Spelling suggestions: "subject:"well all integrity"" "subject:"well all ntegrity""
1 |
Microcompartmentalization of Cell Wall Integrity Signaling in Kluyveromyces lactisMeyer, Sascha 24 September 2014 (has links)
The yeast cell wall provides a first barrier to the environment, confers shape and stability to the cells, and serves as a model for fungal cell wall biosynthesis and function in general. During normal growth, during mating and upon cell surface stress, new wall synthesis is induced by a conserved signaling cascade, the cell wall integrity (CWI) pathway. A signal is initiated by plasma membrane-spanning sensors and transduced through a mitogen-activated protein kinase (MAPK) cascade, which ultimately activates a transcriptional activator, Rlm1. The first part of this thesis analyses the role of this MADS-box transcription factor in the milk yeast Kluyveromyces lactis, which has not been investigated, until now. With respect to the distribution of the upstream CWI sensors, evidence for the existence of a special plasma membrane microcompartment, generally referred to as eisosomes, in the milk yeast is provided in the second part of the thesis.
Regarding the transcription factor KlRlm1, its impact on the physiology of K. lactis seems to be different from its homolog in Saccharomyces cerevisiae, ScRlm1, although it clearly acts in CWI signaling, too. Thus, in contrast to the Scrlm1 mutant, a Klrlm1 deletion is sensitive, rather than hyper-resistant, towards Congo red and Calcofluor white, typical stress agents used in cell wall research. Data on cross-complementation of the two genes in the respective heterologous yeast indicate that KlRlm1 and ScRlm1 each perform their optimal function only in the native host.To investigate the impact of a Klrlm1 deletion on the transcriptional profile of K. lactis, data from total mRNA sequencing were analyzed in comparison to a wild-type strain. Many of the genes identified did not correspond to known Rlm1 target genes in S. cerevisiae, but many relate to other stress responses (e.g. KlGRE1, KlFMP16, KLLA0C05324g, KLLA0F18766g, KlUGX2) and to chitin synthesis (KlCHS1, KlSKT5 and KlYEA1), both probably connected to cell wall composition. The functions of a large group of KlRlm1 dependent genes identified here are yet uncharacterized or lack homologs in S. cerevisiae. The plasma membrane of fungi is a specialized organelle, which is ordered into several lateral domains, which we define as microcompartments, since each is composed of a special combination of proteins in their lipid environment. Such microcompartments are believed to control a variety of signaling (and transport) processes in all sorts of eukaryotic cells. Microcompartmentalization is also observed in the yeast plasma membrane, e.g. displayed by the CWI sensors in K. lactis, as shown in this thesis. Since distribution of the latter sensors is reminiscent of that of eisosomes, it was also investigated by live-cell fluorescence microscopy, how KlPil1, KlLsp1 and KlSur7 (all homologs of eisosomal proteins in S. cerevisiae) are distributed. Since they form the typical membrane patches, which are not present in deletion mutants of KlPIL1, the major structural component of eisosomes, one can conclude, that eisosomal microcompartments form in K. lactis and are composed similar to their counterparts in S. cerevisiae. The CWI sensors are excluded from these structures and form their separate microcompartments. The exact physiological function of eisosomes in fungi is still a matter of debate and future studies in K. lactis may help to address this role.
|
2 |
Caracterização funcional do mutante pkcAG579r que codifica o homólogo da proteína quinase C, no fungo patogênico aspergillus fumigatus / Functional characterization of mutant pkcAG579R encoding the homologous protein kinase C in the pathogenic fungus Aspergillus fumigatusRocha, Marina Campos 28 October 2013 (has links)
Made available in DSpace on 2016-06-02T20:21:35Z (GMT). No. of bitstreams: 1
6077.pdf: 10672804 bytes, checksum: 8a7ba5e1820e96664e3cbb7f872f6f3e (MD5)
Previous issue date: 2013-10-28 / Financiadora de Estudos e Projetos / Over the recent years, the incidence of human fungal infections has shown a significant increase. Aspergillus fumigatus is a filamentous fungus opportunistic pathogen responsible for many human respiratory diseases, including invasive pulmonary aspergillosis, which is the most serious form of infection . Studies show that A. fumigatus virulence has a multifactorial process associated with its structure, capacity for growth, adaptation to stress conditions, evasion mechanisms of the immune system and ability to cause harm to the host. CWI (via cell wall integrity ) is a signaling cascade activated in yeast cells under conditions of cell wall stress and plays a role in the adaptation of various fungal pathogens in the human host . In many fungi , CWI is triggered by activation of protein kinase C ( PKC ) and that this pathway is associated with the transcription of genes related to maintaining the integrity of the cell wall and its redevelopment. In this work, a mutant Gly579Arg (G579R) was constructed by transformation mediated by inserting a gene replacement cassette comprising a G2044C transversion located in the cysteine-rich domain controller C1B pkcA of A. fumigatus. From the phenotypic analysis of the mutant strain was observed in the involvement of pkcAG579R CWI since the mutant showed high sensitivity to agents such as CR (congo red) and CFW (calcofluor white) . Furthermore, pkcA is also involved in tolerance to oxidative stress caused by paraquat and menadione. Additionally it was found to increase the sensitivity of the mutant pkcAG579R temperature variations as well as the inhibitor of Hsp90 radicicol. Como CWI is related to the transcriptional activation of biosynthetic genes and rugged cell wall (such as glucan synthase, glucanosil chitin synthases and transferases) the abundance of major genes coding for these enzymes was analyzed by RT-PCR in real time. Based on the tests can be α -1 ,3 glucan synthase ( agsA-C ) dependent signaling mediated PkcA for correct expression. Furthermore, genes such as β-1,3 glucan synthase (fksA) glucanosyltransferase (gelA-C) and some chitin synthases (chsB-E-C) appear not to be dependent function and CWI PkcA . These data demonstrated the role of pkcA signaling cascade in the maintenance of cell wall and thermotolerance in A. fumigatus. This work was the first in which a systematic analysis of gene pkcA was conducted in the human opportunistic fungal pathogen A. fumigatus. / Ao longo dos últimos anos, a ocorrência de infecções fúngicas humanas vem apresentando um aumento expressivo. Aspergillus fumigatus é um fungo filamentoso patógeno oportunista responsável por diversas doenças respiratórias humanas, incluindo aspergilose pulmonar invasiva, que é a forma de infecção mais grave. Estudos demonstram que o A. fumigatus possui um processo de virulência multifatorial associado a sua estrutura, capacidade de crescimento, adaptação em condições de estresse, mecânismos de evasão do sistema imune e capacidade de causar danos ao hospedeiro. A CWI (via de integridade da parede celular) é uma cascata de sinalização ativada nas células fúngicas sob condições de estresse de parede celular e desempenha um papel na adaptação de vários fungos patogênicos no hospedeiro humano. Em muitos fungos, CWI é desencadeada através da ativação da proteína quinase C (PKC) sendo que esta via está associada à transcrição de genes relacionados com a manutenção da integridade da parede celular e sua remodelação. Neste trabalho o mutante Gly579Arg (G579R) foi construído através da transformação mediada pela inserção de um cassete de substituição gênica que compreende uma transversão G2044C localizado no domínio regulador rico em cisteína C1B da pkcA de A. fumigatus. A partir da análise fenotípica desse mutante foi possível observar o envolvimento de pkcAG579R na CWI uma vez que a linhagem mutante mostrou alta sensibilidade a agentes como o CR (congo red) e CFW (calcofluor white). Além disso, pkcA está envolvido também na tolerância ao estresse oxidativo causado por menadiona e paraquat. Adicionalmente verificou-se o aumento da sensibilidade da linhagem mutante pkcAG579R à variações de temperatura bem como ao inibidor de Hsp90, radicicol. Como a CWI está relacionada à ativação transcricional de genes de biossíntese e reforço de parede celular (como por exemplo glucanas sintases, quitinas sintases e glucanosil transferases), a abundância dos principais genes que codificam essas enzimas foi analisada através de RTPCR em tempo real. Baseado nos testes pode-se verificar que as α-1,3 glucana sintase (agsA-C) dependem da sinalização mediada por PkcA para sua expressão. Por outro lado, genes como a β-1,3 glucana sintase (fksA), glucanosiltransferases (gelA-C) e algumas quitinas sintases (chsB-C-E) parecem não ser dependente da CWI e da função de PkcA. Esses dados demostraram parte do papel de pkcA na cascata de sinalização da manutenção da parede celular e termotolerância em A. fumigatus. Este trabalho foi o primeiro no qual uma análise sistemática do gene pkcA foi conduzida no fungo patógeno oportunista humano A. fumigatus.
|
3 |
Studies on the mechanism of organic solvent tolerance of yeast Saccharomyces cerevisiae triggered by a transcription factor Pdr1p / 転写因子Pdr1pによる酵母Saccharomyces cerevisiaeの有機溶媒耐性の獲得機構の解析Nishida, Nao 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第18326号 / 農博第2051号 / 新制||農||1022(附属図書館) / 学位論文||H26||N4833(農学部図書室) / 31184 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 植田 充美, 教授 喜多 恵子, 教授 栗原 達夫 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
4 |
Úloha signální dráhy integrity buněčné stěny při morfogenezi kvasinkových kolonií / Cell wall integrity signalling pathway and yeast colony morphologyReslová, Gabriela January 2013 (has links)
In the yeast Saccharomyces cerevisiae, stress on the cell wall is caused by various external influences (e.g. exposure to chemicals, oxidative stress, osmotic changes, pH changes or heat shock) which trigger the cell wall integrity signalling pathway (CWI). The aim of my work was to investigate the effect of the CWI pathway on yeast colony morphogenesis. Using strains with deletions in genes of the CWI pathway derived from two parental strains BR-F-Flo11p-GFP and PORT, I have found that differences in genetic background influences the process and activation of this pathway. Among the strains derived from BR-F-Flo11p-GFP, only the strain with the deletion of MID2 affects the appearance of colonies. MID2 encodes a cell-surface sensor of CWI pathway. In all deletion strains derived from PORT, the disruption of the CWI pathway causes a slower development of colonies growing on glycerol medium supplemented with 0,05 mM selenate inducing fluffy colony morphology. The largest effect has deletion of gene MTL1 which also encodes a cell-surface sensor with homology to Mid2. I have confirmed that strains with deletions in genes of CWI pathway have altered sensitivity to inhibitors disrupting cell wall integrity (Calcofluor white, Congo red, zymolyase). By means of zymolyase assay, I have confirmed the...
|
5 |
The cell wall is crucial for cellular sensitivity to low pH: the role of class III peroxidases and ethylene in cell death in Arabidopsis thaliana roots / A parede celular é crucial para a sensibilidade celular ao baixo pH: o papel de peroxidases de classe III e etileno na morte celular em raízes de Arabidopsis thalianaGraças, Jonathas Pereira das 07 March 2018 (has links)
Evidence suggests that root cell walls are a target of low pH stress. Severe low pH stress causes cell death in the root tip. The walls of these cells are highly dynamic. Our hypothesis is that in these cells low pH causes stress in the cell wall due to excessive loosening. Thus, a certain level of turgor pressure should be required to cause cell death. Here, we aimed to investigate the role of the cell wall in low pH stress leading to cell death. We looked for the possible involvement of players such as class III peroxidases and ethylene signaling, which could promote changes in the cell wall and cause differential sensitivity to low pH. Arabidopsis thaliana and mutants in the genetic background of Col-0 were grown in a medium containing agar (0.8%) and half the concentration of Hoagland\'s nutrient medium. Five-day-old seedlings were exposed to low pH in a solution composed of 0.5 mM CaCl2 and 0.6 mM Homopipes buffer. Treatment of roots at pH 4.6 caused death of cells in the transition zone (TZ) and meristematic zone (MZ). However, cell death was negligible when plants were treated at pH 4.6 in an hyperosmotic solution (Ψs = -0.37 MPa), thereby decreasing cell wall tension. Also, an hypoosmotic treatment (HO) caused cell death at pH 5.8 in TZ. Cell death was accelerated when HO was performed in a low pH solution. The mutant of a cell wall integrity sensor protein, wak-1, displayed reduced cell death when exposed to low pH. Also, cell death seems to occur through a programmed cell death mechanism. Thus, low-pH induced cell death appears to be triggered by perception of cell wall stress. We examined published data to search for class III peroxidases possibly involved in cell death due to low pH. The gene for AtPrx62 is induced 8.37-fold in low pH exposed roots. The atprx62 KO mutant was less sensitive to low pH than Col-0 roots. The mRNA of AtPRX62 accumulated in the same zone that cell death occurred due to low pH. This strongly suggests that AtPRX62 is positive regulator of low-pH induced cell death. Also, ethylene pretreatment induced subsequent tolerance of roots to low pH and this was dependent of its receptor ETR1. Together we show that a cell wall stress caused by low pH causes cell death. This death was in part due AtPRX62 activity and was also suppressed by ethylene. / Evidencias recentes sugerem que a parede celular é um alvo direto do estresse por baixo pH em raízes. Estresse severo por baixo pH rapidamente causa a morte de células do ápice radicular, onde a parede é altamente dinâmica. Nossa hipótese é de que nessas células, o baixo pH cause mudanças na parede celular, como afrouxamento excessivo. Assim, a pressão de turgor sobre a parede deve ser necessária para causar danos que levam à morte das células. Neste trabalho, nós investigamos o papel da parede celular no estresse por baixo pH e na consequente morte de células radiculares. Além disso, tambem foi investigado o papel de peroxidases de classe III e sinalização por etileno, que promovem mudanças na parede celular as quais podem gerar sensibilidade diferenciada a baixo pH. Plântulas de Arabidopsis thaliana e mutantes no background de Col-0 foram crescidas em meio contendo ágar (0.8%) e metade da concentração dos nutirentes do meio de Hoagland. Plântulas com 5 dias de idade foram expostas a baixo pH em uma solução composta por 0.5 mM de CaCl2 e 0.6 mM de tampão Homopipes. O tratamento de raízes a pH 4.6 causou morte em células da zona de transição (TZ) e zona meristemática (MZ). Entretanto, a morte celular foi negligível quando as plantas foram tratadas a pH 4.6 simultaneamente com a diminuição da tensão na parede celular, através de solução com potencial de - 0.37 MPa. Além disso, um choque repentino na pressão de tugor por intermédio de tratamento hiposmótico (HO) causou morte celular a pH 5.8 na TZ. A morte celular foi acelerada quando HO foi realizado em uma solução a baixo pH. A morte celular foi reduzida no mutante wak-1 exposto a baixo pH. WAK-1 é um receptor de parede que atua no sistema de monitoramento de integridade da parede celular. A morte das células provavelmente ocorreu por meio de morte celular programada. Juntos, esses dados trazem evidências que a parede celular é crucial para percepção do estresse causado por baixo pH e essa percepção possivelmente está envolvida em repostas que causam a morte celular. Nós examinamos dados publicados procurando por peroxidases classe III possivelmente envolvidas com a morte celular devido baixo pH. O gene codante para AtPRX62 foi induzido 8.37 vezes em raízes expostas a baixo pH. O mutante KO atprx62 foi menos sensível a baixo pH que raízes de Col-0. O mRNA de AtPRX62 acumulou-se na mesma zona de morte celular devido baixo pH em raízes de Col-0. Isso sugere que a atividade de AtPRX62 está relacionada com a morte celular devido baixo pH. Além disso, o pré-tratamento com etileno induziu tolerância de raízes à exposição subsequente a baixo pH. Esta indução foi dependente de sinalização via ETR1. No conjunto, nós mostramos que um estresse causado na parede celular pelo baixo pH causa a morte celular. Essa morte é em parte devido a atividade de AtPRX62 mas pode ser aliviada por etileno.
|
6 |
Genetic and chemical genomic dissection of the cell adhesion mechanisms in plants / Dissection génétique et chemogénomique des mécanismes d’adhésion cellulaire chez les plantesVerger, Stephane 03 October 2014 (has links)
L’adhésion cellulaire chez les plantes est permise par la présence de la paroi dont les composants sont réticulés afin de former un réseau de polysaccharides liant les cellules entre elles. Cependant, la paroi est un compartiment cellulaire dynamique qui participe à la croissance et au développement de la plante, notamment par son relâchement et sa réorganisation constante et nous ne savons pas exactement comment l'adhésion cellulaire est effectivement maintenue dans ces conditions. Afin d'obtenir une meilleure compréhension des mécanismes qui contrôlent l'adhésion cellulaire chez les plantes, nous avons utilisé une combinaison de crible génétique suppresseur et de crible chémogenomique suppresseur sur les mutants quasimodo1 et quasimodo2 présentant un défaut d'adhésion cellulaire accompagné d’une déficience de synthèse de pectine. Par ces approches nous avons pu isoler des mutants suppresseurs et des molécules chimiques impliquées dans l'adhésion cellulaire. Le crible génétique a conduit à l'identification et l'étude d'un suppresseur muté dans le gène ESMERALDA1, une O-fucosyltransférase putative non caractérisée. L'étude génétique du défaut d’adhésion cellulaire en incluant friable1, muté dans une autre O-fucosyltransférase putative, a montré que la mutation de ESMD1 était suffisante pour supprimer le défaut d'adhésion cellulaire de qua1, qua2 et frb1, ce qui en fait un acteur majeur de l’adhésion cellulaire. Le crible chemogenomic a montré l'implication du transport de l'auxine et de l'activité pectin méthylesterase dans le processus contrôlant l'adhésion cellulaire. Sur la base de ces nouvelles informations, nous avons établi un modèle qui explique la perte de l'adhésion cellulaire chez les mutants quasimodo et friable1, et à partir de ce modèle, nous avons pu déduire l'existence de mécanismes qui permettent le maintien de l'adhésion cellulaire de façon dynamique au cours de croissance et de développement chez les plantes. / Cell to cell adhesion in plants is mediated by the cell wall in which the components are cross-linked in order to create a continuum of polysaccharides linking the cells together. However the cell wall is a dynamic compartment that participates in growth and development through its constant loosening and remodeling and it is not very clear how cell adhesion is actually maintained in these conditions. In order to get a better understanding of the mechanisms that control cell adhesion in plants we used a combination of a forward genetic suppressor screen and a chemical genomic suppressor screen on the cell adhesion defective and pectin synthesis deficient mutants quasimodo1 and quasimodo2, and have isolated a number of suppressor mutants and molecules implicated in cell adhesion. The genetic screen led to the identification and study of a suppressor mutated in the gene ESMERALDA1, an uncharacterized putative O-fucosyltransferase. The genetic study of cell adhesion including another putative O-fucosyltransferase FRIABLE1 showed that the disruption of ESMD1 was sufficient to suppress the cell adhesion defect of qua1, qua2 and frb1, making it a major player of the pathway. The chemical genomic screen has revealed the implication of auxin transport and pectin methyl esterase activity in the process of cell adhesion. Based on these new information we have established a model explaining the loss of cell adhesion in the quasimodo and friable1 mutants, and from this model we have inferred the existence of the mechanisms that dynamically allow the maintenance of cell adhesion in plants during growth and development.
|
7 |
Microcompartmentation of cell wall integrity sensors in Saccharomyces cerevisiae / Mikrokompartimentierung von Zellwandintegritätssensoren in Saccharomyces cerevisiaeKock, Christian 05 August 2016 (has links)
The ability to adapt to changing environments is a key feature of living cells which is usually mediated by signal transduction pathways. One of these pathways in Saccharomyces cerevisiae maintains the proper cell wall composition under cell wall remodeling and stress conditions which ensures cell shape and integrity. The pathway is hence commonly referred to as cell wall integrity (CWI) pathway. Five plasma membrane sensors detect surface stress and activate a conserved MAPK cascade through Rom2, Rho1 and Pkc1. Downstream of the cascade, Slt2 activates the transcription factors Rlm1 and SBF. These regulate the expression of genes which are involved in cell wall synthesis and cell cycle control, respectively. The sensors can be grouped into two protein families with Wsc1, Wsc2 and Wsc3 on the one hand and Mid2 and Mtl1 on the other hand. They all contain a highly mannosylated extracellular serine/threonine-rich region (STR), a single transmembrane domain and a cytoplasmic tail. Whereas Wsc-family sensors carry an additional cysteine-rich domain (CRD) headgroup, Mid2 and Mtl1 are N-glycosylated at an asparagine (Kock et al., 2015).
A strain deleted in all five sensor genes is not viable and WSC1, WSC2 and MID2 are the main sensor genes to mediate the stress response. Wsc1 and Mid2 show non-overlapping spot-like and network-like localization patterns in the plasma membrane, respectively, whose formation is not governed by their transmembrane domains. Colocalization studies with marker proteins of the known yeast plasma membrane domains “membrane compartment occupied by Can1” (MCC), “membrane compartment occupied by Pma1” (MCP) and the “membrane compartment of the TOR2 complex” (MCT) revealed that Wsc1 forms a distinct plasma membrane domain which is here introduced as “membrane compartment occupied by Wsc1“ (MCW). This microcompartment depends on the cysteine-rich domain (CRD) as sensors mutated in this headgroup accumulate in the vacuole. Blocking endocytosis either by an end3 deletion or by mutation of the NPFDD endocytosis signal in the cytoplasmic tail of Wsc1 restores its signaling function but displays an altered pattern of membrane distribution, changing from spot-like in wild-type to network-like in the mutants. This indicated that clustering may protect the sensor from endocytosis. In addition, Wsc1 has amyloid-like properties suggesting a role in clustering. Accordingly, protein aggregation (clustering) is lost in a mutant of a predicted amyloid motif within the CRD, which also impairs Wsc1 signaling.
|
Page generated in 0.0804 seconds