p dir="ltr">In the present dissertation works, our study demonstrates pemigatinib’s robust ability to increase infiltrating T-cells in addition to its strong antitumor effects on pulmonary tumors. Despite the robust effects of pemigatinib, acquired mechanism of resistance through upregulation of PDGFR allows survival of MRD and are supported by PDGF secreting fibroblasts. Using an approach of limiting cellular plasticity through DNA methylation inhibition combined with pemigatinib, we achieved a more durable therapeutic response. Our findings underscore the significance of understanding adaptive responses to targeted therapies and provide a tangible therapeutic strategy to prolong treatment response in metastatic breast cancer.</p>
|
375 |
The biology of ELTD1/ADGRL4 : a novel regulator of tumour angiogenesisFavara, David M. January 2017 (has links)
<strong>Background:</strong> Our laboratory identified ELTD1, an orphan GPCR belonging to the adhesion GPCR family (aGPCR), as a novel regulator of angiogenesis and a potential anti-cancer therapeutic target. ELTD1 is normally expressed in both endothelial cells and vascular smooth muscle cells and expression is significantly increased in the tumour vasculature. The aim of this project was to analyse ELTD1's function in endothelial cells and its role in breast cancer. <strong>Method:</strong> 62 sequenced vertebrate genomes were interrogated for ELTD1 conservation and domain alterations. A phylogenetic timetree was assembled to establish time estimates for ELTD1's evolution. After ELTD1 silencing, mRNA array profiling was performed on primary human umbilical vein endothelial cells (HUVECs) and validated with qPCR and confocal microscopy. ELTD1's signalling was investigated by applying the aGPCR âStinger/tethered-agonist Hypothesis'. For this, truncated forms of ELTD1 and peptides analogous to the proposed tethered agonist region were designed. FRET-based 2<sup>nd</sup> messenger (Cisbio IP-1;cAMP) and luciferase-reporter assays (NFAT; NFÎoB; SRE; SRF-RE; CREB) were performed to establish canonical GPCR activation. To further investigate ELTD1's role in endothelial cells, ELTD1 was stably overexpressed in HUVECS. Functional angiogenesis assays and mRNA array profiling were then performed. To investigate ELTD1 in breast cancer, a panel of cell lines representative of all molecular subtypes were screened using qPCR. Furthermore, an exploratory pilot study was performed on matched primary and regional nodal secondary breast cancers (n=43) which were stained for ELTD1 expression. Staining intensity was then scored and compared with relapse free survival and overall survival. <strong>Results:</strong> ELTD1 arose 435 million years ago (mya) in bony fish and is present in all subsequent vertebrates. ELTD1 has 3 evolutionary variants of which 2 are most common: one variant with 3 EGFs and a variant with 2 EGFs. Additionally, ELTD1 may be ancestral to members of aGPCR family 2. HUVEC mRNA expression profiling after ELTD1 silencing showed upregulation of the mitochondrial citrate transporter SLC25A1, and ACLY which converts cytoplasmic citrate to Acetyl CoA, feeding fatty acid and cholesterol synthesis, and acetylation. A review of lipid droplet (fatty acid and cholesterol) accumulation by confocal microscopy and flow cytometry (FACS) revealed no changes with ELTD1 silencing. Silencing was also shown to affect the Notch pathway (downregulating the Notch ligand JAG1 and target gene HES2; upregulating the Notch ligand DLL4) and inducing KIT, a mediator of haematopoietic (HSC) and endothelial stem cell (ESC) maintenance. Signalling experiments revealed that unlike other aGPCRs, ELTD1 does not couple to any canonical GPCR pathways (Gαi, Gαs, Gαq, Gα12/13). ELTD1 overexpression in HUVECS revealed that ELTD1 induces an endothelial tip cell phenotype by promoting sprouting and capillary formation, inhibiting lumen anastomoses in mature vessels and lowering proliferation rate. There was no effect on wound healing or adhesion to angiogenesis associated matrix components. Gene expression changes following ELTD1 overexpression included upregulation of angiogenesis associated ANTRX1 as well as JAG1 and downregulation of migration associated CCL15 as well as KIT and DLL4. In breast cancer, none of the representative breast cancer cell lines screened expressed ELTD1. ELTD1 breast cancer immunohistochemistry revealed higher levels of vascular ELTD1 staining intensity within the tumour stroma contrasted to normal stroma and expression within tumour epithelial cells. Additionally, ELTD1 expression in tumour vessels was differentially expressed between the primary breast cancer microenvironment and that of the matched regional node. Due to the small size of the pilot study population, survival comparisons between the various subgroups did not yield significant results. <strong>Conclusion:</strong> ELTD1 is a novel regulator of endothelial metabolism through its suppression of ACLY and the related citrate transporter SLC25A1. ELTD1 also represses KIT, which is known to mediate haematopoietic and endothelial progenitors stem cell maintenance, a possible mechanism through which endothelial cells maintain terminal endothelial differentiation. ELTD1 does not signal like other adhesion GPCRS with CTF and FL forms of ELTD1 not signalling canonically. Additionally, ELTD1 regulates various functions of endothelial cell behaviour and function, inducing an endothelial tip cell phenotype and is highly evolutionarily conserved. Lastly, ELTD1 is differentially expressed in tumour vessels between primary breast cancer and regional nodal metastases and is also expressed in a small subset of breast cancer cells in vivo despite no cancer cell lines expressing ELTD1. The pilot study investigating ELTD1 in the primary breast cancer and regional involved nodes will be followed up with a larger study including the investigation of ELTD1 in distant metastases.
|
376 |
EFFICIENT AND ECONOMICAL ELECTROCHEMOTHERAPY TREATMENTS FOR TRIPLE NEGATIVE BREAST CANCER: AN IN VITRO MODEL STUDYLakshya Mittal (9520208) 16 December 2020 (has links)
<p>With 2.1 million new
cases, breast cancer is the most common cancer in women. Triple negative breast cancer (TNBC), which is
15-20% of these breast cancer cases is clinically negative for expression of
estrogen and progesterone receptors (ER/PR) and human epidermal growth factor
receptor 2 (HER2) receptors<a>.</a> It is characterized by its unique molecular
profile, aggressive behavior, distinct patterns of metastasis, and lack of
targeted therapies. TNBCs utilize
glycolysis for growth, proliferation, invasiveness, chemotherapeutic resistance
and hence has poor therapeutic response.
There is an urgent need for novel/alternate therapeutic strategies
beyond current standard of treatment for this subset of high-risk
patients. Electrical pulse-based
chemotherapy, known as electrochemotherapy (ECT) could be a viable option for
TNBC therapy. ECT involves the local
application of precisely controlled electrical pulses to reversibly
permeabilize the cell membrane for enhanced uptake. ECT can increase the cytotoxicity of the
chemotherapeutics up-to 1000 times, facilitating a potent local cytotoxic
effect. </p>
<p>The high cost and
severe side-effects of conventional chemotherapeutics motivate the application
of effective natural compounds.
Combining electrical pulses with natural compounds will enhance the
treatment efficacy. This dissertation
focuses on curcumin, the yellow pigment of natural herb turmeric, that has been
used for over 5000 years for its excellent anticancer properties. Previous studies have demonstrated the
effectiveness of curcumin for treating multiple cancers, including TNBC, with
limited side effects. The potency of
curcumin can be enhanced further by combining it with ECT to provide an
attractive and cost-effective alternative for TNBC treatment. </p>
<p>Towards this we
studied the effect of ECT with curcumin on MDA-MB-231 cell line, a human
adenocarcinoma epithelial TNBC cell line.
We performed various assays, including cell viability, colony forming,
cell cycle, apoptosis, H<sub>2</sub>O<sub>2</sub> reactive oxygen species (ROS),
immunoblotting, real time quantitative PCR (qPCR), and cellular metabolites
detection to study the impact of ECT with curcumin on MDA-MB-231 cells. In addition, to better understand the
underlying mechanisms, we used high throughput, label-free quantitative
proteomics. While several studies have
attempted to define the mechanism of action of curcumin on cancer cells, little
is known on the action mechanism of the curcumin delivered with electrical
pulses. This work unravels the molecular
mechanism behind the enhanced effects observed under the ECT-based curcumin
therapy in TNBC cells, employing a high-throughput, quantitative, label-free
mass spectroscopy-based proteomics approach.
The proteomics approach provides information on the thousands of cellular
proteins involved in the cellular process, allowing a comprehensive
understanding of the electro-curcumin-therapy mechanism. Similar studies were also performed for ECT
with cisplatin to compare the efficacy of the electro-curcumin-therapy to the
standard stand-alone cisplatin-based therapy.</p>
<p>Our results revealed
a switch in the metabolism from glycolysis to mitochondrial metabolic
pathways. This metabolic switch caused
an excessive production of H<sub>2</sub>O<sub>2</sub> ROS to inflict apoptotic
cell death in MDA-MB-231 cells, demonstrating the potency of this ECT based
curcumin therapy. These results encourage
further studies to extend the application of ECT for clinical practice.</p>
|
377 |
Death is Not the End: The Role of Reactive Oxygen Species in Driving Apoptosis-induced ProliferationFogarty, Caitlin E. 02 June 2015 (has links)
Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and morphology following unexpected cell loss during normal development, and may also be a contributing factor to cancer growth and drug resistance. In apoptotic cells, caspase-initiated signaling cascades lead to the downstream production of mitogenic factors and the proliferation of neighboring surviving cells. In epithelial Drosophila tissues, the Caspase-9 homolog Dronc drives AiP via activation of Jun N-terminal kinase (JNK); however, the specific mechanisms of JNK activation remain unknown. Using a model of sustained AiP that produces a hyperplastic phenotype in Drosophila eye and head tissue, I have found that caspase-induced activation of JNK during AiP depends on extracellular reactive oxygen species (ROS) generated by the NADPH oxidase Duox. I found these ROS are produced early in the death-regeneration process by undifferentiated epithelial cells that have initiated the apoptotic cascade. I also found that reduction of these ROS by mis-expression of extracellular catalases was sufficient to reduce the frequency of overgrowth associated with our model of AiP. I further observed that extracellular ROS attract and activate Drosophila macrophages (hemocytes), which may in turn trigger JNK activity in epithelial cells by signaling through the TNF receptor Grindelwald. We propose that signaling back and forth between epithelial cells and hemocytes by extracellular ROS and Grindelwald drives compensatory proliferation within the epithelium, and that in cases of persistent signaling, such as in our sustained model of AiP, hemocytes play a tumor promoting role, driving overgrowth.
|
378 |
Micro-Spectroscopy of Bio-Assemblies at the Single Cell LevelKera, Jeslin 01 January 2017 (has links) (PDF)
In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single live cells and bio-molecules with less than 10^9 molecules in the probe volume. Employing a multichannel detection system, the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. We also extend the spectral range from the visible range to the experimentally more challenging ultra-violet region where characteristic absorption bands of bio-molecules are observed. Exploiting the ultra-violet range, amino acids, nucleic acids solutions, and plant cells are investigated. We measure the spatially resolved absorption spectra at the nucleus of an onion cell and cytoplasm to probe DNA base-pair absorption. Small variations in our micro-absorption data are seen around 260 nm, possibly due to the abundance of DNA in the nucleus. This thesis contributes to the goal of spectroscopic identification of spatial heterogeneities at the single cell level and the label-free detection of proteins and nucleic acids.
|
379 |
TIM/TAM Receptors: A Potential Biomarker for Predicting Sensitivity to Zika Virus-Induced Oncolysis in Non-Small Cell Lung CancersSomasekar, Shankari 01 January 2024 (has links) (PDF)
Non-small cell lung cancers (NSCLC) constitute 80-85% of lung cancers and are the leading cause of cancer-related deaths globally. The most common cause is prolonged smoking. Current treatment options for NSCLC include surgery, radiation, chemotherapy, targeted drug therapy, and immunotherapy. Although these medications are effective in the short term, patients often face issues of drug resistance and debilitating side effects with prolonged use. Currently, the use of Zika virus (ZIKV) is being researched as a possible alternative treatment for cancer, which minimizes side effects and the risk of drug resistance. TIM/TAM proteins are identified as the putative ZIKV receptors on the surface of human cells that mediate viral entry through apoptotic mimicry. Once engulfed, the virus can hijack the host cell’s machinery to replicate and propagate the infection. Previous research has shown the potential of using Zika virus as an oncolytic agent in glioblastoma and neuroblastoma cell lines. The success of Zika-induced oncolysis in these cancers opens doors for expanding into other cancers, including NSCLC. Infection of six diverse NSCLC cell lines with ZIKV revealed that three cell lines were sensitive to ZIKV-induced oncolysis while the remaining were resistant. Transcriptome data analysis of TIM/TAM and CD24 mRNA expression levels were compared between ZIKV-sensitive and resistant cell lines, revealing AXL and TIM-1 as potential players in increasing or decreasing ZIKV infection. High AXL (TAM) expression correlated with increased sensitivity to ZIKV, while high TIM-1 (TIM) expression correlated with increased resistance. Experiments with AXL silencing in ZIKV-sensitive cell lines provided evidence of the role of AXL in increasing ZIKV sensitivity. Although further studies with TIM-1 must be done to determine its role in conferring resistance, AXL and TIM-1 have the potential to be biomarkers in predicting tumor sensitivity to ZIKV-induced oncolytic therapy.
|
380 |
Reversing Cancer Cell Fate: Driving Therapeutic Differentiation of Hepatoblastoma to Functional Hepatocyte-Like CellsSmith, Jordan L. 20 March 2020 (has links)
Background & Aims: Despite advances in surgical care and chemotherapeutic regimens, the five-year survival rate for Stage IV Hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. YAP1 and β-Catenin co-activation occurs in 80% of children’s HB; however, a lack of conditional genetic models precludes exploration of tumor maintenance and therapeutic targets. Thus, the clinical need for a targeted therapy remains unmet. Given the predominance of YAP1 and β-catenin activation in children’s tumors, I sought to evaluate YAP1 as a therapeutic target in HB.
Approach & Results: Herein, I engineered the first conditional murine model of HB using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1S127A, constitutive β-CateninDelN90, and a luciferase reporter to murine liver. Tumor regression was evaluated using in vivo bioluminescent imaging, and tumor landscape characterized using RNA sequencing, ATAC sequencing and DNA foot-printing. Here I show that YAP1 withdrawal in mice mediates >90% tumor regression with survival for 230+ days. Mechanistically, YAP1 withdrawal promotes apoptosis in a subset of tumor cells and in remaining cells induces a cell fate switch driving therapeutic differentiation of HB tumors into Ki-67 negative “hbHep cells.” hbHep cells have hepatocyte-like morphology and partially restored mature hepatocyte gene expression. YAP1 withdrawal drives formation of hbHeps by modulating liver differentiation transcription factor (TF) occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and can rescue liver damage in mice.
Conclusions: YAP1 withdrawal, without modulation of oncogenic β-Catenin, significantly regresses hepatoblastoma, providing the first in vivo data to support YAP1 as a therapeutic target for HB. Modulating YAP1 expression alone is sufficient to drive long-term regression in hepatoblastoma because it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes.
|
Page generated in 0.0652 seconds