• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 10
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dédifférenciation de la cellule bêta pancréatique humaine / Modeling human pancreatic beta cell dedifferentiation

Diedisheim, Marc 24 November 2017 (has links)
Le diabète de type 2 résulte d’une diminution de la masse fonctionnelle de cellules bêta pancréatiques, possiblement liée à une dédifférenciation cellulaire : les cellules bêta restent présentes, mais leur production d’insuline s’effondre. Ce phénomène, s’il est avéré, ouvrirait la voie à de nouvelles recherches thérapeutiques. Mais s’il est démontré dans certains modèles murins, il n’existe que des arguments très indirects chez l’Humain. Notre objectif est d’apporter de nouveaux arguments pour ce phénomène chez l’humain en modélisant la dédifférenciation de cellules bêta humaines, en utilisant la lignée de cellules bêta pancréatiques humaines EndoC-βH1 et des îlots pancréatiques humains primaires. Nous avons découvert qu’un traitement par FGF2 effondrait la production d'insuline, et des études par RNA-Seq ont révélé un effondrement de plusieurs marqueurs spécifiques de la cellule bêta, incluant INS, MAFB, SLC2A2, SLC30A8 and GCK. Parallèlement, le traitement par FGF2 induisait l'expression de gènes normalement absents d’une cellule bêta, tels les facteurs de transcription MYC, HES1, SOX9 et NEUROG3. La dédifférenciation induite par le FGF2 était temps- et dose-dépendante, et réversible après wash-out. En outre, nous démontrons que la dédifférenciation modifie l’interaction de la cellule bêta avec son environnement : l'expression de TNFRSF11B (ostéoprotégerine), un récepteur tronqué pour RANKL (receptor activator of nuclear factor-kappaB ligand), est induite lors du traitement par FGF2, et les cellules β sont alors protégées contre la signalisation RANKL (TNFSF11) par inhibition de la phosphorylation de P38. Enfin, les analyses des données transcriptomiques ont révélé des niveaux accrus d'ARNm de FGF2 dans les cellules canalaires, endothéliales et stellaires dans les pancréas d’individus diabétiques de type 2, alors que les taux d'ARNm de FGFR1, SOX9 et HES1 sont augmentés dans les îlots pancréatiques d’individus diabétiques de type 2. Nous avons donc développé un modèle de dédifférenciation des cellules bêta humaines induit par le FGF2, identifié de nouveaux marqueurs de dédifférenciation, et trouvé des signes d'augmentation de FGF2, FGFR1 et des marqueurs de dédifférenciation au cours du diabète de type 2. / Clinical and experimental evidences indicate a reduced functional β cell mass in type 2 diabetes. A recent hypothesis implicates β cell dedifferentiation in this reduction of functional β-cell mass. The vast majority of data related to β cell dedifferentiation derive from rodent models, and only indirect evidences are available in human. Our goal was to model human β-cell dedifferentiation using the functional human pancreatic β-cell line, EndoC-βH1, and primary human pancreatic islets. By screening a number of molecules in EndoC-βH1 cells, we found that FGF2 treatment dramatically reduces insulin production and MAFA expression, a β cell specific transcriptional activator. RNASeq of EndoC-βH1 cells treated with FGF2 revealed the down-regulation of additional human β cell specific markers, including INS, MAFB, SLC2A2, SLC30A8 and GCK. In parallel, FGF2 treatment activated the expression of β cell disallowed genes. This is the case for transcription factors such as MYC, HES1, SOX9 and NEUROG3. This is also the case for hormones such as GASTRIN and PYY. Such data were further confirmed by qPCR and immunostaining on primary human islets, attesting that dedifferentiation process occurs in human primary β cells. FGF2-induced dedifferentiation was time- and dose-dependent, and reversible upon wash-out. Furthermore, transcriptomic analysis revealed an increase of TNFRSF11B (osteoprotegerin) expression upon FGF2 treatment. TNFRSF11B is a decoy receptor for the receptor activator of nuclear factor kappa B ligand (RANKL). Our experimental data on EndoC-βH1 demonstrated that FGF2-induced TNFRSF11B protected β cells against TNFSF11 (RANKL) signaling by preventing P38 phosphorylation. Finally, analyses of transcriptomic data revealed increased FGF2 mRNA levels in ductal, endothelial and stellate cells in pancreases from type 2 diabetic patients, whereas FGFR1, SOX9 and HES1 mRNA levels increased in islets from type 2 diabetic patients. In conclusion, we developed a robust model to study β-cell dedifferentiation in a human context. We discovered SOX9, HES1 and MYC as positive markers of human β cell dedifferentiation, demonstrating evidence for dedifferentiation process in human β cell.
2

Effets des cellules stromales pancréatiques immortalisées humaines sur les cellules bêta humaines / Effects of human immortalized pancreatic stromal cells on human beta cells

Villard, Orianne 18 October 2019 (has links)
Introduction : L’efficacité de la greffe d’îlots n’est plus à démontrer mais elle reste l’objet de recherches pour améliorer la qualité et la survie des îlots greffés souvent fragilisés par la destruction enzymatique de leur microenvironnement lors de la procédure d’isolement. Dans ce contexte, les cellules stromales mésenchymateuses (CSM) d’origine pancréatique représentent un outil intéressant par leurs propriétés d’immunomodulation et par leur capacité de sécrétion de facteurs du microenvironnement. L’objectif de ce travail est d’évaluer l’effet des cellules stromales pancréatiques humaines sur les cellules β humaines.Méthodes : Des îlots humains purifiés ont été maintenus en culture pendant plusieurs jours. Les cellules adhérentes se formant en périphérie de l’îlot ont été sélectionnées et immortalisées. Ces nouvelles cellules « human islet-derived stromal cells » (hISC) ont ensuite été caractérisées pour déterminer leur profil mésenchymateux Nous avons ensemencé des cellules β humaines (lignée EndoC-βH1 ou cellules primaires) sur du milieu conditionné de hISC (hISC-CM) utilisé comme support de culture. L’adhérence, la survie, la prolifération, l’insulinosécrétion des cellules β cultivées sur le hISC-CM ont été mesurées et comparées à un support contrôle : la poly-L-lysine.Résultats : Les hISC présentent un profil phénotypique et transcriptomique très proche des CSM issues de la moelle osseuse. D’un point de vue fonctionnel, les hISC présentent une capacité d’immunomodulation. Elles expriment et sécrètent des protéines matricielles connues pour être présentes autour et à l’intérieur des îlots humains tels que les collagènes de type I, IV et VI, la laminine et la fibronectine. Au contact du hISC-CM les cellules EndoC-βH sur adhèrent st s’étalent. Le hISC-CM augmente l’expression du marqueur de prolifération PCNA et améliore la survie et la fonction des cellules EndoC-βH1. D’un point de vue mécanistique, l’interaction cellules β/hISC-CM active la phosphorylation de FAK (focal adhesion kinase) et ERK (extracellular signal-regulated kinases). A l’interface de cette interaction, la sous-unité β1 de l’intégrine est impliquée dans les effets observés du hISC-CM sur l’adhérence et la fonction des cellules β.Conclusion : Nos travaux démontrent l’intérêt prometteur des hISC en tant que cellules de soutien des cellules β humaines par la sécrétion de protéines matricielles pancréatiques. Ces résultats ouvrent de nouvelles perspectives pour le maintien des îlots en culture et leur conditionnement dans un microenvironnement plus physiologique permettant ainsi de préserver leur qualité fonctionnelle lors de la greffe. / Introduction : The efficacy of islet transplantation is well established. However, the procedure still needs improvements in the quality of grafted islets, often weakened by the loss of their surrounding tissue during the isolation process. In this respect, mesenchymal stromal cells (MSC) represent an interesting tool as they have immunomodulatory and anti-inflammatory properties and are known to secrete proteins involved in creating a favorable microenvironment. This work aims to investigate the effect of human pancreatic stromal cells on human β-cells.Methods : We characterized the mesenchymal profile of cells, previously immortalized in our lab from human islets of Langerhans adherent cells, hereafter named hISC (human islet-derived stromal cells). We seeded human β-cells (EndoC-βH1 cell line or primary β-cells) on hISC-conditioned medium (hISC-CM) used as coating of Petri dishes. We assessed spreading, survival, proliferation and glucose-induced insulin secretion of β-cells cultured on hISC-CM as compared to poly-L-lysine coating.Results : Phenotypic and transcriptomic profiles of hISC are close to bone-marrow MSC. The hISC have an immunomodulation capacity. They express and secrete extracellular matrix proteins known to be present around and within human islet such as types I, IV and VI collagens, laminin and fibronectin. EndoC-βH1 seeded on hISC-CM adhere and spread on cell culture surface. We show that hISC-CM has positive effects on EndocC-βH1 proliferation, survival and glucose-induced insulin secretion, as compared to poly-L-lysine. From mechanistic point of view, hISC-CM induces FAK (focal adhesion kinase) and ERK (extracellular signal-regulated kinases) phosphorylations. The β1-integrin subunit is involved in both adhesion and increased insulin secretion of β cells induced through hISC-CM.Conclusion : Our work demonstrates a promising interest of hISC as support cells for human β-cells by scaffolding factors secretion. It opens new perspectives for conditioning human β-cells in a more physiological microenvironment to preserve their functional quality before and after transplantation.
3

Développement de fragments d’anticorps ciblant ZnT8 pour l’imagerie fonctionnelle des cellules bêta pancréatiques / Developement of antibody fragments targeting ZnT8 for pancreatic beta cells functional imaging

Di Giovanni, Anne-Sophie 10 December 2015 (has links)
Le diabète est une maladie chronique qui concerne plus de 380 millions de personnes dans le monde. Le diabète de type 1, qui représente 10 à 15% des cas, et le diabète de type 2, qui représente 85 à 90% des formes de diabète, ont pour caractéristique commune une diminution anatomique et/ou fonctionnelle de la masse de cellules bêta (MCB). L’estimation de la MCB des patients diabétiques présente un intérêt majeur pour l’amélioration du suivi de leur pathologie et une meilleure adaptation des traitements. Les tests métaboliques, qui sont actuellement les seuls outils disponibles pour évaluer la fonctionnalité des cellules β, présentent l’inconvénient d’être souvent lourds à mettre en place, et de ce fait, sont non utilisables en routine ou peu informatifs. L’imagerie, plus simple et plus sensible, représente une alternative attractive pour la mesure non invasive de la MCB d’autant plus qu’elle pourrait permettre à la fois une évaluation anatomique et fonctionnelle. Les outils actuellement en cours de développement visent principalement une imagerie anatomique de la MCB et s’orientent d’avantage vers le suivi longitudinal des patients que vers une quantification précise de la MCB dans un but purement diagnostique compte tenu des contraintes de sensibilité et de résolution nécessaires pour imager les cellules β. A l’heure actuelle, il n’existe pas encore d’outil idéal. Dans ce contexte, l’objectif de mon travail de thèse était le développement de fragments d’anticorps ciblant ZnT8 pour l’imagerie fonctionnelle des cellules β pancréatiques en imagerie nucléaire. Le transporteur du zinc ZnT8 est une cible intéressante pour l’imagerie des cellules β dans la mesure où il est exprimé presque exclusivement par ces dernières. De plus, ZnT8 étant situé à la surface des vésicules de sécrétion et à la surface de la cellule lors de l’exocytose de l’insuline, son ciblage devrait donc permettre de rendre compte de la fonctionnalité des cellules β. Deux F(ab’)2, puis un Fab, radiomarqués ont d’abord été évalués in vivo chez la souris. Leurs poids moléculaire élevés ne permettaient pas une cinétique sanguine favorable et ralentissaient probablement leur passage à travers un endothélium vasculaire sain les empêchant ainsi d’accéder rapidement à leur cible. Des sdAbs, qui constituent une alternative intéressante aux F(ab’)2 et aux Fab compte tenu de leur poids moléculaire plus faible, ont ensuite été sélectionnés par phage display. Pour l’instant, seule une partie de ces sdAbs a pu être produite et le meilleur candidat n’a pas pu être suffisamment purifié pour permettre son radiomarquage. / Diabetes is a chronic disease that affects 380 million people worldwide. Anatomical and/or functional diminution of beta-cell mass (BCM) is a common feature of type 1 diabetes which represents 10 to 15% of cases and type 2 diabetes which accounts for 80 to 90% of cases. Patients’ BCM estimation is of great interest for patients’ follow-up improvement and therapy adjustment. Metabolic tests which are actually the only tools available for beta cells function evaluation have the disadvantage to be cumbersome processes inapplicable for clinical routine or uninformative. Imaging, which is easier and more sensitive, is an attractive alternative for non-invasive BCM measurement since it could allow anatomical and functional evaluation. Tools currently under development mainly focused on anatomical imaging and are directed toward longitudinal follow-up of patients rather than exact BCM quantification for a merely diagnostic purpose because of sensitivity and resolution constraints necessary for beta cells imaging. Currently, there is no existing ideal tool. In this context, my PhD research was to develop antibody fragments targeting ZnT8 for pancreatic beta cells functional nuclear imaging. Zinc transporter ZnT8 is an attractive target for beta cells imaging since it is expressed almost exclusively by these cells. Moreover, ZnT8 is located on insulin containing vesicles surface and on cell surface when insulin secretion is stimulated. Its targeting should reflect beta cells functionality. Two radiolabeled F(ab’)2 then a Fab were first tested in vivo in mice. Their high molecular weight did not allow a suitable blood kinetic and probably slowed down their passage across healthy vascular endothelium preventing them from reaching quickly their target. SdAbs, which are an attractive alternative to F(ab’)2 and Fab because of their low molecular weight, were then selected by phage display. At the moment, only a part of these sdAbs have been produced and the best candidate could not be purified enough to allow its radiolabeling.
4

Regulation of pancreatic and intestinal endocrine cell differentiation and function : roles of Pak3 and Rfx6 / Régulation de la différenciation et de la fonction des cellules endocrines pancréatiques et intestinales : rôles de Pak3 et Rfx6

Piccand, Julie 18 September 2012 (has links)
Les hormones sécrétées par les cellules endocrines pancréatiques et intestinales participent à la régulation de l’homéostasie énergétique. Leur différenciation repose sur des programmes génétiques similaires contrôlés par le facteur de transcription Ngn3. Peu de choses sont connues sur les gènes activés par Ngn3 et leurs implications dans les mécanismes contrôlant la spécification et la maturation des cellules endocrines. Par conséquent, le transcriptome des progéniteurs endocrines a été déterminé dans l’équipe. Parmi les gènes fortement enrichis dans le lignage endocrine, j’ai caractérisé l’expression et la fonction de la kinase Pak3 et j’ai continué l’étude de la fonction pancréatique et intestinale du facteur de transcription Rfx6. J’ai montré que Pak3 est exprimé dans le lignage endocrine pendant le développement et chez l’adulte. Avec des expériences de perte de fonction, j’ai montré que ce gène inhibe la prolifération des progéniteurs endocrines et des cellules bêta durant l’embryogénèse. De plus, une étude métabolique a montré que les souris mutantes pour Pak3 sont intolérantes au glucose. En parallèle, en utilisant une souris conditionnelle pour Rfx6, j’ai montré que Rfx6 est nécessaire en aval de Ngn3 pour la différenciation des cellules endocrines pancréatiques et intestinales. Finalement, des expériences dans les souris adultes suggèrent que Rfx6 est nécessaire pour maintenir les cellules bêta, renouveler les cellules entéroendocrines et absorber les lipides dans l’intestin. En conclusion, ces études révèlent deux nouveaux gènes clés dans la régulation de la différenciation des cellules endocrines et de l’homéostasie énergétique dans le pancréas et l’intestin. / Pancreatic and intestinal endocrine cells, and their secreted hormones, contribute to the regulation of energy homeostasis. Their differentiation relies on similar genetic programs controlled by the proendocrine transcription factor Ngn3. However, our knowledge of the endocrinogenic programs implemented by Ngn3 is still fragmentary. Therefore, the transcriptome of endocrine progenitors has been determined in the lab. Among the genes which showed a strong enrichment in the endocrine lineage, I studied the expression and function of Pak3, a serine/threonine kinase and further pursued the dissection of the function of the transcription factor Rfx6 in the pancreas and the intestine. I showed that Pak3 is expressed throughout pancreas development and maintained in adult islets. Using ex vivo loss of function experiments and in vivo characterisation of the Pak3-deficient mice, I identified Pak3 as an inhibitor of islet progenitors and beta-cell proliferation in the embryonic mouse pancreas. Furthermore, we performed metabolic studies which revealed that Pak3-deficient micehave an impaired glucose homeostasis, especially under challenging high fat diet. In parallel, using a conditional knockout mouse for Rfx6, we showed that Rfx6 is necessary downstream of Ngn3 for endocrine cell differentiation in the pancreas as well as in the intestine. Finally, additional experiments in adult mice suggest that Rfx6 is necessary to maintain pancreatic beta-cells, enteroendocrine cell turnover and intestinal lipid absorption. In conclusion, these studies revealed two novel key players in the regulation of endocrine cell differentiation and energy homeostasis in the pancreas and the intestine.
5

Identification de nouvelles stratégies thérapeutiques renforçant le rôle des analogues du GLP-1 pour préserver et/ou restaurer la masse fonctionnelle β pancréatique / Identification of new therapeutic strategies to strengthening GLP-1 effects to preserve and/or to restore the functional pancreatic beta cell mass

Varin, Elodie 19 September 2013 (has links)
Les cellules β pancréatiques synthétisent et sécrètent l'insuline, seule hormone hypoglycémiante de l'organisme. Dans le cas du diabète de type 2, du diabète de type 1 et suite à une greffe d'îlots de Langherans, on observe une diminution drastique de cette masse fonctionnelle β. L'hyperglycémie chronique et la libération de cytokines proinflammatoires jouent un rôle cytotoxique prépondérant dans ces phénomènes. Dans le but de préserver ou de restaurer cette masse fonctionnelle β chez les patients diabétiques, notre objectif était d'identifier des outils permettant de protéger des effets délétères de l'hyperglycémie chronique et des cytokines proinflammatoires, en s'intéressant à 3 cibles potentielles. Nous montrons tout d'abord que les activités du système ubiquitine protéasome (UPS), impliqué dans la dégradation de protéines, sont altérées en condition d'hyperglycémie chronique. Ces altérations sont corrélées à l'émergence d'un programme apoptotique au sein des cellules β. L'activation du récepteur du GLP-1 (Glucagon-Like Peptide-1), stratégie thérapeutique majeure dans le diabète de type 2, protège l'UPS des effets délétères de l'hyperglycémie chronique. Le facteur de transcription CREB (cAMP Response Element Binding Protein), essentiel pour la survie et la fonction des cellules β, est dégradé par l'hyperglycémie chronique et l'inflammation. Nous montrons que la prévention de sa dégradation prévient les effets de l'hyperglycémie chronique, mais pas de l'inflammation. Ces observations nous ont amenés à étudier la MAP3 kinase Tpl2 (Tumor progression locus 2), impliquée, notamment via l'activation de ERK1/2 (Extra-cellular Regulated Kinases 1/2), dans les processus inflammatoires d'autres types cellulaires. Nous montrons que Tpl2 est exprimé dans la lignée cellulaire β INS-1E, et dans les îlots murins et humains, et qu'elle gouverne spécifiquement l'activation des kinases ERK1/2 induite par les cytokines proinflammatoires IL-1β, TNFα et IFNγ. Cette protéine est surexprimée dans des conditions d'inflammation (in vitro et modèle de diabète murin). L'inhibition de Tpl2 protège contre l'apoptose induite par les cytokines, dans les INS-1E et les îlots de souris et restaure la capacité sécrétrice d'insuline des ilots de souris altérée suite à une exposition aux cytokines. En combinaison avec un analogue du GLP-1, l'inhibition pharmacologique de cette kinase protège totalement contre les effets délétères des cytokines sur la fonction et la survie des îlots humains. Ces données suggèrent que l'inhibition pharmacologique de la kinase Tpl2, seule ou en combinaison avec un analogue du GLP-1, pourrait constituer de nouvelles stratégies thérapeutiques pour protéger contre l'altération de la masse fonctionnelle β pouvant survenir chez des patients diabétiques de type 2 ou après la transplantation d'îlots. / Pancreatic β cells synthesize and secrete insulin, the sole hormone of the organism able to reduce glycemia. In the course of type 2 and type 1 diabetes, and after islet transplantation, there is a drastic loss of function and mass of these cells. Among the common origins of this decrease, chronic hyperglycemia and the release of proinflammatory cytokines play major roles. With the aim to preserve or to restore this functional β cell mass in diabetic patients, our objective was to identify tools able to protect against deleterious effects of these two phenomenons, interesting in three potential targets. We first demonstrated that the ubiquitin-proteasome system (UPS) activities, that degrade proteins, are altered in β cells exposed to chronic hyperglycemia, and correlated with apoptosis. Activation of the GLP-1 (Glucagon-Like Peptide-1) receptor, a key therapeutic strategy in type 2 diabetes, protects UPS from deleterious effects of chronic hyperglycemia. The transcription factor CREB (cAMP Response Element Binding Protein), crucial for β cell survival and function, is involved in deleterious effects of chronic hyperglycemia and inflammation. We demonstrated that prevention of CREB degradation protects β cells from chronic hyperglycemia, but not from the deleterious effects of the proinflammatory cytokines. These observations prompted us to study the MAP3 kinase Tpl2 (Tumor progression locus 2), known to be implicated in inflammatory process in other cell types, through the activation of the kinases ERK1/2 (Extra-cellular Regulated Kinases 1/2). We showed that Tpl2 is expressed in INS-1E clonal β cells and in mouse and human islets, and that it governs specifically the activation of ERK1/2 in response to proinflammatory cytokines IL-1β, TNFα and IFNγ. This protein is overexpressed by inflammatory conditions and in a rat type 2 diabetes model. Inhibition of Tpl2 protects against cytokine-induced apoptosis in INS-1E and in mouse islets. Furthermore, the capacity of mouse islets to secrete insulin in response to glucose, that is altered by a chronic exposure to cytokines, is restored by Tpl2 inhibitor. Finally, we showed that in combination with GLP-1 analog (Exendin-4), Tpl2 inhibitor can entirely restore the survival and function in human islets cultured in pro-inflammatory conditions. These results suggest that pharmacological inhibition of Tpl2, alone or in combination with Exendin-4, may be novel therapeutic strategies to alleviate β-cell failure observed in Type 2 diabetes and islets transplantation.
6

Biocommunication entre le tissu adipeux viscéral et la cellule bêta-pancréatique : isoprostanes et microARNs / Biocommunication between visceral adipose tissue and pancreatic beta-cell : isoprostanes and microRNAs

Laget, Jonas 05 June 2019 (has links)
Le diabète de type 2 résulte d’un déséquilibre entre les capacités de sécrétion de l’insuline par les cellules bêta-pancréatiques et son action au niveau de ses tissus cibles. Dans le prédiabète, l’hypersécrétion d’insuline compense l’insulino-résistance et cet état est généralement associé à l’obésité et à l’accumulation de tissu adipeux.L’objectif de ma thèse a été d’étudier la biocommunication entre le tissu adipeux viscéral et la cellule bêta-pancréatique lors du prédiabète et du diabète de type 2, en me focalisant sur deux médiateurs originaux, les isoprostanes et les miARNs. Nous avons observé une diminution de la sécrétion d’isoprostanes par le tissu adipeux péripancréatique au cours de l’obésité chez le rat Zucker fa/fa. Spécifiquement observé dans ce tissu adipeux ectopique, ce résultat s’explique par une induction des principales enzymes antioxydantes et une réduction de l’expression de la sPLA2 IIA chez les animaux obèses. Remarquablement, une des isoprostanes, la 15-F2t-Isoprostane ainsi que son épimère aux concentrations de 10 nM et 10 μM inhibent la sécrétion d’insuline gluco-stimulée dans les îlots pancréatiques isolés de rat Wistar. Cet effet pourrait s’expliquer par la liaison de cette isoprostane avec le récepteur au thromboxane A2, dont l’expression génétique et protéique a été mise en évidence pour la première fois dans les îlots de Langerhans et les cellules bêta. La réduction de l’inhibition de la sécrétion d’insuline chez le rat Zucker fa/fa, par une biocommunication paracrine, pourrait favoriser les mécanismes de compensation bêta-cellulaire. Par ailleurs, la production de miARNs, contenus dans des vésicules extracellulaires, par le tissu adipeux omental a été analysée chez l’homme par small RNAseq. Chez des patients obèses, la production de miARNs est modifiée lors de l’insulino-résistance et du diabète de type 2 avec des conséquences possibles sur la fonctionnalité des cellules bêta. Des miARNs différentiellement exprimés lors du diabète de type 2 pourraient ainsi participer à son apparition et représenter de nouveaux biomarqueurs et cibles thérapeutiques. Pour conclure, ces travaux de thèse ont permis de mettre en évidence de nouveaux mécanismes de biocommunication entre le tissu adipeux et les cellules bêta-pancréatiques. / Type 2 diabetes occurs as a result of an unability of pancreatic beta-cells to meet the insulin demand in its target tissues. During prediabetes insulin hypersecretion compensate for insulin resistance and this state is usually associated with obesity and excess body fat.The aim of my thesis was to study the biocommunication between visceral adipose tissue and pancreatic beta-cells during prediabetes and type 2 diabetes, with a focus on two original mediators, isoprostanes and miRNAs. We observed a decrease in isoprostane secretion by peripancreatic adipose tissue during obesity in Zucker fa/fa rats. In this ectopic adipose tissue, this observation may be related to an induction of some antioxidant enzymes and a reduction of the expression of sPLA2 IIA in obese animals. Remarkably, 15-F2t-Isoprostane as well as its epimer used at concentrations of 10 nM and 10 μM inhibited glucose-stimulated insulin secretion in isolated pancreatic islets. This effect could be explained by the binding of isoprostanes to the thromboxane A2 receptor, whose gene and protein expression has been demonstrated for the first time in islets and beta-cells. In Zucker fa/fa rats, less inhibition of insulin secretion through a paracrine biocommunication, could favor beta-cell compensatory mechanisms. Furthermore, the production of miRNAs, contained in extracellular vesicles released by omental adipose tissue, was analyzed in humans by small RNAseq. In obese patients, miRNAs production is altered during insulin resistance and type 2 diabetes with possible consequences for beta-cell function. Differentially expressed miRNAs in type 2 diabetes may participate in its development and represent novel biomarkers and therapeutic targets. In conclusion, this thesis highlighted new biocommunication mechanisms between adipose tissue and beta-pancreatic cells.
7

No synthase neuronale pancréatique et musculaire dans la pathogénie des états prédiabétiques / Pancreatic and muscular neuronal NO synthases in the pathogenesis of prediabetic states

Mezghenna, Karima 31 May 2010 (has links)
Le diabète de type 2, défini par une hyperglycémie chronique, résulte d'un déficit de la sécrétion d'insuline et d'une insulinorésistance. Durant le prédiabète qui précède la maladie, la cellule ß pancréatique est capable d'établir une hyperactivité sécrétoire compensatrice de l'insulinorésistance. Les NO synthases neuronales (nNOS) pancréatique et musculaire contrôlent respectivement la sécrétion d'insuline induite par le glucose dans la cellule ß et la force contractile, la captation et l'utilisation du glucose dans les myocytes. Dans le modèle génétique du rat obèse Zucker fa/fa mimant l'état prédiabétique associant un hyperinsulinisme et une insulinorésistance, nous avons retrouvé au niveau de la cellule ß une forte augmentation du complexe entre la nNOS et son inhibiteur endogène PIN (Protein Inhibitor of Neuronal NOS) au niveau des granules de sécrétion d'insuline. Ce complexe, grâce à une interaction accrue avec la myosine V, participe à l'hyperactivité sécrétoire de la cellule ß pancréatique. En effet, des molécules inhibant spécifiquement l'interaction nNOS-PIN permettent de rétablir, chez le rat fa/fa, une sécrétion d'insuline normale. Au niveau musculaire, nous avons observé, dans ce modèle animal, une diminution d'expression de la nNOS sans variation du taux d'ARNm, traduisant une protéolyse accrue de la protéine. L'inhibition de la dégradation protéasomale permet de restaurer l'expression et l'activité catalytique de la nNOS dans le muscle squelettique. Cette perte de fonctionnalité de l'enzyme participerait à l'installation de l'insulinorésistance. Ces travaux ont permis de valider la nNOS comme une cible potentielle pour la prévention du diabète de type 2. / Type 2 diabetes is a chronic disorder defined by chronic hyperglycemia resulting from a deficiency of insulin secretion and an insulin resistance in peripheral tissues and liver. A long lasting silent phase, called prediabetes, precedes the disease and in which pancreatic ß cell is able to improve insulin secretion to compensate for the insulin resistance. The pancreatic and muscular neuronal nitric oxide synthases (nNOS) control respectively glucose-induced insulin secretion in pancreatic ß cell and glucose uptake and utilization in myocytes. In the genetic model of obese Zucker fa/fa rat mimicking the prediabetic state characterized by hyperinsulinemia and insulin resistance, we found a high increase in the amount of the complex between nNOS and its endogenous inhibitor PIN (Protein Inhibitor of Neuronal NOS) at the level of insulin secretory granules within the ß cell. This complex, through an increased interaction with myosin V, participates in the secretory hyperactivity of the pancreatic ß cell, observed in this model of prediabetes. Indeed, molecules that specifically inhibit nNOS-PIN interaction allow to restore a normal insulin secretion in fa/fa rat. In skeletal muscle of this model, we observed a decreased expression of nNOS protein with no change in mRNA levels, suggesting an increased proteolysis of the protein. Inhibition of proteasomal degradation restores the expression and the catalytic activity of nNOS in skeletal muscle. Thus, this loss of functionality of the enzyme could participate in the installation of insulin resistance. This work therefore validated nNOS as a potential target for the prevention of type 2 diabetes.
8

Étude des mécanismes de stimulation de la prolifération des cellules bêta pancréatiques par les acides gras

Vivoli, Alexis 04 1900 (has links)
Les îlots de Langerhans, principalement composés de cellules bêta sécrétant l’insuline, jouent un rôle majeur dans l’homéostasie glucidique grâce à leur sécrétion hormonale finement régulée. Dans un contexte d’insulino-résistance associée à l’obésité, la masse fonctionnelle des cellules bêta pancréatiques augmente, en partie grâce à une prolifération accrue. Le diabète de type 2 survient lorsque les mécanismes de compensation échouent et que la sécrétion d’insuline devient insuffisante. Par conséquent, augmenter la prolifération des cellules bêta a été proposée comme approche thérapeutique afin de retarder l’apparition du diabète de type 2. Parmi les différents facteurs pouvant moduler la prolifération des cellules bêta, les nutriments, en particulier le glucose et les acides gras, jouent un rôle important et plusieurs études chez le rongeur montrent que les nutriments augmentent la prolifération et la masse des cellules bêta avant l’apparition de l’insulino-résistance. De plus, des travaux de notre laboratoire ont montré que l’infusion d’un mélange d’acide gras, le ClinOleic (65% oléate, 20% linoléate et 15% palmitate) et de glucose provoquait une augmentation marquée de la prolifération des cellules bêta chez le rat. L’objectif de cette thèse est donc d’évaluer les mécanismes par lesquels les acides gras stimulent la prolifération des cellules bêta. Dans un premier article, seul l’oléate, parmi plusieurs acides gras testé, a démonté un effet significatif sur l’augmentation de la prolifération des cellules bêta en présence de glucose ex vivo. La prolifération induite par l’oléate nécessite la formation de sphingolipides à très longue chaîne monoinsaturée, tandis que la perturbation de leur synthèse provoque une diminution de la réponse proliférative. Dans une seconde étude, l’analyse par séquençage d’ARN sur cellules uniques a mis en évidence le rôle important des espèces réactives de l’oxygène, des peroxyrédoxines et du proto-oncogène MYC dans le processus prolifératif des cellules bêta induit par l’oléate. Dans l’ensemble, les travaux présentés dans cette thèse apportent un éclairage nouveau sur le potentiel prolifératif encore énigmatique des cellules bêta pancréatiques et soulignent le rôle des sphingolipides et des espèces réactives de l’oxygène dans ce processus. / The islets of Langerhans, mainly composed of insulin-secreting beta cells, plays a major role in glucose homeostasis due to their finely regulated hormone secretion. In a context of insulin resistance associated with obesity, the functional mass of pancreatic beta cells increases, in part due to increased proliferation. Type 2 diabetes occurs when these compensatory mechanisms fail and insulin secretion becomes insufficient. Therefore, increasing beta cell proliferation has been proposed as a therapeutic approach to delay the onset of type 2 diabetes. Among the various factors that can modulate the proliferation of beta cells, nutrients, in particular glucose and fatty acids, play an important role, and several studies in rodents show that nutrients increase beta-cell proliferation before insulin resistance can be detected. Previous work from our laboratory has shown that infusion of the fatty-acid mixture ClinOleic (65% oleate, 20% linoleate and 15% palmitate) in the presence of glucose markedly increases beta-cell proliferation in rats. The objective of this thesis is to evaluate the underlying mechanisms by which fatty acids stimulate beta-cell proliferation. In a first study, among several fatty acids tested, only oleate increased beta cell proliferation in presence of glucose ex vivo. Oleate-induced beta-cell proliferation requires the formation of monounsaturated very long chain sphingolipids, while blockade of their biosynthesis dampens the proliferative response. In a second study, single-cell RNA sequencing analysis highlighted the role of reactive oxygen species, peroxiredoxins, and the proto-oncogene MYC in oleate-induced beta cell proliferation. Overall, the work presented in this thesis sheds new light on the enigmatic proliferative potential of pancreatic beta cells and identifies a role for sphingolipids and reactive oxygen species in this process.
9

Effets directs et aigus de médicaments insulinosensibilisateurs sur la cellule bêta des îlots pancréatiques : de l’outil de recherche à l’identification de la décélération métabolique comme mode d’action

Lamontagne, Julien 08 1900 (has links)
Le diabète de type 2 (DT2) apparaît lorsque la sécrétion d’insuline par les cellules β des îlots du pancréas ne parvient plus à compenser la résistance à l’insuline des organes cibles. Parmi les médicaments disponibles pour traiter le DT2, deux classes agissent en améliorant la sensibilité à l’insuline : les biguanides (metformine) et les thiazolidinediones (pioglitazone et rosiglitazone). Des études suggèrent que ces médicaments protègent également la fonction des cellules β. Dans le but d’identifier des mécanismes par lesquels les médicaments insulinosensibilisateurs protègent les cellules β, nous avons étudié les effets aigus de la metformine et de la pioglitazone sur le métabolisme et la fonction des cellules INS 832/13, sécrétrices d’insuline et des îlots pancréatiques isolés de rats. Nous avons aussi validé in vivo avec des rats Wistar les principales observations obtenues en présence de pioglitazone grâce à des clamps glucidiques et par calorimétrie indirecte. Le traitement aigu des cellules β avec de la pioglitazone ou de la metformine inhibe la sécrétion d’insuline induite par le glucose en diminuant la sensibilité des cellules au glucose (inhibition en présence de concentrations intermédiaires de glucose seulement). Dans les mêmes conditions, les traitements inhibent aussi plusieurs paramètres du métabolisme mitochondrial des nutriments et, pour la pioglitazone, du métabolisme des lipides. Les composés affectent le métabolisme en suivant un patron d’inhibition similaire à celui observé pour la sécrétion d’insuline, que nous avons nommé « décélération métabolique ». La capacité de la pioglitazone à inhiber la sécrétion d’insuline et à ralentir le métabolisme mitochondrial de façon aigüe se confirme in vivo. En conclusion, nous avons identifié la décélération métabolique de la cellule β comme nouveau mode d’action pour les médicaments insulinosensibilisateurs. La décélération métabolique causée par les agents insulinosensibilisateurs les plus utilisés semble provenir d’une inhibition du métabolisme mitochondrial et pourrait être impliquée dans les bienfaits de ceux-ci dans un contexte de stress métabolique. Le fait que les deux agents insulinosensibilisateurs étudiés agissent à la fois sur la sensibilité à l’insuline et sur la sécrétion d’insuline, les deux composantes majeures du DT2, pourrait expliquer pourquoi ils sont parmi les agents antidiabétiques les plus efficaces. La décélération métabolique est une approche thérapeutique à considérer pour le traitement du DT2 et d’autres maladies métaboliques. / Type 2 diabetes (T2D) appears when insulin secretion by pancreatic β-cells fails to compensate for insulin resistance. Two classes of anti-diabetic drugs have been used to target insulin resistance: biguanides (metformin) and thiazolidinediones (pioglitazone and rosiglitazone). Some studies suggest that these compounds also protect β-cell function. In order to identify the mechanisms whereby insulin-sensitizing agents protect β-cell function, we used INS 832/13 insulin secreting cells and isolated pancreatic rat islets to study the acute effects of pioglitazone and metformin on β-cell metabolism and function. Key observations obtained with pioglitazone were also validated in vivo in Wistar rats with the use of glucose clamps and indirect calorimetry. In vitro, acute pioglitazone or metformin treatment inhibits glucose-induced insulin secretion by lowering β-cell sensitivity to glucose (inhibition only at sub-maximal glucose concentrations). The same treatments also inhibit parameters of nutrient mitochondrial metabolism and, in the case of pioglitazone, parameters of lipid metabolism. Both compounds alter metabolism following a pattern similar to that observed with insulin secretion, a pattern that we label “metabolic deceleration”. Pioglitazone also acutely inhibits insulin secretion and slows down mitochondrial metabolism in vivo. In conclusion, we identified metabolic deceleration of the pancreatic β-cell as a new mode of action for insulin-sensitizing agents. Pioglitazone and metformin both seem to cause metabolic deceleration of the β-cell via inhibition of mitochondrial metabolism. This mode of action could participate in the beneficial effects of these compounds in the context of metabolic stress. The fact that these drugs affect both insulin sensitivity and insulin secretion, the two major components of T2D, may explain why they are among the most powerful anti-diabetic agents. Metabolic deceleration is a new therapeutic approach worth considering for the treatment of T2D and other metabolic diseases.
10

Rôle de l’urée dans la dysfonction de la cellule bêta-pancréatique au cours de l’insuffisance rénale chronique

Nyam, Elsa 04 1900 (has links)
L’insuffisance rénale chronique (IRC) se définit par un défaut de filtration glomérulaire et est associée à plusieurs désordres. La perturbation de l’homéostasie glucidique en fait partie. L’homéostasie glucidique est contrôlée principalement par l’insuline, soit l’hormone sécrétée en réponse au glucose par les cellules bêta-pancréatiques contenues dans les îlots de Langerhans. La préservation de la fonction de la cellule bêta est essentielle au maintien de l’homéostasie glucidique. Il a été démontré que la sécrétion de l'insuline est altérée au cours l'IRC, cependant les mécanismes demeurent peu connus. Au cours de l’IRC, l’accumulation chronique de toxines urémiques pourrait contribuer à la défaillance de la cellule bêta. L’urée est une toxine urémique majeure et sa toxicité a été récemment rapportée dans plusieurs tissus. Le but de ce mémoire était donc de vérifier le rôle de l’urée dans la dysfonction de la cellule bêta-pancréatique au cours de l’IRC. Nous avons démontré que l’exposition des îlots de souris à des concentrations pathologiques d’urée entraîne une diminution de la sécrétion d’insuline via l’augmentation du stress oxydant et des O-glycosylations. Ce défaut est dû à une perturbation du métabolisme intracellulaire du glucose. Entre autres, nous avons observé une baisse de la glycolyse associée à la réduction de l’activité enzymatique de la phosphofructokinase-1. Ces résultats démontrent un effet toxique direct de l’urée sur la sécrétion d’insuline et permettent de mieux comprendre le mécanisme de dysfonction de la cellule bêta-pancréatique au cours de l’IRC. / Chronic kidney disease (CKD) is defined as a glomerular filtration defect and is associated with many disorders. Impaired glucose homeostasis is one of them. Glucose homeostasis is maintained in part by insulin, which is the hormone secreted by the pancreatic beta cells from the islets of Langerhans in response to glucose. The preservation of beta cell function is essential to maintain glucose homeostasis. It has been demonstrated that insulin secretion is altered during CKD; however, the underlying mechanisms remain unknown. In CKD, chronic accumulation of uremic toxins could contribute to beta cell dysfunction. Urea is a major uremic toxin and its toxicity has been recently reported in many tissues. The purpose of this master project was to ascertain the role of urea in pancreatic beta cell dysfunction during CKD. We have demonstrated that exposure of mouse islets to pathological concentrations of urea leads to diminution of insulin secretion via an increase in oxidative stress and O-glycosylation. This defect is due to disturbed intracellular glucose metabolism. Among others, we have observed a reduction in glycolysis associated with a decrease in the activity of phosphofructokinase-1. These results demonstrate a direct toxic effect of urea on insulin secretion and contribute to a better understanding of mechanisms of pancreatic beta cell dysfunction during CKD.

Page generated in 0.0726 seconds