Spelling suggestions: "subject:"cellule couche"" "subject:"cellule bouche""
61 |
Alternative splicing by hnRNP L as a new modulator of hematopoietic cell differentiation, survival and migrationGaudreau, Marie-Claude 01 1900 (has links)
Les modifications post-transcriptionnelles de l’ARN messager (ARNm), comme l’épissage alternatif, jouent un rôle important dans la régulation du développement embryonnaire, de la fonction cellulaire et de l’immunité. De nouvelles évidences révèlent que l’épissage alternatif serait également impliqué dans la régulation de la maturation et de l’activation des cellules du système hématopoïétique. Le facteur hnRNP L a été identifié comme étant le principal régulateur de l’épissage alternatif du gène codant pour le récepteur CD45 in vitro. Le récepteur CD45 est une tyrosine phosphatase exprimée par toutes les cellules du système hématopoïétique qui contrôle le développement et l’activation des lymphocytes T.
Dans un premier temps, nous avons étudié la fonction du facteur hnRNP L dans le développement des lymphocytes T et dans l’épissage de l’ARNm de CD45 in vivo en utilisant des souris dont le gène de hnRNP L a été supprimé spécifiquement dans les cellules T. La délétion de hnRNP L dans les thymocytes résulte en une expression aberrante des différents isoformes de CD45 avec une prédominance de l'isoforme CD45RA qui est généralement absent dans le thymus. Une conséquence de la délétion de hnRNP L est une diminution de la cellularité du thymus causée par un blocage partiel du développement des cellules pré-T au stade DN4. Cette réduction du nombre de cellules dans le thymus n’est pas liée à une hausse de la mort cellulaire. Les thymocytes déficients pour hnRNP L démontrent plutôt une prolifération augmentée comparée aux thymocytes sauvages due à une hyper-activation des kinases Lck, Erk1/2 et Akt. De plus, la délétion de hnRNP L dans le thymus cause une perte des cellules T en périphérie. Les résultats des expériences in vitro suggèrent que cette perte est principalement due à un défaut de migration des thymocytes déficients pour hnRNP L du thymus vers la périphérie en réponse aux chimiokines. L’épissage alternatif de CD45 ne peut expliquer ce phénotype mais l’identification de cibles par RNA-Seq a révélé un rôle de hnRNP L dans la régulation de l’épissage alternatif de facteurs impliqués dans la polymérisation de l’actine.
Dans un second temps, nous avons étudié le rôle de hnRNP L dans l’hématopoïèse en utilisant des souris dont la délétion de hnRNP L était spécifique aux cellules hématopoïétiques dans les foies fœtaux et la moelle osseuse. L’ablation de hnRNP L réduit le nombre de cellules progénitrices incluant les cellules progénitrices lymphocytaires (CLPs), myéloïdes (CMPs, GMPs) et mégakaryocytes-érythrocytaires (MEPs) et une perte des cellules hématopoïétiques matures. À l’opposé des cellules progénitrices multipotentes (MPPs) qui sont affectées en absence de hnRNP L, la population de cellules souches hématopoïétiques (HSCs) n’est pas réduite et prolifère plus que les cellules contrôles. Cependant, les HSCs n’exprimant pas hnRNP L sont positives pour l'Annexin V et expriment CD95 ce qui suggère une mort cellulaire prononcée. Comme pour les thymocytes, une analyse par RNA-Seq des foies fœtaux a révélé différents gènes cibles de hnRNP L appartenant aux catégories reliées à la mort cellulaire, la réponse aux dommages à l’ADN et à l’adhésion cellulaire qui peuvent tous expliquer le phénotype des cellules n’exprimant pas le gène hnRNP L.
Ces résultats suggèrent que hnRNP L et l’épissage alternatif sont essentiels pour maintenir le potentiel de différenciation des cellules souches hématopoïétiques et leur intégrité fonctionnelle. HnRNP L est aussi crucial pour le développement des cellules T par la régulation de l’épissage de CD45 ainsi que pour leur migration. / Post-transcriptional modifications of pre-mRNA by alternative splicing are important for cellular function, development and immunity. New evidence reveals that alternative splicing is implicated in the regulation of maturation and activation of hematopoietic cells. HnRNP L has been identified as the main regulator of alternative splicing of CD45 in vitro. The receptor tyrosine phosphatase CD45, which is expressed on all hematopoietic cells, is known for its role in the development and activation of T cells.
First, we have investigated the function of hnRNP L in T cell development and CD45 pre-mRNA splicing in vivo using T cell specific deletion of hnRNP L in mice. The hnRNP L deletion results in aberrant expression of CD45 isoforms, predominantly CD45RA, which is usually absent from the thymus. Ablation of hnRNP L results in a partial block in pre-T cell development at the DN4 stage. This reduction in thymic cellularity is not due to an increase in cell death. In fact, hnRNP L deficient thymocytes demonstrate accelerated proliferation compared to wild-type cells due principally to a hyper-activation of the kinases Lck, Erk1/2 and Akt. Moreover, hnRNP L deletion results in a loss of peripheral T cells. In vitro studies suggest that this loss of peripheral cells is caused by a defect in response to chemokine signals. Since CD45 pre-mRNA splicing cannot explain this phenotype, the identification of hnRNP L targets by RNA-Seq has shown that hnRNP L plays a role in the regulation of alternative splicing of factors involved in actin polymerization.
Secondly, we studied the role of hnRNP L in hematopoiesis using knockout mice in which hnRNP L is conditionally deleted specifically in fetal liver and bone marrow hematopoietic cells. Ablation of hnRNP L reduces the number of cell lineage committed progenitors including the common lymphoid progenitors (CLPs), common myeloid and granulocyte progenitors (CMPs, GMPs) and the megakaryocyte-erythrocyte progenitors (MEPs) as well as the mature hematopoietic cells. In contrast to multipotent progenitors (MPPs) that are affected by the absence of hnRNP L, the hematopoietic stem cell (HSC) population is not reduced. In fact, HSCs from hnRNP L deleted mice demonstrate increased cell cycling. However, hnRNP L deficient HSCs express high levels of Annexin V and CD95, which suggests an increased cell death. As for the thymus, a RNA-Seq analysis of fetal livers revealed different targets of hnRNP L among gene categories related to cell death, DNA damage responses and cell adhesion that may explain the phenotype observed in the hnRNP L deficient HSCs.
These results suggest that hnRNP L and alternative splicing are essential for the survival and maintenance of the differentiation potential of HSCs. HnRNP L is also crucial for the development of T cells by regulating both their migration and the splicing of CD45.
|
62 |
Fonctions de l'oncoprotéine LMO2 déterminées par ses interactions protéiquesSincennes, Marie-Claude 10 1900 (has links)
La leucémie lymphoïde représente environ 30% des cas de cancer chez l’enfant. Elle est souvent causée par des réarrangements chromosomiques impliquant des gènes encodant des facteurs de transcription, qui contrôlent des programmes génétiques complexes. Par exemple, LMO2 (LIM-only 2) est un facteur de transcription oncogénique fréquemment exprimé de façon aberrante dans les leucémies lymphoblastiques aigues des cellules T (T-ALL). Dans l’hématopoïèse normale, LMO2 est essentiel à la génération des cellules souches hématopoïétiques à l’origine de toutes les cellules sanguines. D’ailleurs, certaines cellules leucémiques possèdent des propriétés normalement réservées aux cellules souches hématopoïétiques. Ainsi, l’étude de la fonction de LMO2 dans les cellules souches hématopoïétiques peut être pertinente autant dans le contexte hématopoïétique normal que leucémique.
Afin de mettre en évidence de nouvelles fonctions moléculaires pour LMO2, j’ai choisi d’identifier les protéines qui s’y associent. En plus de ses partenaires connus, j’ai identifié plusieurs protéines de transcription/remodelage de la chromatine, en accord avec son rôle transcriptionnel. Plusieurs nouvelles fonctions potentielles ont été révélées, indiquant que cette protéine adaptatrice pourrait faire partie de complexes non transcriptionnels, régulant d’autres processus cellulaires. Les oncogènes comme LMO2 pourraient être des régulateurs à large spectre.
Particulièrement, j’ai identifié des interactions entre LMO2 et des protéines de réplication de l’ADN. J’ai montré que LMO2 contrôle la réplication de l’ADN dans les cellules hématopoïétiques, et possiblement durant la leucémogenèse, indépendamment de son rôle transcriptionnel. Ensemble, ces études ont donc permis de révéler de nouvelles fonctions pour LMO2, et pourraient servir de paradigme pour d’autres facteurs de transcription oncogéniques, particulièrement aux autres protéines de la famille LMO, qui sont aussi des oncogènes puissants. / Lymphoid leukemia represents about 30% of childhood cancer cases. It is often caused by chromosomal rearrangements involving genes coding for transcription factors, controlling complex genetic programs. As an example, the oncogenic transcription factor LMO2 (LIM-only 2) is often aberrantly expressed in T cell acute lymphoblastic leukemia (T-ALL). In normal hematopoiesis, LMO2 is essential for the generation of hematopoietic stem cells that give rise to all blood cells. Moreover, some leukemic cells possess properties normally reserved to hematopoietic stem cells. Thus, studying the role of LMO2 in hematopoietic stem cells could be relevant to the contexts of normal hematopoiesis and leukemogenesis.
To reveal new molecular functions for LMO2, I chose to identify its associated proteins. In addition to its known protein partners, I identified many proteins involved in transcription/chromatin remodeling, in agreement with its transcriptional role. In addition, several new potential functions have been revealed, indicating that this scaffold protein could be part of non-transcriptional protein complexes, regulating different cell processes. Oncogenes like LMO2 could be master regulators in normal hematopoietic and leukemic cells.
Particularly, I identified protein-protein interactions between LMO2 and DNA replication proteins. I demonstrated that LMO2 controls S phase progression in hematopoietic cells, independently of its association in transcriptional complexes. LMO2 overexpression in mice induces T-ALL and affects specifically the cell cycle status of thymocyte progenitors, which are targets of transformation by LMO2. Thus, LMO2 promotes DNA replication in hematopoietic cells, and possibly in leukemogenesis. Together, these studies allowed to reveal new functions for LMO2, and could serve as a paradigm for other oncogenic transcription factors, especially for other LMO proteins which are all potent oncogenes.
|
63 |
Le fragment LG3 du perlécan : un nouveau régulateur de remodelage vasculaire en transplantationSoulez, Mathilde 06 1900 (has links)
L’apoptose endothéliale initie le processus menant au remodelage vasculaire et au développement de la néointima dans la vasculopathie du greffon. La formation de néointima résulte de l’accumulation de leucocytes, de matrice extracellulaire et de cellules positives pour l’actine musculaire lisse alpha (αSMA+) dans l’intima des artères, artérioles et capillaires du greffon. Les cellules αSMA+ dans la néointima sont des cellules musculaires lisses vasculaires (CMLV) dérivées du donneur ainsi que des cellules souches dérivées du receveur, dont des cellules souches mésenchymateuses (CSM). L’acquisition d’un phénotype anti-apoptotique chez ces cellules est déterminante pour le développement de la néointima. Le laboratoire de Dre Hébert a démontré que les cellules endothéliales (CE) apoptotiques libèrent des médiateurs induisant une résistance à l’apoptose chez les CMLV et les fibroblastes. Notamment, les CE apoptotiques relâchent la cathepsine L qui clive le perlécan et ainsi libère un fragment C-terminal correspondant au troisième motif laminine G du domaine V du perlécan (LG3). Le LG3 est anti-apoptotique pour les fibroblastes. Nous avons donc émis l’hypothèse que le LG3 est un des médiateurs clés libéré par les CE apoptotiques favorisant le développement de la néointima via l’induction d’un phénotype anti-apoptotique chez les cellules néointimales αSMA+.
Nous avons démontré que les médiateurs libérés par les CE apoptotiques induisent un phénotype anti-apoptotique chez les CSM dépendant de l’activation de la voie ERK1/2. De plus, le LG3 active la voie ERK1/2 via son interaction avec les intégrines beta 1 et induit une réponse anti-apoptotique chez ces cellules. Cependant l’activation de ERK1/2 par le LG3 est plus faible en comparaison de son activation par le milieu conditionné par des CE apoptotiques. Nos résultats suggèrent que les CE apoptotiques libèrent aussi de l’EGF qui agit de façon paracrine sur les CSM en coopération avec le LG3 pour induire un phénotype anti-apoptotique chez les CSM.
Nous avons poursuivi l’étude de l’effet du LG3 in vivo sur le remodelage vasculaire en transplantation. Nous avons pour cela développé un modèle murin de rejet vasculaire qui consiste en une transplantation aortique entre des souris alloincompatibles. Nous avons ensuite injecté du LG3 chez les souris receveuses en post-transplantation. Nous avons observé dans ce modèle que des niveaux augmentés de LG3 sérique augmentent la formation de néointima, favorisent l’accumulation de cellules néointimales αSMA+ et diminuent le nombre de cellules CD31+ au niveau du greffon aortique. Parallèlement nous avons vérifié que le LG3 induit aussi un phénotype anti-apoptotique chez les CMLV et nous avons démontré un nouvel effet du LG3, soit une activité pro-migratoire, qui dépend de l’activation de la voie ERK1/2 chez les CMLV. Nous avons complété cette étude par l’analyse des niveaux de LG3 sérique dans une cohorte de patients receveurs d’allogreffe rénale. Nous avons observé chez ces patients, une association entre des niveaux élevés de LG3 sérique et un rejet vasculaire.
Le LG3 contribue à la formation de néointima par son activité pro-migratoire et pro-survie chez les cellules néointimales et aussi de par son activité angiostatique. Nos résultats suggèrent que le LG3 est un nouveau médiateur important dans le remodelage vasculaire en transplantation / In allogeneic transplanted organs, endothelial apoptosis is associated with vascular remodeling and neointima formation which in turn leads to allograft vasculopathy, a maladaptive form of vascular repair. In allograft vasculopathy, neointima results from the accumulation of leukocytes, extracellular matrix and alpha-smooth muscle actin positive (αSMA+) cells in the intima of allogeneic arteries, arterioles and capillaries. Neointimal αSMA+ cells comprise vascular smooth muscle cells (VSMC) derived from the donor and stem cells derived from the recipient, including mesenchymal stem cells (MSC). Acquisition of an anti-apoptotic phenotype of neointimal cells is central to the development of vascular obliterative changes. Dr Hébert’s team demonstrated that apoptotic endothelial cells release mediators which in turn induce a state of resistance to apoptosis of VMSC and fibroblasts. Apoptotic endothelial cells release cathepsin-L which cleaves perlecan therefore releasing a C-terminal fragment harbouring a laminin G motif and referred to as LG3. LG3 is anti-apoptotic for fibroblasts. We hypothesized that LG3 is a key mediator produced by endothelial apoptosis of importance in favoring neointima formation via the induction of an anti-apoptotic phenotype in αSMA+ neointimal cells
We demonstrated that mediators released by endothelial apoptosis induce an ERK1/2-dependent anti-apoptotic phenotype in MSC. We identified LG3 as one of the mediators implicated in the induction of this anti-apoptotic response. Interactions between LG3 and beta 1 integrins expressed on MSC trigger ERK1/2 activation albeit to a lesser degree than medium conditioned by apoptotic endothelial cells. We showed that apoptotic endothelial cells also release EGF which cooperates with LG3 to induce an anti-apoptotic phenotype on MSC through cross-talk between EGF receptor and integrin-dependent pathways.
Next, we characterized the impact of LG3 on allogeneic vascular remodeling in vivo. We developed a murine model of vascular rejection based on orthotopic transplantation of an aortic segment between two fully MHC-incompatible mice in absence of immunosuppression. Recombinant LG3 was injected intravenously post-transplantation in recipients resulting in higher circulating levels of LG3. In LG3-injected mice, accumulation of αSMA+ neointimal cells was enhanced resulting in significantly increased intima/media ratios in the allogeneic aortic graft. Aortic grafts of LG3-injected allografts also showed decreased CD31+ cells. We also demonstrated, using cell-based approaches, that LG3 exerts a pro-migratory activity on VSMC through beta 1-integrin and ERK1/2 -dependent pathways. In line with these observations we also reported augmented serum LG3 in human renal transplant patients in association with acute vascular rejection episodes.
Collectively these results suggest that the pro-migratory, pro-survival and angiostatic activities of LG3 contribute to neointima formation. Our results suggest that LG3 is a novel mediator of importance in the development of obliterative vascular remodeling associated with rejection of allogeneic organs.
|
64 |
Exploration du rôle du fragment LG3 sur les cellules souches mésenchymateuses dans le contexte du rejet vasculairePilon, Eve-Annie 09 1900 (has links)
La vasculopathie du greffon est une pathologie caractérisée par un rétrécissement progressif et oblitérant des vaisseaux sanguins menant à une ischémie et une perte de fonction du greffon. Le rétrécissement vasculaire est dû à une accumulation de matrice extracellulaire (MEC) et de cellules mononuclées positives pour l’actine musculaire lisse alpha (alphaSMA) dont les cellules souches mésenchymateuses, le tout formant une néointima oblitérante. Cette pathologie est la cause principale de la perte des greffons rénaux et cardiaques à long terme. Le rejet vasculaire aigu est un prédicteur de la vasculopathie du greffon.
L’équipe du Dr Hébert a démontré que l’apoptose endothéliale, qui joue un rôle important dans le développement du rejet vasculaire, initie la libération de LG3, un fragment du protéoglycan perlécan. Les taux sanguins et urinaires de LG3 sont augmentés chez les receveurs d’allogreffe rénale avec rejet vasculaire et vasculopathie du greffon. Les résultats obtenus en laboratoire durant ma maîtrise ont permis de mieux caractériser l’impact du LG3 sur un type cellulaire important participant à la formation de néointima : les cellules souches mésenchymateuses.
Mes travaux ont démontré que le LG3 induit à la fois la migration horizontale des MSC et la transmigration des MSC. Cette migration est dépendante de la voie de signalisation d’ERK1/2, précédemment identifiée comme voie centrale dans la formation de néointima. De plus, nos résultats démontrent que la kinase Src est activée en amont de l’activation de la voie MAPK. La migration horizontale et la transmigration induites par le LG3 sont aussi dépendantes des intégrines alpha2beta1, ainsi que l’activation de la voie MAPK. Dans un modèle de transplantation
murin, nous avons également démontré que l’injection sérique de LG3 recombinant favorise l’accumulation de cellules positives pour alphaSMA dans la néointima. En outre, lorsque le receveur est déficient pour l’intégrine alpha2, mais que le greffon est sauvage, la formation de néointima induite par l’injection de LG3 est diminuée dans le greffon suggérant que les cellules du receveur jouent un rôle important dans la formation de la néointima. Enfin, nous avons démontré que l’injection de LG3 augmente aussi le nombre de cellules positives pour la forme phosphorylée d’ERK1/2 (p-ERK1/2) dans la néointima du greffon et que cette accumulation est dépendante de la présence des intégrines 2 1 chez les cellules du receveur.Lorsque le receveur est sauvage, il y a une augmentation du nombre de cellules positives pour p-ERK1/2.
L’investigation de ces mécanismes dans le remodelage vasculaire expose de nouvelles opportunités pour inhiber la réponse cellulaire qui mène au remodelage inadapté lors d’un dommage vasculaire chronique et ainsi prolonger la survie du greffon. / Graft vasculopathy is diseases characterized by a progressive and obliterate narrowing of the blood vessels leading to ischemia and loss of graft function. This vascular narrowing is due to an accumulation of extracellular matrix and mononuclear cells positive for alpha smooth muscle actin (alphaSMA) including mesenchymal stem cells, thus forming an occlusive neointima. This condition is the leading cause of long term loss of kidney and heart transplants. Acute vascular rejection is a predictor of graft vasculopathy.
Dr. Hébert’s team has demonstrated that endothelial apoptosis, which plays an important role in the development of vascular rejection, initiates the release of LG3, a fragment of the proteoglycan perlecan. Blood and urine levels of LG3 are increased in renal allograft recipients with vascular rejection and graft vasculopathy. The results obtained in the laboratory during my Master have helped to better characterize the impact of LG3 on an important cell type involved in neointima formation: the mesenchymal stem cells.
My work has shown that the LG3 induces both the horizontal migration and the transmigration of MSC. This migration is ERK1/2-dependent, previously identified as a key molecule involved in neointima formation. In addition, our results demonstrate that Src kinase is activated by upstream activation of the MAPK pathway. Horizontal migration and transmigration induced by LG3 are also dependent on alpha2beta1 integrins, and the activation of the MAPK pathway. In a murine transplantation model, we also demonstrated that intravenous injection of recombinant LG3 promotes the accumulation of alphaSMA positive cells in the neointima. In addition, when the recipient is deficient for the alpha2 integrin but the graft is wild type, LG3 fails to induce neointima formation in the graft suggesting that recipient cells play an important role in the neointima formation. Finally, we demonstrated that intravenous injection of LG3 also increases the number of positive cells for the phosphorylated form of ERK1/2 (p-ERK1/2) in the neointima. This accumulation is dependent on the presence of alpha2beta1 integrins on recipient cells: when the recipient is wild type, there is an increase in the number of cells positive for p-ERK1/2.The investigation of these mechanisms in vascular remodeling presents new opportunities to inhibit the cellular response that leads to inadequate remodeling during chronic vascular damage and prolong graft survival.
|
65 |
Biological multi-functionalization and surface nanopatterning of biomaterials / Multi-fonctionnalisation et micro-, nanostructuration de la surface de biomatériauxCheng, Zhe Annie 12 December 2013 (has links)
Le but de la conception d’un biomatériau est de mimer les modèles qui puissent être représentatifs de la matrice extracellulaire (MEC) existant in vivo. Cet objectif peut être atteint en associant une combinaison de cellules et des facteurs biologiques à un biomatériau sur lequel ces cellules peuvent se développer pour reconstruire le tissu natif. Dans cet étude, nous avons crée des surfaces bioactives nanostructurées en combinant la nanolithographie et la fonctionnalisation de surface, en greffant un peptide RGD ou BMP-2 (bone morphogenetic protein 2). Nous avons étudié l’effet de cette nanodistribution sur le comportement des cellules souches mésenchymateuses en analysant leur adhésion et différentiation. Nous notons que la nanodistribution des peptides induit une bioactivité qui a un impact sur l’organisation du cytosquelette, la conformation des fibres de stresse de l’actin, la maturation des adhésions focales (AFs), et le commitment des cellules souches. En particulier, l’aire, la distribution, et la conformation des AFs sont affectes par la présence des nanopatterns. En plus, le RGD et le BMP-2 changent le comportement cellulaire par des voies et des mécanismes différents en variant l’organisation des cellules souches et la maturation de leurs AFs. La nanodistribution influence de façon évidente les cellules souches en modifiant leur comportement (adhésion et différenciation) ce qui a contribué et ce qui contribuera à améliorer la compréhension des interactions des cellules avec la MEC. / The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications.
|
66 |
Les cellules souches olfactives humaines : un nouveau modèle d'étude des mécanismes à l'origine d'une maladie neurodégénérative, la dysautonomie familialeBoone, Nathalie 19 September 2011 (has links)
La dysautonomie familiale (FD) est une neuropathie héréditaire provoquée par des mutations au sein du gène IKBKAP, la plus commune d'entre elles induisant un épissage alternatif de l'exon 20 au sein de du pré-ARNm de façon tissu-spécifique. L'épissage aberrant est particulièrement prononcé dans les tissus nerveux, conduisant à la dégénerescence progressive des neurones sensoriels et autonomes. La spécificité de la perte des cellules nerveuses dans la FD est mal comprise, par manque d'un modèle approprié. Afin de mieux comprendre les mécanismes moléculaires de l'épissage des ARNm d'IKBKAP, nous avons utilisé un modèle original : les cellules souches olfactives ecto-mesenchymateuses (hOE-MSC) de patients FD. Les hOE-MSC sont pluripotentes et ont la capacité de se différencier en diverses lignées cellulaires, y compris les neurones et les cellules gliales.Nous avons confirmé la présence du transcrit exempt de l'exon 20 d'IKBKAP dans les hOE-MSC de FD et nous avons observé une expression significativement inférieure de la somme des transcrits IKBKAP chez ces patients, du fait de la dégradation d'une partie des isoforme aberrants. Cette réduction est correlée avec une réduction d'expression de la protéine traduite à partir du transcrit d’IKBKAP possèdant l’exon 20, IKAP/hELP1. Nous avons localisé IKAP/hELP1 dans différents compartiments cellulaires, y compris le noyau, ce qui soutient des rôles multiples de cette protéine. Nous avons confirmé que la kinétine, une cytokinine, améliorait le taux de transcrit incluant l'exon 20 et rétablissait des niveaux normaux d'IKAP/hELP1 dans les hOE-MSC de FD. Par ailleurs, nous avons pu modifier le rapport d'épissage d'IKBKAP en augmentant ou en réduisant le ratio WT (inclusion de l'exon 20) : MU (saut de l'exon 20) respectivement, en produisant des sphères flottantes, ou en engageant les cellules vers une différentiation neurale. Les sphères et les cellules différenciées ont été étudiées au niveau pan-génomique, ce qui a permis d'identifier le développement du système nerveux comme étant le processus le plus affecté chez les FD. De plus, nous soulignons le rôle de la kinétine comme un probable régulateur de facteurs d'épissage contribuant à la restauration d'un épissage correct d'IKBKAP.Les hOE-MSC isolées de patients FD représentent une nouvelle approche pour modéliser la pathologie et mieux comprendre l'expression génétique et les approches thérapeutiques possibles de la FD. En outre, elles offrent une application originale à la compréhension d'autres maladies génétiques neurologiques. / Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells.We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and observed a significant lower expression of both IKBKAP transcripts and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. Spheres forming cells and lineage neuroglial progenitors were investigated at the genome-wide level, and we confirmed that nervous system development was the most altered process in FD. More, we highlight kinetin role as a putative regulator of splicing factors which contribute to restore a correct splicing of IKBKAP.hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases.
|
67 |
Caractérisation des cellules souches gingivales et protocole de culture préclinique pour une thérapie osseuse humaine / Characterization of human gingival stem cells and preclinical culture protocol for human bone therapyTaïhi, Ihsène 04 December 2017 (has links)
La thérapie cellulaire est une méthode d’avenir innovante, actuellement utilisée dans le traitement de pathologies multiples (auto-immunitaire, cancéreuses, pathologies inflammatoires, allogreffes…) et la régénération des pertes de substance tissulaire. Les cellules souches mésenchymateuses, par la variabilité de leurs origines, présentent des propriétés très intéressantes à la thérapie, notamment un potentiel de différenciation en lignées multiples, et des propriétés d’immunomodulation importantes. Mon projet s’intéresse à l’utilisation de cellules souches orales récemment isolées de la gencive par notre équipe : cellules souches gingivales (GSC), et présentant un avantage fonctionnel par rapport aux sources cellulaires traditionnelles d’origine mésodermique (moelle osseuse) ou orales (pulpe dentaire, follicule dentaire, ligament parodontal, glandes salivaires…). Les défauts osseux des mâchoires, de par leur multitude d’étiologies (traumatismes, dysmorphoses, cancer, ...) et le handicap généré, représentent une cible thérapeutique privilégiée. Les GSCs ont la même origine embryologique neurectodermique que les os maxillaires et par là-même un phénotype proche, exploré dans notre équipe. Cette source gingivale de prélèvement non traumatique est une alternative aux techniques chirurgicales actuelles mutilantes pour le site donneur. Notre objectif est double : Etablir un protocole préclinique de culture des GSC en ostéoblastes, pour être compatibles avec la thérapie humaine afin d’obtenir une régénération osseuse optimale. Les capacités immunomodulatrices des GSCs sont par là-même étudiées dans ces nouvelles conditions, dans le but de maitriser la réaction inflammatoire et préserver la greffe osseuse, grâce à la plateforme exceptionnelle mise à notre disposition par l’établissement français du sang, et une équipe très spécialisée dans l’étude des mécanismes de régulation immunitaires. Nos résultats permettront non seulement une régénération osseuse transposable chez l’homme, mais également d’utiliser ces cellules pour le traitement d’autres pathologies (cancéreuses, auto-immunitaires…) en utilisant leur capacité immunomodulatrice. / Cell therapy is an innovative method of the future, currently used in the treatment of multiple diseases (autoimmune, cancer, inflammatory pathologies, allografts ...) and the regeneration of tissue loss. Mesenchymal stem cells (MSC), regardless their origins, exhibit very interesting properties for therapy, including a potential for multi-line differentiation, and important immunomodulation properties. My project focuses on the use of oral stem cells recently isolated from the gingiva by our team (GSC), and having a functional advantage over traditional mesodermal (bone marrow) cellular sources. The bone defects of the jaws, due to their multitude of etiologies (trauma, dysmorphoses, cancer...) and the generated handicap, represent a preferred therapeutic target. GSCs have the same neurectodermal embryological origin as the maxillary bones and thus a similar phenotype, explored in our team. This gingival source of non-traumatic removal is an alternative to current mutilating surgical techniques for the donor site. Our goal is twofold: To establish a preclinical GSC culture protocol in osteoblasts, to be compatible with human therapy, in order to achieve optimal bone regeneration. The immunomodulatory capacities of the GSCs are themselves studied under these new conditions, with the aim of controlling the inflammatory reaction and preserving the bone graft, thanks to the exceptional platform made available to us by the French blood establishment, and A highly specialized team in the study of immune regulation mechanisms. Our results will not only allow transposable bone regeneration in humans but also use these cells for the treatment of other pathologies (cancerous, autoimmune ...) using their immunomodulatory capacity.
|
68 |
Hétérogénéité génétique et clonale des Syndromes Myélodysplasiques / Genetic and clonal heterogeneity of myelodysplastic syndromesChesnais, Virginie 15 December 2015 (has links)
Les syndromes myélodysplasiques (SMD) forment un groupe de pathologies clonales de la cellule souche hématopoïétique (CSH) caractérisées par une hématopoïèse inefficace. La présence d’au moins une anomalie génétique (anomalie cytogénétique ou mutation somatique) est observée dans plus de 90% des cas. Ainsi, plusieurs clones moléculaires pouvaient coexister au moment du diagnostic de la maladie. Dans les SMD avec délétion du chromosome 5 (del(5q)), il a récemment été montré que les anomalies étaient présentes dès le stade de la CSH. Dans les SMD, la pénétrance des anomalies génétiques décrites est incomplète. De plus, peu de choses sont actuellement connues sur l’ordre d’apparition des mutations et leur impact fonctionnel sur les différents clones moléculaires dans le cas des SMD non-del(5q). Grâce au séquençage d’exome entier (WES) de patients ne présentant aucune mutation dans les gènes décrits dans les SMD, nous avons décrit l’existence de mutations dans les gènes BCOR et BCORL1, chez respectivement 4,2% et 0,8% des patients. Les mutations du gène BCOR arrivent tardivement au cours de l’évolution de la maladie et affectent le pronostic des patients. Des approches à l’échelle unicellulaire nous ont également permis d’observer que la majeure partie des mutations identifiées chez les patients sont retrouvées dès le stade CD34+CD38-. Chez les patients, plusieurs clones moléculaires coexistent à ce stade. De plus, les mutations des gènes de l’épissage et de la régulation épigénétique sont fréquemment acquises en premier dans les cellules hématopoïétiques les plus immatures des patients porteurs de SMD. Nous avons observé que certaines mutations, acquises secondairement, sont réparties inégalement dans les différents compartiments hématopoïétiques et peuvent avoir un impact sur la différenciation hématopoïétique. Enfin, nous montrons que la répartition des clones moléculaires évolue au cours du temps. En réponse au traitement par Lenalidomide, on observe également une évolution rapide de l’architecture clonale qui peut être liée au statut de réponse des patients. Ces résultats tendent à confirmer l’hétérogénéité génétique mais aussi fonctionnelle des SMD. Nous avons pu identifier de nouvelles mutations impliquées secondairement dans la physiopathologie des SMD. Il existe une dominance clonale précoce dans les SMD du fait de l’acquisition de toutes les mutations dans les cellules hématopoïétiques immatures. Cependant, les différentes populations hématopoïétiques peuvent présenter des génotypes différents. Enfin cette architecture est variable au cours de l’évolution de la maladie. / Myelodysplastic syndromes (MDS) are a group of clonal disorders of the hematopoietic stem cell (HSC) characterized by ineffective hematopoiesis. At least one genetic abnormality (cytogenetic abnormality or somatic mutation) is observed in more than 90% of cases. Thus, it has been observed several molecular clones which could coexist at diagnosis of the disease. In MDS with deletion of chromosome 5 (del (5q)), it has recently been shown that defects were present in the HSC. In MDS, the penetrance of genetic abnormalities described is incomplete. In addition, little is currently known about the order of appearance of mutations and their functional impact on different molecular clones in the case of non-del (5q) MDS. Through the whole exome sequencing (WES) of patients without mutation in the genes described in MDS, we described the existence of mutations in genes BCOR and BCORL1, in respectively 4.2% and 0.8% of patients. Mutations in the gene BCOR were acquired lately during the course of the disease and affect the prognosis of patients. Approaches at the single cell level have also allowed us to observe that most of the mutations identified in patients are found at the immature differentiation stage CD34+CD38-. In patients, several molecular clones could coexist at this stage. In addition, mutations in gene splicing and epigenetic regulation are frequently first acquired in the most immature hematopoietic cells of MDS patients. We found that certain mutations, acquired in a second time, are distributed unevenly in different hematopoietic compartment and may have an impact on hematopoietic differentiation. Finally, we showed that the distribution of molecular clones evolves over time. In response to treatment with Lenalidomide, it has also been observed a rapid evolution of clonal architecture that can be linked to patient response status. These results tend to confirm the genetic but also functional heterogeneity in MDS. We have identified new mutations involved in the pathogenesis of MDS. We observed an early clonal dominance in MDS because of the acquisition of all mutations in immature hematopoietic cells. However, different hematopoietic populations can have different genotype. Finally, the architecture of mutations could be modifying during the course of the disease.
|
69 |
Role of thrombopoietin in DNA repair an genomic integrity in hematopoietic stem cells / Rôle de la thrombopoïétine dans la réparation de l’ADN et l’intégrité génomique des cellules souches hématopoïétiqueBarbieri, Daniela 12 January 2017 (has links)
Le maintien de l'intégrité génomique est crucial pour la préservation du potentiel des cellules souches hématopoïétiques (CSH). Les lésions de l'ADN dans les CSH sont associées à une capacité réduite à reconstituer l'hématopoïèse, à altérer le potentiel de différentiation et à accroître le risque de développer des tumeurs myéloïdes. Les éléments rétrotransposables (ER), se propageant dans le génome à travers un ARN intermédiaire, ont été associés à la perte d'auto-renouvellement, au vieillissement et aux dommages à l'ADN. Cependant, leur rôle dans les CSH n'avait pas été abordé. Dans cette étude, nous avons constaté que les CSH expriment des niveaux élevés d'ARNm de plusieurs ER comprenant des rétrovirus endogènes (ERV) et des L1 (LINE-1: Long Interspersed Nuclear Elements 1). Leur expression augmente avec l'irradiation. En utilisant des souris transgéniques L1-EGFP, on a montré que la rétrotransposition de L1 se produit dans les CSH in vivo. En outre, les inhibiteurs de la transcriptase inverse Efavirenz et ddC sauve à la fois les CSH des dommages persistants à l'ADN induit par l’irradiation et de la perte de prolifération in vitro. Ceci démontre que la rétrotransposition endogène joue un rôle important dans l'instabilité génomique de CSH induite par l’irradiation et dans leur perte de fonction. Nous avons précédemment montré que la thrombopoïétine (TPO), un facteur d'auto-renouvellement critique pour le CSH, limite les lésions de l'ADN induites par l’irradiation en améliorant la réparation de l'ADN. Nous avons découvert que le traitement par TPO empêche également l'expression et la mobilisation d’ER induite par l’irradiation. Nous avons aussi constaté que l’expression et la retrotransposition de L1 augmente dans les CSH provenant de souirs Mpl-/- et L1-EGFPxMpl-/-. Cela montre que la signalisation TPO in vivo est nécessaire pour restreindre l’expression et la retrotransposition d’ER dans les CSH au niveau basal et dans des conditions de stress. L'analyse transcriptomique a révélé que la TPO induit une réponse d'expression génique antivirale d'interféron (IFN) de type I dans les CSH. En utilisant des souris déficientes en STAT1/STAT2, nous démontrons que cette réponse est dépendante à la fois de STAT1 et de STAT2 et est requise pour l'inhibition de l'expression d’ER. En conclusion, cette étude montre que les ER représentent une importante source d’instabilité génomique dans les CSH. Les CSH sont capables de monter une réponse antivirale en réponse à la TPO comme un nouveau mécanisme pour limiter les dommages à l'ADN. Bien que la sécrétion constitutive d'IFN-I se produise chez des souris saines, les IFN sont produits abondamment principalement pendant les infections. Ainsi, la réponse d'expression de gène d'IFN induite par la TPO peut représenter un signal constitutif important et CSH-dédié; permettant à ces cellules de résister aux lésions de l'ADN induites par ER, tout en préservant leur capacité d'auto-renouvellement. / Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. DNA damage in HSCs is associated with reduced ability to reconstitute hematopoiesis, altered lineage potential and accrued risk of developing myeloid malignancies. Retrotransposable elements (RE), spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging and DNA damage. However, their role in HSCs has not been addressed. In this study, we found that HSCs express high mRNA levels of several REs, including evolutionary recent long interspersed element-1 (L1) and endogenous retroviruses (ERV). Their expression further increases upon total body irradiation (TBI). Using L1EGFP transgenic reporter mice, we show that productive L1 retransposition occurs in HSCs in vivo. Furthermore, the reverse transcriptase inhibitors Efavirenz and ddC rescue TBI-induced both persistent DNA damage and HSC loss of proliferation in vitro. This demonstrates that endogenous retrotransposition plays an important role in TBI-induced HSC genomic instability and their loss of function. We have previously shown that thrombopoietin (TPO), a critical HSC self-renewal factor limits TBI-induced HSC DNA damage by improving DNA repair. We found that TPO treatment also prevents TBI-induced RE expression and mobilization. In addition, L1 expression and retrotransposition are increased in Mpl-/- and L1-EGFPxMpl-/- HSCs, showing that TPO signaling in vivo is required to restrain RE in HSCs, under both steady state and stress conditions. Transcriptomic analysis revealed that TPO induces an anti-viral, interferon (IFN) type-I like, gene expression response in HSCs. Using STAT1/STAT2-deficient mice, we demonstrate that this response is dependent on both STAT1 and STAT2 and is required for TPO-mediated RE expression inhibition in HSCs. Overall, this study shows that REs represent an important HSC intrinsic source of genomic instability and uncovers the ability of HSCs to mount an anti-viral innate immune state in response to TPO as a novel mechanism to minimize DNA damage. Although constitutive IFN-I secretion occurs in healthy mice, IFNs are produced abundantly mainly during infections. Thus, TPO-induced IFN gene expression response may represent an important constitutive, and HSC-dedicated, signal allowing HSCs to resist RE-induced DNA damage while preserving their self-renewal ability.
|
70 |
Transfert de gènes dans les cellules souches pluripotentes induites : application à la thérapie génique de l'hyperoxalurie primitive de type 1 / Gene transfer in induced pluripotent stem cells for gene therapy of primary hyperoxaluria type 1Estève, Julie 03 December 2018 (has links)
L’hyperoxalurie primitive de type 1 (ou HP1) est une maladie héréditaire du métabolisme liée à un déficit en enzyme hépatocytaire AGT (alanine:glyoxylate aminotransférase), codée par le gène AGXT. Ce déficit entraîne, chez les patients atteints d’HP1, une excrétion hépatique accrue d’oxalate ; celui-ci est ensuite éliminé dans les urines où il se complexe avec le calcium pour former des néphrolithiases oxalo-calciques massives, pouvant conduire à une insuffisance rénale chronique. Le seul traitement curatif disponible pour cette pathologie est la greffe allogénique combinée hépatorénale, actuellement limitée par la disponibilité des donneurs de greffons, une morbi-mortalité significative et la nécessité d’un traitement immunosuppresseur au long cours. L’objectif du projet de recherche est de développer une thérapie génique de l’HP1 par greffe de cellules hépatiques autologues génétiquement corrigées. La faible disponibilité et la difficulté d’amplification in vitro des hépatocytes adultes nous a conduit à explorer la piste des cellules souches pluripotentes induites (iPSCs) pour produire des cellules hépatiques humaines utilisables en médecine régénérative. Nous avons dérivé et caractérisé des lignées de cellules iPSCs à partir de fibroblastes de patients atteints d’HP1, après expression transitoire des facteurs de reprogrammation par des vecteurs Sendai. Nous avons développé deux stratégies de thérapie génique additive par insertion d’un minigène codant une séquence optimisée de l’ADNc AGXT au moyen (1) d’un vecteur lentiviral à expression hépato-spécifique et (2) d’un processus de recombinaison homologue au locus AAVS1 facilité par le système de clivage ciblé de l’ADN « CRISPR/Cas9 ». Enfin, nous avons mis en évidence l’expression de la cassette thérapeutique après différenciation hépatocytaire des iPSCs génétiquement corrigées. Ces résultats ouvrent de nouvelles perspectives de médecine régénérative pour l’HP1 par transplantation de cellules hépatocytaires autologues génétiquement corrigées dérivées d’iPSCs de patients. / Primary hyperoxaluria type 1 (or PH1) is an inherited metabolic disorder related to the deficiency of the hepatic AGT enzyme (alanine:glyoxylate aminotransferase), which is encoded by the AGXT gene. In PH1 patients, this deficiency leads to oxalate overexcretion by liver, followed by urine filtration and complexation with calcium to form massive calcium-oxalate nephrolithiasis potentially leading to chronic renal failure. The only available curative treatment is combined hepatorenal allogeneic engraftment, which is currently limited by the availability of transplant donors, significant morbidity and mortality, and the need for long-term immunosuppressive treatment. The aim of our research project is to develop gene therapy for PH1, consisting in engraftment of genetically corrected autologous liver cells. Considering that adult hepatocytes are hardly available and expandable in vitro, we chose to explore the use of induced pluripotent stem cells (iPSCs) to produce human liver cells for application in regenerative medicine. We derived and characterized iPSC lines from PH1 patient fibroblasts after transient expression of reprogramming factors delivered by Sendai virus vectors. We developed two additive gene therapy strategies by inserting a minigene encoding an optimized AGXT cDNA sequence using (1) a lentiviral vector designed for liver-specific expression and (2) homologous recombination process at the AAVS1 locus favoured by the targeted DNA cutting system “CRISPR/Cas9”. Finally, we highlighted therapeutic cassette expression after hepatic differentiation of genetically corrected iPSCs. These results pave the way for regenerative medicine for PH1 by transplantation of genetically modified autologous hepatocyte-like cells derived from patient-specific iPSCs.
|
Page generated in 0.088 seconds