Spelling suggestions: "subject:"cellular automaton"" "subject:"cellular automatons""
61 |
Nové techniky návrhu celulárních automatů / New Cellular Automata Design TechniquesBaláž, Martin January 2013 (has links)
The aim of this master thesis is to introduce a new technique for the design of cellular automata which will provide a better possibilities for the implementation and solving given problems in an environment of non-uniform automata. In this work, the theoretical foundations of cellular automata have been summarized and the possibilities of their design were examined using two evolutionary principles that have commonly been used - genetic algorithm and cellular programming. Two principally different issues were selected on which the possibilities and capabilities of these techniques were proven: the synchronization problem and the system of implementation of logic gates in an environment of cellular automata. Based on a review of the implementation properties and the initial results of usage of these methods a new design method for cellular automata was created - cellular evolution. The cellular evolution with its method of "prediction of the future state of surrounding cells" provides new possibilities in the design of cellular automata since it operates with structured genes which allow the gene to be active for a variety of cellular surroundings. In the conclusion of this work, all three methods were compared on two selected problems and their abilities were summarized in a detailed overview.
|
62 |
Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann SchemesSpäth, Peter 14 June 2000 (has links)
In this Doktorarbeit the Lattice Boltzmann scheme, a heuristic method for the
simulation of flows in complicated boundaries, is investigated. Its theory is
renewed by emphasizing the entropy maximization principle, and new means
for the modelling of geometries (including moving boundaries) and the visual
representation of evoluting flows are presented. An object oriented implemen-
tation is given with communication between objects realized by an interpreter
object and communication from outside realized via interprocess communica-
tion. Within the new theoretical apprach the applicability of existing Lattice
Boltzmann schemes to model thermal flows for arbitrary temperatures is reex-
amined. / In dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode
fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die
zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip
der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer
die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen
Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt,
wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die
Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird.
Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender
Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht
konstanter Temperatur untersucht.
|
63 |
Model-based Comparison of Cell Density-dependent Cell Migration StrategiesHatzikirou, H., Böttger, K., Deutsch, A. 17 April 2020 (has links)
Here, we investigate different cell density-dependent migration strategies. In particular, we consider strategies which differ in the precise regulation of transitions between resting and motile phenotypes. We develop a lattice-gas cellular automaton (LGCA) model for each migration strategy. Using a mean-field approximation we quantify the corresponding spreading dynamics at the cell population level. Our results allow for the prediction of cell population spreading based on experimentally accessible single cell migration parameters.
|
64 |
Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis / Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und AnalyseDormann, Sabine 26 October 2000 (has links)
Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.
|
65 |
Development of ABAQUS-MATLAB Interface for Design Optimization using Hybrid Cellular Automata and Comparison with Bidirectional Evolutionary Structural OptimizationAlen Antony (11353053) 03 January 2022 (has links)
<div>Topology Optimization is an optimization technique used to synthesize models without any preconceived shape. These structures are synthesized keeping in mind the minimum compliance problems. With the rapid improvement in advanced manufacturing technology and increased need for lightweight high strength designs topology optimization is being used more than ever.</div><div>There exist a number of commercially available software's that can be used for optimizing a product. These software have a robust Finite Element Solver and can produce good results. However, these software offers little to no choice to the user when it comes to selecting the type of optimization method used.</div><div>It is possible to use a programming language like MATLAB to develop algorithms that use a specific type of optimization method but the user himself will be responsible for writing the FEA algorithms too. This leads to a situation where the flexibility over the optimization method is achieved but the robust FEA of the commercial FEA tool is lost.</div><div>There have been works done in the past that links ABAQUS with MATLAB but they are primarily used as a tool for finite element post-processing. Through this thesis, the aim is to develop an interface that can be used for solving optimization problems using different methods like hard-kill as well as the material penalization (SIMP) method. By doing so it's possible to harness the potential of a commercial FEA software and gives the user the requires flexibility to write or modify the codes to have an optimization method of his or her choice. Also, by implementing this interface, it can also be potentially used to unlock the capabilities of other Dassault Systèmes software's as the firm is implementing a tighter integration between all its products using the 3DExperience platform.</div><div>This thesis as described uses this interface to implement BESO and HCA based topology optimization. Since hybrid cellular atomata is the only other method other than equivalent static load method that can be used for crashworthiness optimization this work suits well for the role when extended into a non-linear region.</div>
|
66 |
Spatio-temporal dynamics of fluids and tissues: discrete versus continuous modelingFranke, Florian 05 August 2024 (has links)
Um das Verständnis für physikalische und biologische Dynamiken zu verbessern, werden oft stellvertretend mathematische Modelle entwickelt, implementiert,validiert und analysiert. Die Entscheidung für oder gegen einen bestimmten Modelltyp, zum Beispiel ob die Auflösung in Raum und Zeit diskret oder kontinuierlich definiert ist, kann erheblichen Einfluss auf die Ergebnisse haben. Insbesondere bei der Untersuchung und Simulation der Dynamiken von biologischen Zellen, die häufig auch als biologische Flüssigkeiten (Biofluids) bezeichnet und in der Literatur oft mit physikalischen Flüssigkeiten verglichen werden, ist die Wahl des geeigneten Modelltyps nicht immer trivial. In diesem Zusammenhang stellt die vorliegende Arbeit drei verschiedene Szenarien vor. Unter Zuhilfenahme von unterschiedlichen mathematischen Modellen werden diese Szenarien dann untersucht. Dabei wird deutlich, dass trotz des ähnlichen Kontextes von physikalischen und biologischen Dynamiken je Szenario unterschiedliche Modelltypen besser geeignet sind und mitunter verschiedene Aussagen liefern. Daher muss für jedes dieser Szenarien die Entscheidung, welches Modell genommen wird und ob dieses in Raum und Zeit diskret oder kontinuierlich ist, neu evaluiert werden. Das erste Szenario befasst sich mit einer rein physikalischen Dynamik und beschreibt das Aufsteigen einer runden
Flüssigkeitsblase innerhalb einer anderen Flüssigkeit. In diesem Zusammenhang wird auch häufig von zwei Phasen gesprochen. Dieser Fall dient auch als numerischer Benchmark-Test zur Bewertung der Genauigkeit von Zwei-Phasen-Modellen. Innerhalb dieses Kontextes werden oft Modelle verwendet, die kontinuierlich in Bezug auf Ort und Zeit sind. In der vorliegenden Arbeit wird stellvertretend das Cahn-Hilliard-Navier-Stokes-Modell verwendet. Vor allem wird ein neuer einfacher Diskretisierungsansatz für dieses Modell vorgestellt. Unter Verwendung eines Standard-Benchmark-Tests wird gezeigt, dass die Genauigkeit vergleichbar zu bisherigen Methoden ist. Das zweite Szenario fokussiert sich auf eine biologische Dynamik und beschreibt das Wachstum eines Tumorsphäroiden und sein Verhalten bei der Behandlung mit Radiostrahlung. Tumorsphäroide sind spezielle 3D in-vitro Experimente, welche eine Ansammlung von mehreren tausend Zellen umfassen und Tumormikroumgebung und
Mikrometastasen nachempfinden. Durch ihre 3D Struktur zeigen sie Stoffwechselgradienten von Sauerstoff, Nährstoffen und Abfallprodukten. Die Modellierung solcher Sphäroide wird häufig mit zell- oder agentenbasierten Modellen beschrieben, die in Bezug auf Ort und Zeit meist diskret sind und das Zellverhalten regelbasiert beschreiben. In dieser Arbeit wird hierfür stellvertretend ein zellulärer Automat verwendet. Dieser dient später als Vergleichsmodell zu dem neu entwickelten und hier vorgestellten Ansatz: dem 1D Radial Shell Modell, welches im Ort diskret und in der Zeit kontinuierlich ist. Dieses ermöglicht weitere Erkenntnisse und Vorhersagen zum Wachstum der Sphäroide, insbesondere für die Dynamik bei kleinem Sphäroidvolumen. Im dritten Szenario wird ein Grenzfall zwischen den physikalischen und biologischen Flüssigkeiten beschrieben: Die Entmischungsdynamik von biologischen Zellen, welche oft in der Literatur mit der Entmischung von zwei physikalischen Flüssigkeiten, wie Wasser und Öl, verglichen wird. Daher werden die beiden zuvor vorgestellten Modelle, das kontinuierliche Cahn-Hilliard-Navier-Stokes-Modell und der diskrete zelluläre Automat, für diesen Sachverhalt simuliert und analysiert. Zudem werden beide Modelle miteinander und jeweils mit biologischen Experimenten verglichen, wobei aufgrund ihrer unterschiedlichen zeitlichen und räumlichen Auflösung verschiedene Vor- und Nachteile identifizierbar sind. Am Ende zeigt sich entgegen bisherigen Versuchen in der Literatur, dass die Anpassung der Modelle an die Experimentaldaten nicht ausschließlich durch das Skalierungsverhalten machbar ist, da die Zeitskalen in den Experimenten häufig zu kurz sind. Daher sollten zusätzliche Metriken, wie zum Beispiel der durchschnittliche Clusterdurchmesser
oder die Verteilung der Clustergrößen, beachtet werden. / Enhancing the understanding of physical and biological dynamics is crucial, which is why assisting mathematical models are often developed, implemented, validated, and analyzed. The decision for or against a particular model type, for example, whether the resolution in space and time is defined discretely or continuously, can considerably influence the results. Especially when investigating and simulating the dynamics of biological cells, also referred to as biological fluids and in the literature often compared to physical fluids, choosing the appropriate model type is not trivial in every case. This work presents three scenarios, which are further examined with the help of various mathematical models. Despite the similar context, dynamics of physical and biological fluids, some model types are more suited and deliver different results for each scenario. Therefore, the decision should be made new, depending on the scenarios, which model type is optimal, discrete, or continuous in space and time. The first scenario describes pure physical dynamics by the rise of a round fluid bubble within another fluid, which is often referred to as two phases. This setup also serves as a numerical benchmark test to evaluate the accuracy of physical two-phase-models. Within this context, the models used are often continuous regarding space and time. In this work, the Cahn-Hilliard-Navier-Stokes-model is chosen as a representative example. In particular, a new discretization approach for the model is introduced and evaluated by the previous benchmark test, which showcases that the new, more
straightforward discretization approach leads to comparably precise results. The second scenario focuses on biological dynamics and describes the untreated growth of a tumor spheroid and further its behavior when exposed to \acl{rt}. These tumor spheroids are, in particular, 3D-assays of in-vitro experiments, which are 3D avascular aggregates of several thousand tumor cells mimicking tumor microareas or micrometastases. Due to their 3D structure, spheroids exhibit metabolic gradients of oxygen, nutrients, and waste products. These are usually simulated with cell or agent-based models, which are discrete in terms of space and time and describe the cell behavior in a rule-based manner. In this work, a cellular automaton is used as a representative. Later, this model will serve as a comparison for the new innovative approach presented here: the 1D Radial Shell model, which is space-discrete and time-continuous. This model allows further insights and predictions, for example, regarding the behavior of spheroids at small volumes, justifying the use of multiple model types. The third scenario can be seen as the in-between of physical and biological fluid dynamics: The segregation of biological cells of two distinct types, which is in the literature often referred to as similar or equal to that of two physical fluids, like oil and water. Therefore, this process is simulated and analyzed with the previously introduced continuous Cahn-Hilliard-Navier-Stokes and the discrete cellular automaton models. Thereby, both models are compared with each other and also individually with biological experiments. The comparison enables the identification of various advantages and disadvantages due to their different temporal and spatial resolution. In the end, it becomes clear that adapting the models to the experimental data is only partially feasible through the scaling behavior, as the time scale in the experiments is often too short, which stands in contrast to the current standard in the literature. Therefore, we emphasize that additional metrics should be considered, such as the average cluster diameter or cluster size distribution.
|
67 |
Representando famílias de autômatos celulares por meio de templatesCosta, Maurício Verardo da 10 February 2015 (has links)
Made available in DSpace on 2016-03-15T19:37:54Z (GMT). No. of bitstreams: 1
MAURICIO VERARDO DA COSTA.pdf: 829862 bytes, checksum: 7cb233efb8692b0820e30cf2bdbf4a76 (MD5)
Previous issue date: 2015-02-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The notion of a template for representing cellular automata (CA) rules is introduced. This enhances the standard representation based on a rule table, in that it refers to families of cellular automata, instead of a rule alone. Operations applicable to the templates are defined herein, and their use is exemplified in the context of finding representations for rule sets that share properties. Wolfram Mathematica's functional nature
and built-in equation-solving capabilities are central to develop these algorithms. The perspectives for using templates in further contexts are also discussed, along with possible extensions to the present work. As a support to the template concept, a Wolfram Mathematica package called CATemplates is presented, shared with the community using a public repository. / A noção de representação de autômatos celulares (ACs) por meio de templates é aqui introduzida. Ela consiste em uma generalização da tabela
de transições de estado clássica, permitindo a representação de subespaços
de autômatos celulares, ao invés de apenas indivíduos isolados. São definidas operações aplicáveis aos templates, e seu uso é exemplificado por
meio da obtenção de algoritmos que encontram subespaços de regras que
apresentam propriedades em comum. Para o desenvolvimento destes algoritmos,
a utilização do software Wolfram Mathematica é central, dada
sua capacidade de resolução automática de sistemas de equações, além
da natureza funcional e simbólica da Wolfram Language, linguagem de
programação a ele associada. Também são discutidas as vantagens e desvantagens
da utilização deste tipo de representação em outros contextos,
e possiblidades de extensão para o trabalho. Como apoio ao conceito dos
templates, é apresentada a biblioteca para o Wolfram Mathematica chamada
CATemplates, disponibilizada em um repositório público.
|
68 |
Computer Modeling the Incursion Patterns of Marine Invasive SpeciesJohnston, Matthew W. 26 February 2015 (has links)
Abstract Not Available.
|
69 |
Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell SegregationRoßbach, Philipp, Böhme, Hans-Joachim, Lange, Steffen, Voß-Böhme, Anja 24 February 2022 (has links)
The process of cell-sorting is essential for development and maintenance of tissues. With the Differential Adhesion Hypothesis, Steinberg proposed that cellsorting is determined by quantitative differences in cell-type-specific intercellular adhesion strengths. An implementation of the Differential Adhesion Hypothesis is the Differential Migration Model by Voss-Böhme and Deutsch. There, an effective adhesion parameter was derived analytically for systems with two cell types, which predicts the asymptotic sorting pattern. However, the existence and form of such a parameter for more than two cell types is unclear. Here, we generalize analytically the concept of an effective adhesion parameter to three and more cell types and demonstrate its existence numerically for three cell types based on in silico time-series data that is produced by a cellular-automaton implementation of the Differential Migration Model. Additionally, we classify the segregation behavior using statistical learning methods and show that the estimated effective adhesion parameter for three cell types matches our analytical prediction. Finally, we demonstrate that the effective adhesion parameter can resolve a recent dispute about the impact of interfacial adhesion, cortical tension and heterotypic repulsion on cell segregation. / Der Prozess der Zellsortierung ist für die Entwicklung und Erhaltung von Geweben unerlässlich. Mit der Differentiellen Adhäsionshypothese schlug Steinberg vor, dass die Zellsortierung durch quantitative Unterschiede in den zelltypspezifischen interzellulären Adhäsionsstärken bestimmt wird. Eine Umsetzung der Differentiellen Adhäsionshypothese ist das Differentielle Migrationsmodell von Voss-Böhme und Deutsch. In diesem wurde für Systeme mit zwei Zelltypen ein effektiver Adhäsionsparameter analytisch hergeleitet, der das asymptotische Sortiermuster vorhersagt. Die Existenz und Form eines solchen Parameters für mehr als zwei Zelltypen ist jedoch unklar. Hier verallgemeinern wir analytisch das Konzept eines effektiven Adhäsionsparameters für drei und mehr Zelltypen und zeigen numerisch seine Existenz für drei Zelltypen auf der Basis von in silico Zeitreihendaten, die von einem zellulären Automaten des Differentiellen Migrationsmodells erzeugt werden. Darüber hinaus klassifizieren wir das Segregationsverhalten mithilfe statistischer Lernverfahren und zeigen, dass der geschätzte effektive Adhäsionsparameter für drei Zelltypen mit unserer analytischen Vorhersage übereinstimmt. Schließlich zeigen wir, dass der effektive Adhäsionsparameter eine kürzlich aufgekommene Diskussion über den Einfluss von Grenzflächenadhäsion, Kortikalspannung und heterotypischer Abstoßung auf die Zellsegregation lösen kann.
|
Page generated in 0.0563 seconds