Spelling suggestions: "subject:"cellules souches pluripotent"" "subject:"cellules souches pluripotency""
21 |
Immune potential and differentiation of equine induced pluripotent stem cells (eiPSC)Aguiar, Christie 08 1900 (has links)
Induced pluripotent stem cells (iPSC) have the capacity to self renew and
differentiate into a myriad of cell types making them potential candidates for cell therapy
and regenerative medicine. The goal of this thesis was to determine the characteristics of
equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative
medicine. Trauma to a horse’s limb often leads to the development of a chronic non-healing
wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this
thesis was that eiPSC might offer a solution for providing wound coverage for such
problematic wounds. Prior to considering eiPSC for clinical applications, their
immunogenicity must be studied to ensure that the transplanted cells will be accepted and
integrate into host tissues.
The first objective of this thesis was to determine the immune response to eiPSC.
To investigate the immunogenicity of eiPSC, the expression of major histocompatibility
complex (MHC) molecules by the selected lines was determined, then the cells were used
in an intradermal transplantation model developed for this study. While transplantation of
allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental
horses, it did not cause acute rejection. This strategy enabled the selection of weakly
immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic
importance.
Equine iPSC offer a potential solution to deficient epithelial coverage by providing
a keratinocyte graft with the ability to differentiate into other accessory structures of the
epidermis. The second objective of this thesis was to develop a protocol for the
differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly
efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived
vi
keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of
primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was
superior while the migratory capacity, measured as the ability to epithelialize in vitro
wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in
vivo wound models.
In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising
to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued. / Les cellules souches pluripotentes induites (iPSC) ont la capacité de s'auto
renouveler et de se différencier en une myriade de types cellulaires, ce qui en fait des outils
intéressants pour la thérapie cellulaire et la médecine régénérative. Le but de cette thèse
était de déterminer les caractéristiques des iPSC équines (eiPSC) qui peuvent être
exploitées pour l'usage potentiel en médecine régénérative vétérinaire. Chez le cheval, une
plaie cutanée est souvent cicatrisée par seconde intention et est sujette à de nombreuses
complications lorsque située sur le membre, notamment une épithélialisation lente. Ainsi,
l'hypothèse globale de cette thèse était que les eiPSC pourraient offrir une solution
novatrice de couverture pour de telles blessures. Avant d'envisager l’utilisation d'eiPSC à
des fins cliniques, leur immunogénicité doit être étudiée afin de s'assurer que les cellules
transplantées seront acceptées et intégrées dans les tissus du receveur.
Le premier objectif de cette thèse était de définir la réponse immunitaire suscitée
par les eiPSC. Afin d'étudier l'immunogénicité d'eiPSC, l'expression de molécules du
complexe majeur d’histocompatibilité (MHC) des lignes choisies a été déterminée, puis les
cellules ont été utilisées dans un modèle de transplantation intradermique développé pour
cette étude. Bien que la transplantation allogénique d'eiPSC non différenciées ait induit
une réponse cellulaire modérée chez les chevaux d'expérimentation, elle n'a pas provoqué
de rejet. Cette stratégie a permis la sélection de lignées d'eiPSC faiblement immunogènes
pour la différenciation ultérieure en des lignées d'importance thérapeutique.
Les eiPSC représentent une solution intéressante et qui, par l’entremise du
développement d’une lignée de kératinocytes, pourraient servir à la création d’une greffe
ayant la capacité de former non seulement l’épithélium manquant mais aussi d'autres
structures accessoires de l'épiderme. Le deuxième objectif de cette thèse était donc de
iv
développer un protocole pour la différentiation des eiPSC en lignée de kératinocytes. Un
protocole visant cette différenciation fut ainsi développé et ce dernier a démontré une
grande efficacité à produire le phénotype attendu dans une période de 30 jours. En effet, les
kératinocytes dérivés d'eiPSC (eiPSC-KC) ont montré des caractéristiques morphologiques
et fonctionnelles des kératinocytes primaires équins (PEK). En outre, la capacité de
prolifération d'eiPSC-KC est supérieure tandis que la capacité migratoire, mesurée comme
l'aptitude à cicatriser les plaies in vitro, est comparable à celle du PEK.
En conclusion, les eiPSC-KC ont des caractéristiques intéressantes pour le
développement d'un substitut cutané à base de cellules souches, ayant le potentiel de
régénérer la peau perdue lors de trauma ou de maladie, chez le cheval. Cependant, parce
que les eiPSC n'échappent pas totalement à la surveillance immunitaire, malgré une faible
expression du MHC, des stratégies pour améliorer la prise de greffe eiPSC-KC doivent être élaborées.
|
22 |
Modélisation de maladies neurodégénératives à l'aide de cellules souches pluripotentes induites humainesLemonnier, Thomas 25 September 2012 (has links) (PDF)
La technologie de reprogrammation de cellules somatiques en cellules souches pluripotentes induites (iPS) offre aujourd'hui l'opportunité de modéliser des maladies neurodégénératives et d'étudier des neurones de patients. Nous avons utilisé cette technologie pour générer deux modèles de maladies neurodégénératives : la mucopolysaccharidose de type IIIB (MPSIIIB) et la forme ALS2 de la sclérose latérale amyotrophique (SLA). Dans le modèle MPSIIIB, nous avons montré que les iPS et les neurones de patients présentaient des défauts caractéristiques de la pathologie telle que l'accumulation de vésicules de surcharge. Des altérations de l'appareil de Golgi dans ces cellules ont également été mises en évidence. Une analyse du transcriptome de précurseurs neuraux MPSIIIB a montré des modifications transcriptionnelles touchant notamment des gènes impliqués dans les interactions de la cellule avec la matrice extracellulaire. Ainsi, dans une seconde étude, des altérations de la migration et de l'orientation de cellules de souris mutantes MPSIIIB ou de patients ont été démontrées. Ces altérations pourraient être responsables des perturbations de la neurogénèse et de la neuritogénèse chez les enfants malades. Dans le modèle SLA/ALS2, nous avons montré que les neurones de patients présentaient des défauts incluant une diminution de la surface des endosomes et des anomalies de la croissance neuritique. Alors qu'il n'existait jusqu'alors aucun modèle cellulaire pertinent reproduisant cette maladie, ce modèle permettra à présent d'étudier les processus physiopathologiques impliqués dans la maladie. En conclusion, la génération de cellules iPS permet de modéliser des maladies neurodégénératives et d'étudier les processus physiopathologiques qui sont associés sur des neurones humains en culture. Ces modèles cellulaires pourraient permettre dans un avenir proche de réaliser des criblages de molécules à visée thérapeutique
|
23 |
Génération de progéniteurs hépatiques dérivés de cellules souches : application à l'hypercholestérolémie familialeCorbineau, Sébastien 05 October 2011 (has links) (PDF)
La transplantation d'hépatocytes représente une alternative à la transplantation hépatique pour le traitement de certaines maladies métaboliques dont l'hypercholestérolémie familiale. Les cellules souches embryonnaires (ES) et les cellules souches pluripotentes induites (iPS) humaines représentent de nouvelles sources de cellules hépatiques. Nous avons mis au point une approche de différenciation des cellules souches humaines en cellules hépatiques et généré ainsi des cellules dérivées de cellules iPS de patients atteints d'hypercholestérolémie familiale.
|
24 |
Développement d'une méthode innovante pour la génération sécurisée de cellules souches pluripotentes induites par transfert de protéines / Development of an innovative method for the safe generation of induced pluripotent stem cells by protein transductionBerthoin, Lionel 02 October 2015 (has links)
Les cellules souches pluripotentes induites (iPS) partagent avec les cellules souches embryonnaires la capacité à se différencier en tous les types cellulaires d'un organisme, mais leur obtention ne nécessite pas l'utilisation d'embryons. Elles sont générées par la surexpression de facteurs de transcription embryonnaires au sein de cellules somatiques. Les iPS représentent un outil de choix en biologie fondamentale et appliquée ainsi qu'en médecine régénérative.La plupart des protocoles de génération d'iPS reposent sur un transfert des séquences nucléotidiques codant les facteurs de transcription embryonnaires impliqués dans la mise en place du réseau de pluripotence. Bien qu'efficaces, ces méthodes présentent des problèmes de sécurité majeurs, incompatibles avec une utilisation clinique des iPS générées. La voie la plus rationnelle pour produire des iPS de manière parfaitement sécurisée est d'apporter les facteurs exogènes directement sous leur forme protéique. Des protocoles de reprogrammation par transfert de protéines ont été récemment développés, mais les efficacités associées sont relativement faibles et les protocoles relativement fastidieux.L'objectif de ce projet de thèse était de mettre au point une nouvelle approche de transfert de protéines, sécurisée et simplifiée, pour la génération de cellules souches pluripotentes induites utilisables en clinique. Les cellules à reprogrammer ont été choisies en fonction des applications potentielles des iPS générées : (i) les fibroblastes, faisant référence dans la bibliographie et permettant d'envisager des thérapies autologues avec notamment de nombreuses applications en hématologie ; (ii) les cellules souches hématopoïétiques de sang de cordon, l'un des matériaux biologiques les plus sûrs, afin de générer des globules rouges in vitro, dans la perspective de répondre aux demandes croissantes en terme de transfusion, en particulier pour les groupes sanguins rares.Nous avons donc comparé les différents vecteurs de transduction de protéines développés par l'équipe TheREx du laboratoire TIMC-IMAG, en termes de facilité de production, d'efficacité de transfert ainsi que sur l'activité des facteurs de transcription associés. Le vecteur sélectionné est une micro-seringue naturelle portée par la bactérie Pseudomonas aeruginosa, capable d'injecter les facteurs Oct4, Sox2, Nanog et Lin28 (facteurs de Thomson) mais aussi c-Myc, directement dans le cytoplasme des cellules cibles, sans étape de purification nécessaire. Les facteurs de transcription injectés sont adressés jusqu'au noyau des cellules en moins de 2h, où ils activent rapidement la transcription des gènes de pluripotence, avec des réponses significatives mesurées dès 24h après injection. Nous avons également mis en évidence le caractère sécurisé et contrôlable du vecteur puisque nous sommes capables d'éliminer complètement les bactéries des cultures grâce à un traitement antibiotique, et ce dès quelques heures après l'injection. Des optimisations des conditions de reprogrammation ont été réalisées en modifiant les principaux paramètres que sont, le choix des facteurs de transcription, la fréquence des injections et le ratio bactéries : cellules.Ainsi, bien que nous ne soyons pas parvenus à générer des iPS à ce jour avec ce système, la micro-seringue naturelle que nous avons développé et optimisé se positionne comme un vecteur de choix pour le transfert de protéines dans l'optique de générer des iPS, en termes d'efficacité de vectorisation et d'induction transcriptionnelle, de sécurité mais aussi de facilité d'utilisation. / Like embryonic stem cells, induced pluripotent stem cells (iPS) are characterized by their ability to differentiate into any cell type in an organism. However their use doesn't raise the ethical issue linked to the use of embryos. iPS are generated from somatic cells by overexpression of embryonic transcription factors. iPS are thereby very promising in fundamental and applied biology as well as for regenerative medicine.Most of the protocols used to generate iPS are based on the delivery of nucleic acid sequences encoding embryonic transcription factors responsible for the activation of the pluripotency gene network. In spite of their efficiency, these methods are associated with major safety concerns incompatible with clinical applications. The more rational path to safely produce iPS is to deliver the exogenic transcription factors under their protein form. Recently some protocols using protein delivery have been developed to produce iPS. However associated efficiencies are very low and protocols are quite fastidious.The aim of this Ph.D. project was to develop a new efficient and simplified protein delivery method for the safe generation of iPS compatible with clinical applications. Cell sources were selected depending of the final applications of iPS: (i) fibroblasts, extensively used and described in bibliography and allowing autologous therapies with many applications in the field of hematology; (ii) cord blood hematopoietic stem cells, one of the safest biomaterials, with the aim to generate red blood cells in vitro in order to respond to increasing needs for transfusion products, particularly for rare blood types.First, different protein vectors developed by the TheREx team of the TIMC-IMAG laboratory were compared for their efficiency of production and delivery as well as for the activity of associated factors. The selected vector is a natural micro-syringe expressed by Pseudomonas aeruginosa, able to inject the transcription factors Oct4, Sox2, Nanog and Lin28a (Thomson combination) with c-Myc directly into the cytoplasm of target cells, without the need for any purification step. Once injected, transcription factors are addressed to the nucleus in less than 2 hours where they efficiently activate transcription of pluripotency genes, with significant responses observed as early as 24h after injection. We also highlighted the secured and controllable nature of this vector by completely eliminating the bacteria from the cultures in a few hours after injection with an antibiotic treatment. Optimizations of the reprogramming conditions were also made by adjusting many parameters such as the combination of transcription factors, the injection frequency and the bacteria : cell ratio.
|
25 |
Modélisation de maladies neurodégénératives à l’aide de cellules souches pluripotentes induites humaines / Modeling of neurodegenerative diseases using human induced pluripotent stem cellsLemonnier, Thomas 25 September 2012 (has links)
La technologie de reprogrammation de cellules somatiques en cellules souches pluripotentes induites (iPS) offre aujourd’hui l’opportunité de modéliser des maladies neurodégénératives et d’étudier des neurones de patients. Nous avons utilisé cette technologie pour générer deux modèles de maladies neurodégénératives : la mucopolysaccharidose de type IIIB (MPSIIIB) et la forme ALS2 de la sclérose latérale amyotrophique (SLA). Dans le modèle MPSIIIB, nous avons montré que les iPS et les neurones de patients présentaient des défauts caractéristiques de la pathologie telle que l’accumulation de vésicules de surcharge. Des altérations de l’appareil de Golgi dans ces cellules ont également été mises en évidence. Une analyse du transcriptome de précurseurs neuraux MPSIIIB a montré des modifications transcriptionnelles touchant notamment des gènes impliqués dans les interactions de la cellule avec la matrice extracellulaire. Ainsi, dans une seconde étude, des altérations de la migration et de l’orientation de cellules de souris mutantes MPSIIIB ou de patients ont été démontrées. Ces altérations pourraient être responsables des perturbations de la neurogénèse et de la neuritogénèse chez les enfants malades. Dans le modèle SLA/ALS2, nous avons montré que les neurones de patients présentaient des défauts incluant une diminution de la surface des endosomes et des anomalies de la croissance neuritique. Alors qu’il n’existait jusqu’alors aucun modèle cellulaire pertinent reproduisant cette maladie, ce modèle permettra à présent d’étudier les processus physiopathologiques impliqués dans la maladie. En conclusion, la génération de cellules iPS permet de modéliser des maladies neurodégénératives et d’étudier les processus physiopathologiques qui sont associés sur des neurones humains en culture. Ces modèles cellulaires pourraient permettre dans un avenir proche de réaliser des criblages de molécules à visée thérapeutique / Reprogramming technology of somatic cells in induced pluripotent stem cells (iPS) now offers the opportunity to model neurodegenerative diseases and to study patient’s neurons. We used this technology for generating two models of neurodegenerative diseases: the muccopolysaccharidosis type IIIB (MPSIIIB) and the ALS2 form of amyotrophic lateral sclerosis (ALS). In the MPSIIIB model, we have shown that iPS and neurons of patients had characteristic defects of the disease such as the accumulation of storage vesicles. Alterations of the Golgi apparatus in these cells were also highlighted. Transcriptome analysis of MPSIIIB neural precursors showed transcriptional changes involving particularly genes implicated in cell-extracellular matrix interactions. Thus, in a subsequent study, alterations of migration and orientation of MPSIIIB mutant mouse cells and MPSIIIB patients’ cells have been demonstrated. These alterations may be responsible for the disruption of neurogenesis and neuritogenesis in sick children. In the ALS2 model, we have shown that patients’ neurons had defects including decreased endosomes’ surface and abnormal neurite outgrowth. As there was previously no relevant cellular model reproducing the disease, this model will now allow the study of physiopathological processes involved in the disease. In conclusion, the generation of iPS cells allows to model neurodegenerative diseases and to study associated physiopathological processes on cultured human neurons. These cell models could allow in the near future the screening of molecules of potential therapeutical interest
|
26 |
Études de nouvelles thérapies pour la choroïdérémie dans un modèle d'épithélium pigmentaire rétinien dérivé de cellules souches pluripotentes induites spécifique au patient / Testing novel therapies for Choroideremia using patient-specific iPSc-derived Retinal Pigment EpitheliumTorriano, Simona 21 November 2017 (has links)
Les dystrophies rétiniennes héréditaires (DRH) sont un groupe de maladies génétiquement et cliniquement hétérogènes, lesquelles se caractérisent par une perte progressive de la vision. La choroïdérémie (CHM) est une choriorétinopathie qui représente environ 3% des DRH. Elle se caractérise par une cécité nocturne durant l’enfance suivie par une perte du champ visuel périphérique lente et progressive. Cela aboutit à une cécité vers l’âge de 40 à 50 ans. Généralement, la vision centrale demeure préservée plus longtemps. Génétiquement, la maladie est causée par des mutations dans le gène CHM localisé dans le chromosome X qui code pour la Rab Escort Protein 1 (REP1).Cette protéine est impliquée dans la prénylation des Rab GTPasas qui régulent le trafic vésiculaire au sein de la cellule. La plupart des mutations responsables de la maladie sont des mutations pertes de fonction. La conséquence de ces mutations est l’absence de REP1 entrainant un défaut de prénylation des Rabs. Ce qui cause la dégénérescence des photorécepteurs, de l’épithélium pigmentaire rétinien (EPR) et de la choroïde. À ce jour, il n’existe pas de thérapie pour la CHM. Cependant, le diagnostic précoce de la maladie et son évolution lente donnent une fenêtre thérapeutique large et en font un candidat idéal pour la réussite d’un traitement.En raison de l’absence d’un modèle animal pertinent pour tester de nouvelles thérapies pour cette maladie, nous avons développé un modèle cellulaire humain d’EPR in vitro dérivé des cellules pluripotentes induites propres au patient. Ce tissu est morphologiquement et fonctionnellement représentatif de l’EPR in vivo et reproduit les défauts biochimiques de prénylation présents dans la CHM. De ce fait, il s’agit d’un modèle puissant pour évaluer l’efficacité de différentes approches thérapeutiques. Dans cette perspective, nous avons étudié une approche de thérapie génique par AAV2/5 afin de fournir le gène CHM dans le cas particulier de mutation faux sens et l’utilisation d’une translational read-through inducing drug (TRID) PTC124 pour le traitement des mutations non-sens.J’ai démontré pour la première fois la faisabilité de la thérapie génique pour la CHM dans le cas d’une expression résiduelle de REP1 muté, permettant de considérer les patients porteurs de mutations faux sens comme éligible à des essais cliniques de thérapie génique. De plus, j’ai démontré que l’efficacité de PTC124 peut être dépendante du type cellulaire. Dans l’ensemble, mes résultats suggèrent que l’efficacité de la molécule semblerait dépendre de la conservation de l’acide aminé muté et de sa localisation dans le domaine fonctionnel de REP1. Nous avons ainsi mis en valeur que le contexte génétique devrait être pris en compte dans la perspective d’une thérapie avec TRID pour cette maladie ainsi que d’autres pathologies.Pour conclure, j’ai souligné le potentiel prédictif du modèle d’EPR dérivé d’iPSc propre au patient pour évaluer de nouvelles approches thérapeutiques en l’absence d’un modèle animal approprié avant les essais cliniques. / Inherited retinal dystrophies (IRDs) are a class of genetically and clinically heterogeneous diseases, which are characterized by a progressive loss of vision. Choroideremia (CHM) is a chorioretinopathy, which accounts for ~3% of all IRDs. It is characterized by night blindness in childhood, followed by slow and progressive loss of the peripheral visual field. This results in legal blindness by the fourth to fifth decade of life. Generally, central vision is preserved till late in life. Genetically, the disease is caused by mutations in the CHM gene located on the X chromosome and encoding the Rab Escort Protein 1 (REP1). This protein is involved in the prenylation of Rab GTPasas, which regulate vesicular cell trafficking. Most of the disease-causing mutations are loss-of-function and the absence of REP1 leads to a Rab prenylation defect and subsequent degeneration of photoreceptors, retinal pigment epithelium (RPE) and underlying choroid. To date, an established therapy is not available for CHM, but the early diagnosis and its slow evolution provide a large therapeutic window, that renders this disease a good candidate for successful treatment.In order to palliate the lack of a pertinent animal model for testing novel disease therapies, we developed a human cellular model using patient-specific induced pluripotent stem cells (iPSc)-derived RPE. This tissue is morphologically and functionally representative of the RPE in vivo, and reproduces the biochemical prenylation defect present in CHM. Therefore, it is a powerful model to evaluate the efficacy of different therapeutic approaches. Along this line, we investigated a gene augmentation approach, via AAV2/5 delivery of the CHM gene in the particular case of a CHM missense mutation, and the use of the translational read-through inducing drug (TRID) PTC124 for treating CHM nonsense mutations.I demonstrated for the first time the feasibility of gene augmentation therapy for CHM in the case of residual mutated REP1 expression, suggesting that missense-carrying patients can be considered for inclusion in clinical gene therapy trials. Moreover, I showed that the efficiency of PTC124 may be dependent on the cell type. In addition, my results suggest that drug efficiency likely depends on the conservation of the mutated amino acid residue and its localization with regards to REP1 functional domains. We thus highlight that genetic considerations should be taken into account when considering TRID therapy for this and other disorders.Taken together, I highlighted the predictive potential of the patient-specific iPSc-derived RPE model for screening of novel and varied therapeutic approaches in the absence of a suitable animal model prior to clinical translation.
|
27 |
Designing biomaterials for controlled cardiac stem cell differentiation and enhanced cell therapy in the treatment of congestive heart failure / Conception de biomatériaux pour le contrôle de la différenciation cardiaque à partir de cellules souches et pour l’amélioration de la thérapie cellulaire dans le traitement de l’insuffisance cardiaque sévèreFarouz, Yohan 30 September 2015 (has links)
La thérapie cellulaire se positionne comme une stratégie prometteuse pour inciter le cœur infarci à se régénérer. A cet effet, des études récentes placent des espoirs considérables dans l’utilisation des cellules souches embryonnaires et notre laboratoire a déjà démontré comment les différencier en progéniteurs cardiovasculaires, un type de précurseurs cellulaires qui ne peut aboutir qu’à la formation de cardiomyocytes, de cellules endothéliales ou de cellules de muscles lisses. Cet engagement précoce réduit leur capacité de prolifération anarchique et en même temps leur permet de rester suffisamment plastiques pour éventuellement s’intégrer plus facilement avec le tissue hôte. Cependant, les études précliniques et cliniques d’injection de ces cellules s’avérèrent décevantes. Malgré de légères améliorations de la fonction cardiaque, on observa une trop faible survie cellulaire ainsi qu’un taux de rétention des cellules dans le myocarde remarquablement bas. Afin d’étudier ce problème, mes travaux de thèse ont porté non seulement sur la conception de nouveaux biomatériaux pouvant servir de moyen de transport et d’intégration des cellules dans la zone infarcie, mais aussi sur la conception de biomatériaux permettant de contrôler précisément l’environnement cellulaire au cours du processus de différenciation de cellules souches pluripotentes humaines en cardiomyocytes. Grâce aux importantes interactions entre nos laboratoires de recherche fondamentale et de recherche clinique, nous avons tout d’abord développé de nouvelles techniques de fabrication et de caractérisation de patches de fibrine cellularisés qui sont récemment entrés dans un essai clinique de phase I. A partir de cette formulation clinique approuvée par les autorités de régulation, nous avons élaboré toute une gamme de matériaux composites uniquement à base de matières premières pertinentes dans ce cadre clinique, dans le but d’améliorer la maturation des progéniteurs cardiovasculaires une fois greffés sur le cœur défaillant. Dans cette optique, nous avons également développé un modèle in vitro permettant d’étudier précisément l’influence combinée de la rigidité du substrat et du confinement spatial sur la différenciation des cellules souches en cardiomyocytes. Grâce à des techniques de microfabrication sur substrat mou, il a été possible de positionner précisément les cellules souches pluripotentes dans des espaces restreints d’élasticité variable. Ainsi, nous avons pu observer que même en utilisant des protocoles chimiques éprouvés basés sur la modulation de cascades de signalisation impliquées dans le développement cardiaque, une très forte hétérogénéité pouvait apparaître en fonction de l’environnement physique des cellules. Nous avons ainsi pu extraire les caractéristiques principales permettant une différenciation cardiaque efficace, reproductible et standardisée et les avons appliquées à la fabrication d’une nouvelle génération de patches composés de matériaux cliniques et de couches multiples de bandes synchrones de cardiomyocytes. De fait, ces travaux ouvrent de nouvelles voies dans l’utilisation de biomatériaux pour la production industrielle de cardiomyocytes et pour la fabrication de patches cliniques, cellularisés ou non, dans le traitement de l’insuffisance cardiaque. / Cell therapy is a promising strategy to help regenerate the damaged heart. Recent studies have placed a lot of hopes in embryonic stem cells and our lab had previously found a way to differentiate them into cardiac progenitors, cells that can only differentiate into cardiomyocyte, endothelial cells or smooth muscle cells. This early commitment decreases their proliferative capabilities, yet maintains their plasticity for better integration inside the host tissue. However, clinical and pre-clinical injection studies did not really meet the expectations. Even though slight improvements in cardiac function were demonstrated, very low cell viability has been observed, as well as a very low retention of the cells inside the myocardium. To address this problem, my PhD projects not only focus on the design of new biomaterials to act as a vehicle for cell delivery and retention in the infarcted area, but also on the design of biomaterials that control the cellular environment during the differentiation of pluripotent stem cells into cardiomyocytes. Going back and forth between the labs and the clinics, we first developed new techniques for the fabrication and the characterization of a cell-laden fibrin patch that is now undergoing phase I clinical trial. From the approved clinical formulation, we then propose new blends of clinical materials that will eventually improve the maturation of the cardiac progenitors once grafted onto the failing heart. In this perspective, we developed an in vitro model to investigate the combined influence of matrix elasticity and topographical confinement on stem cell differentiation into cardiomyocytes. By using microfabrication techniques to pattern pluripotent stem cells on substrates of controlled stiffness, we demonstrate that even using a widely recognized chemical-based protocol to modulate signaling cascades during differentiation, much heterogeneity emerges depending on the cellular physical environment. We thus extracted the main features that led to controlled and reproducible cardiac differentiation and applied it to the fabrication of next generation of multi-layered anisotropic cardiac patches in compliances with clinical requirements. This work opens new routes to high-scale production of cardiomyocytes and the fabrication of cell-laden or cell-free clinical patches.
|
28 |
Analyse des variations du nombre de copies d'ADN dans une cohorte d'hommes infertiles et génération de modèles génétiques d’étude de la méiose à partir de cellules iPS de patients infertiles / DNA copy number variations study in a cohort of infertile men and generation of an in vitro model for the study of meiosis from infertile patient's iPS cellsMouka, Aurélie 28 September 2017 (has links)
L’infertilité représente un problème majeur de santé publique en concernant 10 à 15% des couples en âge de procréer. Un facteur masculin est responsable de l’infertilité du couple dans près de la moitié des cas. Pour environ 30% d'entre eux, l'étiologie reste inexpliquée. Le premier axe du travail a concerné l’étude moléculaire d’une cohorte de patients infertiles (azoospermie non-obstructive/cryptozoospermie ou désordre du développement sexuel ou DSD) pour lesquels les analyses du caryotype standard et/ou des microdélétions des régions AZF par PCR n’ont pas permis d’expliquer le phénotype. L'impact des variations de nombre de copies de l'ADN (CNV) détectées par l'hybridation génomique comparative sur puce à ADN est peu documenté. Un design personnalisé de puce à ADN de format 400K, pangénomique et enrichi sur un large panel de 445 gènes liés à l'infertilité et à un DSD a été développé. Cette puce a permis l’identification de 171 CNV d’intérêt. Ces résultats soulignent l’intérêt de ce design comme outil diagnostic dans le cadre du bilan de l’infertilité masculine. Le second axe du travail a été de modéliser l’infertilité masculine in vitro dans un contexte d’anomalie génétique. Des cellules souches pluripotentes induites humaines (hiPS) ont été générées à partir d’érythroblastes de deux patients infertiles porteurs d’un remaniement chromosomique complexe ou d’un caryotype 46,XX-SRY négatif avec mutation du gène de l’AMH. Dans un deuxième temps, la fonctionnalité des lignées de cellules hiPS générées a été testée par différenciation in vitro en cellules germinales primordiales (CGP). Elles expriment les marqueurs clés du stade CGP dont SOX17, le déterminant germinal le plus précoce des CGP. Les perspectives de ce travail seront de poursuivre la différenciation germinale vers des stades plus matures et ainsi de pouvoir étudier le processus méiotique dans un contexte d’anomalie génétique. / Infertility represents a major public health problem and concerns 10 to 15% of couples in the general population. A male factor is responsible for the infertility of the couple in about half of all cases. In approximately 30% of them, the etiology remains unexplained.The first working axis concerned the molecular study of a cohort of infertile patients (nonobstructiveazoospermia/ cryptozoospermia and disorder of the sex development or DSD) for whom analyses of standard karyotype and/or microdeletions of AZF regions were not able to explain the phenotype. The impact of copy number variations of DNA (CNVs) detected by comparative genomic hybridization (CGH-array) is poorly documented. A custom design 400K micoarray, genome-wide and enriched on a wide panel of 445 genes linked with infertility and DSD has been achieved. This array allowed the identification of 171 CNVs of interest.These results underline the potential of this design for diagnosis of male infertility. The second objective of this work was the in vitro modelisation of male infertility in a context of genetic abnormality. For that purpose, human induced pluripotent stem cells (hiPSCs) were generated from erythroblasts by means of not integrative Sendaï virus, in two patients carrying genetic abnormalities (complex chromosomal rearrangement and 46,XX-SRY negative karyotype associated with AMH gene mutation). Secondly, functionality of hiPSCs generated was tested by germ cells in vitro differentiation. Primordial germ cell (PGC) stage was successfully obtained. Cells expressed key PGC markers such as SOX17. The perspectives of this work will be to continuethe germinal differentiation towards more mature stages and so to be able studying the meiotic process in a context of genetic abnormality.
|
29 |
Modélisation des néoplasies endocriniennes multiples de type II par les cellules souches pluripotentes induites porteuses de mutations germinales du gène RET / Modelling Multiple Endocrine Neoplasia Type 2 with RET Mutated Induced Pluripotent Stem CellsHadoux, Julien 23 November 2016 (has links)
Les cellules souches pluripotentes induites (CSPi) permettent la modélisation de processus avec, en oncologie, un intérêt potentiel pour la modélisation de syndromes de prédisposition au cancer liés à des mutations germinales d’oncogènes. Nous avons généré des lignées de CSPi à partir de patients atteints de néoplasies endocriniennes multiples de type 2 (NEM2), porteurs de mutations germinales du gène RET : RETC620R, RETC634Y et RETM918T. Nous avons généré une CSPi RETY634C, contrôle isogénique, par correction de la mutation RETC634Y via CRSPR/Cas9. Ces CSPi présentent tous les critères de pluripotence avec un caryotype normal et expriment Ret. L’étude histologique approfondie des tératomes a mis en évidence le développement de cellules C en leur sein et également de cellules neuroendocrines exprimant la Chromogranine A mais sans aspect d’hyperplasie des cellules C ou de carcinome médullaire de la thyroïde ni de tumeur neuroendocrine réminiscente du phénotype des NEM2. L’analyse comparative de l’expression des gènes de ces CSPi a mis en évidence, dès le stade de pluripotence, une activation du réseau transcriptionnel du gène EGR1 qui pourrait constituer un des mécanismes moléculaires responsables de la mise en place du phénotype des NEM2. La différenciation en cellules souches de la crête neurale (CSCN), cellules d’origine cibles des tumeurs développées dans le cadre des NEM2, en particulier le phéochromocytome, était efficace et reproductible pour toutes nos lignées. Nous avons mis en évidence l’activation d’un programme commun invasif au niveau des CSCN avec mutation RETC634Y et RETM918T ainsi qu’une forte dérégulation du réseau des intégrines entraînant une forte dérégulation de l’adhésion cellulaire. Ceci était confirmé par une augmentation des capacités de migration CSCN avec mutation de RET par rapport aux CSCN témoins. Ainsi, la génération de CSPi avec mutation de RET a permis d’identifier des voies de signalisation potentiellement impliquées dans la physiopathologie des NEM2 et constitue une première étape vers la modélisation des NEM2 in vitro. / Induced pluripotent stem cell (iPSC) offer major perspectives in disease modelling and, in the oncology field, can be used for modelling cancer predisposition syndromes. We generated IPSC lines from somatic cells of patients with multiple endocrine neoplasia type 2 (MEN2) who harboured germline mutations in the RET gene: RETC620R, RETC634Y et RETM918T. We have also generated an isogenic RETY634C iPSC control line by genome engineering using CRSPR/Cas9-mediated method to "correct” C634Y mutation. All iPSC lines exhibited all markers of pluripotency with a normal karyotype and expressed Ret. A thorough histological study of teratomas from these iPSC highlighted the development of C cells and Chromogranin A-expressing neuroendocrine cells within them but without C-cell hyperplasia, medullary thyroid carcinoma or neuroendocrine tumours reminiscent of MEN2 phenotype. Comparative gene expression analysis revealed an activation of the EGR1 transcriptional network, at the pluripotent stem cell stage which could be one of the molecular effector of the phenotype. Neural crest stem cell (NCSC), the cell of origin of some of the tumoral features of MEN2, could be differentiated in vitro from all our RET-mutated iPSC lines effectively. Gene expression analysis revealed an activation of cell invasion program in RETC634Y and RETM918T–mutated NCSC and a deregulation of integrin network causing a strong deregulation of cell adhesion which was confirmed with increased migration capabilities in vitro. Thus, the generation of the first RET-mutated iPSCs allowed the identification of signalling pathways potentially implicated in the pathophysiology of MEN2 and constitute a first step in modelling these tumours in vitro.
|
30 |
Induced pluripotent stem cells as modeling tools to understand esophagus development and diseasesRaad, Suleen 07 1900 (has links)
L'œsophage et la trachée proviennent du diverticule endodermique du tube de l'intestin antérieur au cours de l'embryogenèse. Des événements cellulaires et moléculaires bien régulés et organisés entraînent la séparation du tube de l'intestin antérieur en œsophage et trachée. Cette séparation est encore mal connue et la perturbation de ce processus se traduit par une anomalie congénitale sévère telle qu'une l’atrésie de l'œsophage avec ou sans fistule trachéo-œsophagienne (AO/FTO). L'AO/FTO est l'une des malformations congénitales gastro-intestinales les plus courantes affectant 1 naissance sur 3000. Cette malformation nécessite une intervention chirurgicale urgente à la naissance et est fréquemment associée à une morbidité à long terme. Les mécanismes sous-jacents au développement embryonnaire de l'AO/FTO sont mal compris. Les modèles animaux ont été largement utilisés pour comprendre les maladies humaines depuis des décennies et ont considérablement contribué à la compréhension du développement de l'œsophage. Cependant, des différences structurelles et morphologiques clés existent entre l'œsophage humain et animal, ce qui nécessite un modèle plus fiable pour comprendre le développement trachée-œsophagien.
Les cellules souches pluripotentes induites par l'homme ont été un outil précieux pour comprendre l'organogenèse en imitant le développement et en déchiffrant les mécanismes qui conduisent à des maladies congénitales et acquises. Cette thèse se concentre donc sur l'utilisation de cellules souches pluripotentes induites (IPS) par des patients pour déchiffrer les mécanismes de signalisation impliqués dans le développement de l'œsophage et les maladies congénitales telles que l’OA/FTO. Il étudie également l'une des maladies œsophagiennes acquises possibles, comme l'œsophage de Barrett. Nous avons orienté la différenciation des IPS saines et dérivées de patients vers différents stades de développement, tels que l'endoderme définitif, l'intestin antérieur, l'épithélium œsophagien et trachéal. De plus, l'épithélium œsophagien a été développé davantage dans un environnement tridimensionnel sans matrice pour générer des organoïdes œsophagiens matures. À chaque étape de la progression du développement, des analyses d'immunofluorescence, de qPCR et de séquençage d'ARN ont été effectuées. Nos résultats suggèrent que l'expression des marqueurs endodermiques CXCR4, SOX17, et GATA4 était similaire dans les cellules différenciées des patients et des cellules saines. Cependant, au stade de l'intestin antérieur, nous avons observé une diminution significative de l'expression des gènes et des protéines du facteur transcriptionnel clé SOX2 dans les cellules dérivées du patient. De plus, en utilisant le séquençage d'ARN à molécule unique, nous avons observé que les gènes critiques GSTM1, et RAB37 impliqués dans la morphogenèse cellulaire et associés à l’OA/FTO étaient dérégulés au stade de l'intestin antérieur dans les cellules dérivées du patient. Nous avons également observé une augmentation significative de l'expression du facteur de transcription NKX2.1 habituellement exprimé uniquement dans les cellules trachéales, dans l'épithélium oesophagien dérivé du patient. NKX2.1 est maintenue dans les organoïdes oesophagiens matures même après 2 mois.
Ensuite, nous voulions valider l'utilisation potentielle de nos organoïdes dérivés des IPS pour modéliser les maladies acquises de l'œsophage telles que l'œsophage de Barrett. Nous avons induit une métaplasie ou transformation épithéliale avec surexpression de BMP4 dans des organoïdes de l'œsophage sains et dérivés du patient sur une période d'un mois. Nos résultats préliminaires montrent que les organoïdes de l'œsophage dérivés des patients exprimaient des niveaux d'ARNm plus élevés de MUC5AC, un marqueur épithélial cylindrique par rapport au groupe sain. Cela suggère une plus grande sensibilité de l'organoïde de l'œsophage dérivé du patient aux changements epitheliales métaplasiques.
En conclusion, nous avons développé les premiers organoïdes œsophagiens tridimensionnels matures sans matrice différenciés des patients OA/FTO et identifié une signature moléculaire unique dans les cellules dérivées du patient au cours de la différenciation dirigée de l'œsophage. De plus, sur la base des résultats préliminaires, nous avons pu confirmer l'incidence plus élevée de l'œsophage de Barrett chez les patients OA/FTO par rapport au groupe sain.
Notre travail met donc en évidence l'importance de l'utilisation des IPS dérivées des patients pour modéliser les maladies œsophagiennes congénitales et acquises afin de fournir de nouvelles informations sur le développement des organes au cours de l'embryogenèse. / The esophagus and trachea originate from the endodermal diverticulum of the anterior foregut tube during embryogenesis. Well-regulated and organized cellular and molecular events result in the compartmentalization of the anterior foregut tube into the esophagus and trachea. This compartmentalization is still poorly understood and disruption in this process results in a severe congenital anomaly such as esophageal atresia with or without tracheoesophageal fistula (EA/TEF). EA/TEF is one of the most common gastrointestinal congenital defects affecting 1 in 3,000 births. This malformation requires urgent surgery at birth and is frequently associated with long-term morbidity. The mechanisms underlying the embryonic development of EA/TEF are poorly understood. Animal models have been widely used to understand human diseases for decades and have significantly contributed to the understanding of esophageal development. However, key structural and morphological differences exist between human and animal esophagus, thus necessitating a more reliable model to understand trachea-esophageal development. Human induced pluripotent stem cells (iPSC) have been a valuable tool to understand organogenesis by mimicking development and deciphering mechanisms that lead to congenital and acquired diseases. This thesis therefore focuses on the use of patient-derived induced pluripotent stem cells to decipher signaling mechanisms involved in esophageal development and congenital diseases such as EA/TEF. It also focuses on one of the possible acquired esophageal diseases, namely, Barrett’s esophagus. We directed the differentiation of healthy and patient-derived iPSCs toward different developmental stages, such as definitive endoderm, anterior foregut, esophageal and tracheal epithelium. Furthermore, the esophageal epithelium was matured further in a matrix free 3-dimensional environment to generate mature esophageal organoids. At each stage of development progression, immunofluorescence, qPCR, and RNA sequencing analysis were performed. Our findings suggest that the expression of endodermal markers CXCR4, SOX17, and GATA4, were similar in both patient and healthy differentiated cells. However, at the anterior foregut stage, we observed a significant decrease in the gene and protein expression of key transcription factor SOX2 in patient-derived cells. Furthermore, using nanopore RNA sequencing, we observed that critical genes GSTM1, and RAB7 involved in cellular morphogenesis and associated with EA/TEF to be dysregulated at the anterior foregut stage in patient-derived cells. We also observed a significant increase in the expression of transcription factor NKX2.1, usually expressed only in tracheal cells, in the patient-derived esophageal epithelium. NKX2.1 expression was maintained in matured esophageal organoids even after 2 months.
Next, we wanted to validate the potential use of our PSC-derived organoids to model acquired esophagus diseases such as Barrett’s esophagus (BE). We induced epithelial metaplasia with BMP4 overexpression in healthy and patient-derived esophagus organoids over a 1-month period. Our preliminary results show that patient-derived esophagus organoids expressed higher mRNA levels of MUC5AC, an epithelial columnar marker compared with the healthy group. This suggests a higher susceptibility of patient-derived esophagus organoid to metaplastic changes.
In conclusion, we developed the first matrix free mature 3-dimensional esophageal organoids differentiated from EA/TEF patient-derived and identified a unique molecular signature in patient derived cells during directed esophagus differentiation. Furthermore, based on the preliminary results, we could confirm the higher incidence of Barrett’s esophagus in EA/TEF patients compared with the healthy group.
Our work therefore highlights the significance of using patient-derived iPSCs to model congenital and acquired esophageal diseases to yield new insights on organ development during embryogenesis. It lays the foundation for a personalized medical approach to other diseases and the ones affecting the whole gastrointestinal system in both children and adults.
|
Page generated in 0.0806 seconds