• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 10
  • 7
  • 7
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 21
  • 21
  • 20
  • 19
  • 18
  • 17
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Unravelling novel molecular targets for photobiomodulation in human hair follicle towards the development of more effective light-based therapies for hair growth

Buscone, Serena January 2017 (has links)
Light and optical techniques have made a profound impact on modern medicine both in diagnostics and in therapy. Therapeutic action of light is based on photomechanical, photothermal, photochemical and photobiological interactions, depending on the wavelength, power density, exposure time and optical properties of tissue and cells. Last decade experienced a growing rise of commercial devices for management of hair growth, where all of them are based on low levels of light resulting into photobiological, non-thermal interaction of photons with cells, a process that recently has received an official term ‘photobiomodulation’. However, the design and analysis of the reported clinical studies are highly debated in a wider scientific community. The picture is further complicated by a virtual lack of proof about the exact molecular targets that mediate the physiological response of skin and hair follicles (HF) to low levels of light. The goal of this project was to investigate the expression of light-sensitive receptors in the human HF and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Cryptochromes 1 and 2 (CRY1, 2), Opsin 2 and 3 (OPN2 and OPN3), but not other Opsins 1, 4 and 5 was detected in the distinct compartments of skin and anagen HF. Evaluation of the physiological role of detected light-sensitive receptors on hair growth was performed by the modulation of photoreceptors activity in HF ex vivo model. HFs treated with KL001, a stabilizer of CRY1 protein that lengthens the circadian period, delayed HF anagen-catagen transition; while silencing of CRY1 induced premature catagen development accompanied by reduced cell proliferation. Silencing of CRY1 in the HF outer root sheath (ORS) cells in vitro caused downregulation of ii genes involved in the control of proliferation; including the cyclin dependent kinase 6 (CDK6). OPN3 also had a positive effect on metabolic activity and proliferation of the ORS cells in vitro. OPN3 silencing resulted in the altered expression of genes involved in the control of proliferation and apoptosis. Investigated CRY1, OPN2 and 3 greatly absorb in the blue to green-region of the visible spectrum. This led us to investigate the effect of blue light on HF growth. Daily treatment with blue light (453 nm, 3.2 J/cm2, 16 nm full width half maximum) prolonged anagen phase in HF ex vivo that was associated with sustained proliferation. In addition, blue light (3.2 J/cm2) significantly stimulated proliferation of ORS cells in vitro. This effect was abrogated by silencing of OPN3. To summarize, CRY 1, OPN 2 and OPN 3 are expressed in the distinct compartments of the HF, including HF stem cells. Blue light (453 nm) at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. The further research should be conducted to decipher interactions between blue light and the investigated receptors in the HFs. In addition, the beneficial effect of blue light at low radiant exposure on hair growth raises a possibility of increasing therapeutic efficacy when combined with topical chemistry used for management of hair growth.
92

Metabolic synchronization of the liver circadian clock / Metabolische Synchronisation der circadianen Uhr in der Leber

Landgraf, Dominic 23 November 2011 (has links)
No description available.
93

Cross-talk between cell-cycle control and the environment

Babar, Sandly 04 September 2013 (has links) (PDF)
Even though the understanding of cell-cycle regulators in plants has tremendously increased over the last years, still little is known about cell-cycle regulation in response to environmental signals like DNA damage. A ubiquitous stress for any organism is DNA stress that can either be caused by exogenous sources or internal processes like chromatid separation or DNA strands separation during replication. The posttranslational regulation of Cdk1-type kinases through inhibitory phosphorylation through Wee1-type kinases in the so-called P-loop at the residue Tyr15 or the analogous positions has been found to be of pivotal importance for the arrest of the cell cycle after DNA damage in yeast and animals. But this mechanism is apparently not conserved in plants, as suggested by the hypersensitivity analysis of CDKA;1 dephospho-mutants. The first half of this study focus on possible regulation of CDKA;1 through T-loop phosphorylation upon replication stress in Arabidopsis. The positively acting phosphorylation on T161 and analogous residues in the so-called T-loop of the kinase that is required for full CDK activity and serves in substrate recognition. Remarkably, a T-loop phospho-mimicry mutant of CDKA;1, was almost 100% resistant to hydroxyurea (HU) and can partially rescue the hypersensitivity of wee1 to HU. T-loop phosphorylation is catalyzed by CDK activating kinases (CAKs) that are themselves CDKs with typical P- and T-loop regions. Evidence is obtained that WEE1 might inhibit CDKDs (Cdk-activating kinases) that would subsequently result in reduced CDKA;1 activity, and thus, cell-cycle arrest upon DNA damage. It is revealed that dephospho-mimicry mutants of CDKD;2 and 3, which can not be inhibited through WEE1 showed hypersensitivity to HU and not to bleomycin, suggesting their involvement in cell-cycle arrest specifically upon replication stress. Hypersensitivity of cdkd;2cdkd;3 to replication stress suggested possible activation of CDKA;1 through CDKD;1 independent of WEE1. An essential role of CDKDs in stabilizing CDKA;1 kinase activity during gamete development has been suggested. Defects observed in cdka;1VFcdkd mutants during meiosis but not in cdka;1VF mutants emphasize on importance of CDKA;1 T-loop phosphorylation for appropriate meiotic division.In second part of this study interaction between cell-cycle and circadian has been studied. A feedback loop in which the cell cycle could potentially regulate the circadian clock was suggested as a number of circadian genes were found to be deregulated in a microarray experiment with holomorphic CDKA;1 mutants. Thus the circadian gating of cell division of wildtype and cdka;1 mutants was studied under diurnal growth conditions. The altered time of division observed in cell-cycle mutants supported the idea of cell-cycle regulation in a time dependent manner. Expression profile of clock genes were analyzed in cdka;1 mutants through luciferase assay system. An altered period and intensity of expression observed in these mutants compared to wild type plants suggested a direct or indirect effect of CDKA;1 activity on clock gene expression.
94

Régulation transcriptionnelle du facteur de transcription spécifique des bâtonnets, Nrl / Transcriptional regulation of the rod-specific transcription factor, Nrl

Kautzmann, Marie audrey 12 June 2012 (has links)
La leucine zipper de la rétine neurale (Nrl) joue un rôle central dans le développement et l'homéostasie des bâtonnets en activant I'expression de gènes tels que le photopigment Rhodopsine. Nrl est aussi associé à la Rétinite Pigmentaire, faisant ainsi de ce gène un modèle intéressant pour la compréhension des programmes contrôlant le développement et I'homéostasie des photorécepteurs.Ce travail de thèse vise à caractériser les mécanismes régulateurs de I'expression de Nr/ au cours du développement rétinien. L'électroporation in vivo de vecteurs rapporteurs dans des rétines de souris en développement, a révélé des séquences minimales de promoteur Nr/ nécessaires à une expression spécifique dans les photorécepteurs. Nous avons identifié RORI3 comme facteur requis pour cette expression, et montré que les facteurs OTX2, CRX et CREB s'accrochent aussi directement à des régions régulatrices particulières du promoteur. Nous avons construit un virus adéno-associé (AAV) contenant un promoteur minimal Nrl de 0.3 kb, et montré qu'il est adapté à la délivrance de gène spécifiquement dans les photorécepteurs.Nous avons montré que NRL, CRX et NR2E3, les régulateurs principaux de la Rhodopsine, ont une expression rythmique au cours de 24 h, et que l'expression cyclique de Nr/ peut être due à l'activation par RORp, un composant l'horloge circadienne. Enfin, nous avons identifié un nouveau facteur de transcription, NonO, au niveau de la région du promoteur proximal de la Rhodopsine, qui en combinaison avec NRL et CRX, active le promoteur de la Rhodopsine. L'invalidation de NonO au cours du développement rétinien a prouvé son implication pour le développement et I'homéostasie des bâtonnets. / The Neural Retina Leucine zipper transcription factor (Nrl) plays a central role in rod photoreceptor development and homeostasis, by activating the expression of rod-specific genes such as the visual photopigment, Rhodopsin. Nrlhave been also associated with Retinitis Pigmentosa, making this gene an interesting model for understanding genetic programs controlling photoreceptors development and homeostasis.This thesis work aimed at characterizing regulatory mechanisms of Nr/ expression during retinal development. Using in vivo electroporation of reporter vectors carrying distinct portions of Nrlpromoter into neonatal mouse retina, we identified minimal sequences required for expression photoreceptors-specific expression. We identified RORI3 as being required for this expression and showed that OTX2, CRX and CREB transcription factors also directly bind to the defined regulatory regions.We designed a novel adeno-associated virus (AAV) vector containing a minimal Nrl promoter fragment of 0.3 kb, and showed that it is well-suited for gene delivery specifically into photoreceptors.We also showed that NRL, CRX, and NR2E3, the main transcriptional regulators of Rhodopsin, display rhythmic expression over 24 h. and that Nrl might undergo cyclic activation by RORB which is part of the photoreceptor circadian clock. Finally, we investigated the role of a novel Rhodopsin transcriptional regulator, NonO, identified in theRhodopsin proximal promoter region. We demonstrated that NonO co-activates Rhodopsin promoter along with NRL and CRX. By knocking down this gene during retinal development we provided evidence for its role in rod development and homeostasis.
95

Cross-talk between cell-cycle control and the environment / Interconnections entre le cycle cellulaire et l'environnement

Babar, Sandly 04 September 2013 (has links)
Bien que la compréhension des régulateurs du cycle cellulaire s'est considérablement améliorée ces dernières années, la régulation du cycle cellulaire en réponse à des signaux environnementaux tels que les reste peu connue. Un stress au niveau de l'ADN est un stress ubiquitaire pour tous les organismes. Celui-ci peut-être causé soit par une source exogène soit par une source interne comme lors de la séparation des chromatides ou bien celle des brins d'ADN pendant la réplication. La régulation post-traductionnelle des kinases de type cdk1 au travers de la phosphorylation inhibitrice des kinases de type Wee1 sur le résidu Tyr15, ou à des positions analogues, de la boucle appelée P-loop a été dommages à l'ADN décrite comme étant le mécanisme pivot conduisant à l'arrêt du cycle cellulaire après un dommage à l'ADN chez la levure et les animaux. Cependant, il semblerait que ce mécanisme ne soit pas conservé chez les plantes comme le suggère l'hypersensibilité des dephospho-mutants de CDKA;1. La première partie de cette étude se concentre sur la possible régulation de CDKA;1 au travers de la phosphorylation de la T-loop en réponse à un stress lié à la réplication chez Arabidopsis. La phosphorylation du résidu T161 et de ses analogues agit positivement sur la boucle appelée T-loop de la kinase, ce qui est nécessaire pour avoir une activité CDK complète, et sert dans la reconnaissance du substrat. De manière remarquable, un mutant qui imite la phosphorylation de la T-loop est quasiment résistant à 100% à l'hydroxyurée (HU) et peut partiellement compenser l'hypersensibilité des mutants wee1 à l'HU. La phosphorylation de la T-loop est catalysée par les kinases activatrices des CDK (CAKs) qui sont elles-mêmes des CDKs comportant des régions P- et T-loop particulières. La preuve a été obtenue que WEE1 inhibe les Cyclin Dependent Kinases de type D ce qui va résulter en une activité réduite de CDKA;1 et ainsi déclencher l'arrêt du cycle cellulaire après un dommage causé à l'ADN. Il a été démontré que les mutants qui imitent la déphosphorylation de CDKD2 et 3, ne pouvant pas être inhibés par WEE1 montrent une hypersensibilité à l'HU mais pas à la bléomycine. Cela suggère donc de leur implication dans l'arrêt du cycle cellulaire spécifiquement après un stress de réplication. L'hypersensibilité du double mutant cdk2cdk3 aux stress de réplication permet de penser qu'une activation de CDKA;1 par l'intermédiaire de CDKD;1 et de manière indépendante de WEE1 est possible. L'hypothèse d'un rôle essentiel desCDKDs dans la stabilisation de l'activité kinase de CDKA;1 pendant le développement des gamètes a été émise. En effet, des défauts, observés chez les mutants cdka;1VFcdkd pendant la méiose mais pas chez les mutants cdka;1VF souligne l'importance de la phosphorylation de la T-loop de CDKA;1 dans le bon déroulement de la division méiotique. Dans la seconde partie de cette étude, l'interaction entre le cycle cellulaire et le cercle circadien a été étudiée. Il a été suggéré qu'une boucle rétroactive existait, et dans laquelle le cycle cellulaire pouvait réguler le cercle circadien. En effet, on a montré grâce à une expérience de microarray réalisée sur des mutants holomorphiques CDKA;1, que de nombreux gènes circadiens sont dérégulés. Ainsi, dans le cadre de l'étude du cercle circadien, la division cellulaire de mutants cdka;1 ainsi que de plantes sauvages a été étudiée en conditions de croissance diurnes. Le temps de division altéré observé chez les mutants supporte l'idée que la régulation du cycle cellulaire se fait également d'une manière dépendante du temps. Les profils d'expression de gènes du cycle circadien chez les mutants cdka;1 ont été analysés par essai luciférase. La période et l'intensité d'expression observées chez ce mutant en comparaison du sauvage étant altérée, ceci suggère que l'activité de CDKA;1 a un effet direct ou indirect sur ces gènes. / Even though the understanding of cell-cycle regulators in plants has tremendously increased over the last years, still little is known about cell-cycle regulation in response to environmental signals like DNA damage. A ubiquitous stress for any organism is DNA stress that can either be caused by exogenous sources or internal processes like chromatid separation or DNA strands separation during replication. The posttranslational regulation of Cdk1-type kinases through inhibitory phosphorylation through Wee1-type kinases in the so-called P-loop at the residue Tyr15 or the analogous positions has been found to be of pivotal importance for the arrest of the cell cycle after DNA damage in yeast and animals. But this mechanism is apparently not conserved in plants, as suggested by the hypersensitivity analysis of CDKA;1 dephospho-mutants. The first half of this study focus on possible regulation of CDKA;1 through T-loop phosphorylation upon replication stress in Arabidopsis. The positively acting phosphorylation on T161 and analogous residues in the so-called T-loop of the kinase that is required for full CDK activity and serves in substrate recognition. Remarkably, a T-loop phospho-mimicry mutant of CDKA;1, was almost 100% resistant to hydroxyurea (HU) and can partially rescue the hypersensitivity of wee1 to HU. T-loop phosphorylation is catalyzed by CDK activating kinases (CAKs) that are themselves CDKs with typical P- and T-loop regions. Evidence is obtained that WEE1 might inhibit CDKDs (Cdk-activating kinases) that would subsequently result in reduced CDKA;1 activity, and thus, cell-cycle arrest upon DNA damage. It is revealed that dephospho-mimicry mutants of CDKD;2 and 3, which can not be inhibited through WEE1 showed hypersensitivity to HU and not to bleomycin, suggesting their involvement in cell-cycle arrest specifically upon replication stress. Hypersensitivity of cdkd;2cdkd;3 to replication stress suggested possible activation of CDKA;1 through CDKD;1 independent of WEE1. An essential role of CDKDs in stabilizing CDKA;1 kinase activity during gamete development has been suggested. Defects observed in cdka;1VFcdkd mutants during meiosis but not in cdka;1VF mutants emphasize on importance of CDKA;1 T-loop phosphorylation for appropriate meiotic division.In second part of this study interaction between cell-cycle and circadian has been studied. A feedback loop in which the cell cycle could potentially regulate the circadian clock was suggested as a number of circadian genes were found to be deregulated in a microarray experiment with holomorphic CDKA;1 mutants. Thus the circadian gating of cell division of wildtype and cdka;1 mutants was studied under diurnal growth conditions. The altered time of division observed in cell-cycle mutants supported the idea of cell-cycle regulation in a time dependent manner. Expression profile of clock genes were analyzed in cdka;1 mutants through luciferase assay system. An altered period and intensity of expression observed in these mutants compared to wild type plants suggested a direct or indirect effect of CDKA;1 activity on clock gene expression.
96

Cirkadiánní regulace miRNA a hodinami řízených genů v procesu tumorigeneze / CIrcadian regulation of miRNA and clock-controlled genes in tumorigenesis

Balounová, Kateřina January 2016 (has links)
The circadian clock generates circadian rhythms, which participate on regulation of a number of signalling pathways. Disruption of the circadian regulatory mechanism is linked to a development and a progression of certain types of cancer including colorectal tumorigenesis. Progression of tumorigenesis depends on the cell cycle machinery related to cell proliferation and apoptosis. MiRNAs play a role in initiation and progression of tumorigenesis because they interfere in regulatory pathways associated with tumorigenesis. The aim of the thesis was to determinate existence of circadian rhytms in clock controlled genes (Tef, Dbp), miRNAs (miR-1-3p, miR-16-5p, miR-34a-5p, miR-155-5p, miR-192-3p) and genes of the cell cycle machinery (Ccnd1, Ccne1, Ccna1, Ccnb1) and apoptosis (Casp3, Bcl2, Bad). Further, to compare detected circadian rhythms during aging and neoplastic transformation of colon by quantitative RT-PCR. We have observed circadian expression of Tef, Dbp, Ccne1, Ccna1, Ccnb1, Casp3 and Bcl2 in young mice colon, Tef, Dbp, miR-1-3p, Ccne1, Ccna1 in old mice colon and Tef and Dbp in colorectal tumors. In summary, circadian expression of clock controlled genes varied but was maintained in mice colorectal tumors. In aging we demonstrated weakening of circadian rhythms of the genes of the cell...
97

The Circadian Clock Modulates Tumour Progression and Drug Response in Colorectal Cancer Cells through Metabolic Phenotype Rewiring

Fuhr, Luise Anna 16 December 2019 (has links)
Die zirkadiane Uhr ist ein endogenes Zeitmesssystem, das die Anpassung physiologischer Prozesse an die geophysikalische Zeit ermöglicht. Die zirkadiane Uhr besteht aus einem zentralen Schrittmacher und peripheren Uhren in jeder Zelle. Bei Säugern ist eine bestimmte Anzahl von Uhr-Genen in regulatorischen Schleifen miteinander verbunden, wodurch Oszillationen in der Expression der Uhr-Gene sowie in zahlreichen Zielgenen erzeugt werden. Zielgene der zirkadianen Uhr sind unter anderem an zellulären Prozessen beteiligt, die eine Rolle bei der Tumorentstehung und -progression spielen. Funktionsstörungen der zirkadianen Uhr stehen im Zusammenhang mit verschiedenen Krankheitsbildern, unter anderem Krebs. Ziel dieses Projekts war es, die Rolle der zirkadianen Uhr bei der Tumorentstehung und entwicklung zu untersuchen. Der Fokus lag dabei auf tumorspezifischen Stoffwechselwegen. Die Rolle einer deregulierten zirkadianen Uhr wurde in einem in vitro Zellmodel untersucht. Die SW480 Zelllinie wurde aus einem Primärtumor isoliert und die SW620 Zelllinie aus einer Lymphknotenmetastase desselben Patienten. Die untersuchten Zelllinien zeigten deutliche Unterschiede in Bezug auf ihre Uhr Phänotypen mit globalen Konsequenzen auf oszillierende Gene und Stoffwechselwege. Die Runterregulation des Uhrgens Bmal1 führte in SW480 Zellen zu einem metastatischen Phänotyp, der stark dem von SW620 Wildtypzellen ähnelte. Darüber hinaus führte die Runterregulation von Bmal1 zu einer Veränderung des metabolischen Phänotyps und zu einer modifizierten Antwort auf die Behandlung mit einem Glykolyseinhibitor. Die in diesem Projekt erzielten Ergebnisse unterstützen die postulierte Rolle von Bmal1 als Tumorsuppressor und verdeutlichen das reziproke Wechselspiel zwischen der zirkadianen Uhr und dem Stoffwechsel von Krebszellen und zeigen mögliche Auswirkungen einer deregulierten Uhr auf den Zellmetabolismus während der Tumorentwicklung. / The circadian clock is an internal timing system that allows the entrainment of physiological and behavioural processes to the geophysical time with a periodicity of about 24 hours. It consists of a central pacemaker and peripheral clocks in every cell. In mammals, a distinct set of genes is interconnected in regulatory feedback loops, thereby generating oscillations in gene expression in the core-clock itself as well as in many target genes. Clock target genes are, among others, involved in cellular processes connected to tumour development and progression, including metabolic pathways, drug response pathways and the cell cycle. Malfunctions of the circadian clock are associated with different pathologies including cancer. The aim of this project was to study the role of the circadian clock in tumour development and progression with a focus on cancer metabolism and treatment response. The role of a deregulated clock was investigated in SW480 cells derived from a primary tumour and SW620 cells derived from a lymph node metastasis of the same patient. The investigated cell lines showed clear differences with respect to their clock phenotypes with consequences on global oscillating gene expression and alterations in metabolic pathways. A knockdown of the core-clock gene Bmal1 in SW480 cells induced a metastatic phenotype similar to SW620 wild type cells, as indicated by faster proliferation, lower apoptosis rate and a highly energetic metabolic phenotype. Furthermore, Bmal1-KD induced metabolic phenotype rewiring as seen by altered glycolytic activity and mitochondrial respiration and modified treatment response to metabolism-targeting anticancer treatment. The results obtained in this project reinforce the postulated role of Bmal1 as a tumour suppressor and elucidate a reciprocal interplay between the circadian clock and cancer metabolism with implications in metabolic phenotype rewiring during tumour progression.
98

Molecular switches facilitate rhythms in the circadian clock of Neurospora crassa

Upadhyay, Abhishek 22 April 2021 (has links)
Zirkadiane Rhythmen haben sich in allen Lebensbereichen aufgrund täglicher Wechselwirkungen zwischen internen Zeitgebern und Umweltreizen entwickelt. Molekulare Oszillatoren bestehen aus einer Transkriptions-Translations-Rückkopplungsschleife (TTFL), die selbsterregte Rhythmen ermöglicht. Eine verzögerte negative Rückkopplungsschleife ist zentral für dieses genregulatorische Netzwerk. Die Theorie sagt voraus, dass selbsterregte Oszillationen robuste Verzögerungen und Nichtlinearitäten (Ultrasensitivität) erfordern. Wir untersuchen die zirkadianen Rhythmen in dem filamentösen Pilz Neurospora crassa, um die zugrundeliegenden Uhrmechanismen zu studieren. Seine TTFL umfasst den aktivierenden White Collar Complex (WCC) und den hemmenden FFCKomplex, der aus FRQ (Frequency), FRH (FRQ-interacting RNA Helicase) und CK1a (Caseinkinase 1a) besteht. Darüber hinaus gibt es mehrere Phosphorylierungsstellen auf FRQ (~100) und WCC (~ 95). FRQ wird durch CK1a phosphoryliert. Während wir die zeitliche Dynamik dieser Proteine erforschen, untersuchen wir: 1) wie multiple, langsame und zufällige Phosphorylierungen die Verzögerung und Nichtlinearität in der negativen Rückkopplungsschleife bestimmen. 2) wie Grenzzyklus-Oszillationen entstehen und wie molekulare Schalter selbsterregte Rhythmen unterstützen. In der ersten Veröffentlichung simulieren wir FRQ-Multisite-Phosphorylierungen mit Hilfe gewöhnlicher Differentialgleichungen. Das Modell zeigt zeitliche und stationäre Schalter für die freie Kinase und das phosphorylierte Protein. In der zweiten Veröffentlichung haben wir ein mathematisches Modell von 10 Variablen mit 26 Parametern entwickelt. Unser Modell offenbarte einen Wechsel zwischen WC1-induzierter Transkription und FFC-unterstützter Inaktivierung von WC1. Zusammenfassend wurde die Kernuhr von Neurospora untersucht und dabei die Mechanismen, die den molekularen Schaltern zugrunde liegen, aufgedeckt. / Circadian rhythms have evolved across the kingdoms of life due to daily interactions between internal timing and environmental cues. Molecular oscillators consist of a transcription-translation feedback loop (TTFL) allowing self-sustained rhythms. A delayed negative feedback loop is central to this gene regulatory network. Theory predicts that self-sustained oscillations require robust delays and nonlinearities (ultrasensitivity). We study the circadian rhythms in the filamentous fungi Neurospora crassa to investigate the underlying clock mechanisms. Its TTFL includes the activator White Collar Complex (WCC) (heterodimer of WC1 and WC2) and the inhibitory FFC complex, which is made of FRQ (Frequency protein), FRH (Frequency interacting RNA Helicase) and CK1a (Casein kinase 1a). Moreover, there are multiple phosphorylation sites on FRQ (~ 100) and WCC (~ 95). FRQ is phosphorylated by CK1a. While exploring the temporal dynamics of these proteins, we investigate: 1) how multiple, slow and random phosphorylations govern delay and nonlinearity in the negative feedback loop. 2) how limit cycle oscillations arise and how molecular switches support selfsustained rhythms. In the first publication, we simulate FRQ multisite phosphorylations using ordinary differential equations. The model shows temporal and steady state switches for the free kinase and the phosphorylated protein. In the second publication, we developed a mathematical model of 10 variables with 26 parameters consisting of WC1 and FFC elements in nuclear and cytoplasmic compartments. Control and bifurcation analysis showed that the model produces robust oscillations. Our model revealed a switch between WC1-induced transcription and FFC-assisted inactivation of WC1. Using this model, we also studied possible mechanisms of glucose compensation. In summary, the core clock of Neurospora was examined and mechanisms underlying molecular switches were revealed.
99

The cyanobacterial circadian clock / four different phosphorylated forms of KaiC assure the performance of the core oscillator

Brettschneider, Christian 10 October 2011 (has links)
Cyanobakterien zŠhlen zu den Šltesten Lebewesen auf der Erde. Diese Bakterien, auch Blaualgen genannt, trugen wesentlich zur Sauerstoffanreicherung der Erde bei, da sie eine ausgeprŠgte FŠhigkeit zur Photosynthese besitzen. Der produzerte Sauerstoff der Photosynthese hemmt jedoch eine weitere AktivitŠt von Cyanobakterien, die Stickstofffixierung. Um die Hemmung zu vermeiden, werden diese AktivitŠten zeitlich getrennt und optimal dem tŠglichen Hell-Dunkel-Rhythmus angepasst. Ein evolutionŠrer Vorteil wird erzielt, wenn der Organismus diesen Rhythmus antizipiert und sich darauf vorbereitet. Aus diesem Grund haben Cyanobakterien eine innere Uhr entwickelt, deren Rhythmus zirkadian ist, ãzirka diemÒ bedeutet ãungefŠhr ein TagÒ. Cyanobakterien der Spezies Synechococcus elongatus PCC 7942 haben sich als Modellorganismus etabliert, weil in ihnen die ersten bakteriellen zirkadianen Oszillationen auf molekularer Ebene entdeckt worden sind. Ihre zirkadiane Uhr entspringt dreier, auf der DNS beieinanderliegenden, Gene (kaiA, kaiB, kaiC) und ihrer dazugehšrigen Proteine. Phosphorylierte KaiC-Proteine Ÿben eine RŸckkopplung auf die Transkription von kaiB und kaiC aus, wodurch die AktivitŠt des kaiBC-Promotors zirkadian oszilliert. Eines der wichtigsten Experimente der letzten Jahre hat gezeigt, dass dieser Transkriptions-Translations-Oszillator mit einem weiteren Oszillator gekoppelt ist, der nicht von Transkription und Translation abhŠngt. Das Experiment des Kondo Labors rekonstruiert zirkadiane Oszillationen mit nur drei Proteinen KaiA, KaiB, KaiC und ATP. Die Proteine bilden Komplexe verschiedener Stoichiometrie, die durchschnittliche Phosphorylierung des Proteins KaiC zeigt stabile Oszillationen mit einer zirkadianen Periode. Da ein Entfernen von einem der Proteine zum Verlust der Oszillationen fŸhrt, wird dieser Post-Translations-Oszillator auch als Kernoszillator bezeichnet. Der Phosphorylierungszyklus von KaiC wird bestimmt durch fortlaufende Phosphorylierung und Dephosphorylierung an zwei Positionen des Proteins, den AminosŠuren Serin 431 und Threonin 432. Die Phase des Kernoszillators kann an der Verteilung der vier PhosphorylierungszustŠnde (nicht-, serin-, threonin- und doppeltphosphoryliert) abgelesen werden. KaiC wechselwirkt mit KaiA und KaiB, damit verschieden phosphorylierte KaiC synchronisieren und die Uhr Ÿber mehrere Tage konstante Oszillationen zeigt. Die Details dieser Wechselwirkung sind jedoch unbekannt. In dieser Dissertation erstelle ich ein mathematisches Modell des Kernoszillators und simuliere die vorliegenden Experimente des O''Shea Labors. Die Simulation reproduziert den KaiC Phosphorylierungszyklus der Uhr quantitativ. Um die wichtigsten experimentellen Nebenbedingungen zu erfŸllen, muss das theoretische Modell zwei molekulare Eigenschaften von KaiC berŸcksichtigen, wodurch ich wichtige Vorhersagen treffe. Die erste Nebenbedingung ist durch die Robustheit des Systems gegeben. Die KaiC-Phosphorylierung Šndert sich nicht, wenn die Gesamtkonzentrationen der drei Proteine in gleicher Weise variiert werden. Um diese Bedingung zu erfŸllen, muss das Modell zwei verschiedenartige Komplexe von KaiA und KaiC berŸcksichtigen. ZusŠtzlich zu einem KaiAC Komplex, der die Autophosphorylierung von KaiC unterstŸtzt, muss KaiC den grš§ten Teil von KaiA unabhŠngig vom Phosphorylierungszustand sequestrieren. Diese zweite Bindestelle ist meine erste theoretische Vorhersage. Die zweite Nebenbedingung ist durch das Ÿbergangsverhalten nach Hinzugabe von KaiB gegeben. KaiB induziert eine Dephosphorylierung von KaiC, die abhŠngig vom Phosphorylierungsniveau ist. Ein Umschalten zwischen phosphoylierendem und dephosphorylierendem KaiC ist deshalb nur in bestimmten Zeitfenstern mšglich. Um die gemessenen Zeitfenster in der Simulation zu reproduzieren, postuliere ich im Modell, dass sechsfach Serin phosphorylierte KaiBC Komplexe KaiA inaktivieren. Diese hochgradig nichtlineare RŸckkopplung ist meine zweite theoretische Vorhersage. Die beiden Vorhersagen werden anschlie§end experimentell ŸberprŸft. HierfŸr werden aufgereinigte Kai-Proteine mit ATP gemischt. Proben an ausgewŠhlten Zeitpunkten werden mit der nativen Massenspektrometrie untersucht. Diese ist eine neuartige Methode, die es erlaubt, intakte Proteinkomplexe zu untersuchen. Die Spektren bestŠtigen sowohl die zweite KaiAC-Bindestelle als auch die nichtlineare RŸckkopplung. Das mathematische Modell erlaubt es au§erdem, die drei definierenden Prinzipien von zirkadianen Uhren fŸr den Kernoszillator zu erklŠren. Erstens sichern konstante Phosphorylierungs- und Dephosphorylierungsraten von KaiC und ein pŸnktliches Umschalten zwischen beiden Phasen den Freilauf des Oszillators. Dieser Freilauf bewirkt, dass die zirkadiane Uhr auch unter konstanten Bedingungen, vor allem gleichbleibenden LichtverhŠltnissen, weiterlaufen kann. Zweitens muss die Periodendauer des Oszillators zu unterschiedlichen Šu§eren Bedingungen erhalten bleiben (Temperaturkompensation). Diese Bedingung wird realisiert, indem temperaturabhŠngige Dissoziationskonstanten von KaiAC und KaiBC Komplexen Phasenverschiebungen erzeugen, die sich gegenseitig kompensieren. Drittens muss die Phase des Oszillators sich dem Tagesrhythmus anpassen kšnnen. Diese Anpassung folgt aus einem Šu§eren Warm-Kalt-Rhythmus, der die drei temperaturabhŠngigen Phasenverschiebungen nur zum Teil einschaltet und damit die Kompensation verhindert. Eine in silico Evolutionsanalyse zeigt, dass eine zweite phosphorylierbare AminosŠure einen evolutionŠren Vorteil bringt und die Verteilung der PhosphorylierungszustŠnde optimiert ist, um eindeutig die Zeit zu bestimmen. Das Ergebnis weist darauf hin, dass diese Verteilung die physiologisch wichtige Ausgangsgrš§e der Uhr ist und die vier PhosphroylierungszustŠnde die Funktionen der zirkadianen Uhr von Cyanobakterien sichern. / Biological activities in cyanobacteria are coordinated by an internal clock. The rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 originates from the kai gene cluster and its corresponding proteins. In a test tube, the proteins KaiA, KaiB and KaiC form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. The characteristic cycle of individual KaiC proteins is determined by phosphorylation of serine 431 and threonine 432. Differently phosphorylated KaiC synchronize due to an interaction with KaiA and KaiB. However, the details of this interaction are unknown. Here, I quantitatively investigate the experimentally observed characteristic phosphorylation cycle of the KaiABC clockwork using mathematical modeling. I thereby predict the binding properties of KaiA to both KaiC and KaiBC complexes by analyzing the two most important experimental constraints for the model. In order to reproduce the KaiB-induced dephosphorylation of KaiC a highly non-linear feedback loop has been identified. This feedback originates from KaiBC complexes, which are exclusively phosphorylated at the serine residue. The observed robustness of the KaiC phosphorylation level to concerted changes of the total protein concentrations demands an inclusion of two KaiC binding sites to KaiA in the mathematical model. Besides the formation of KaiAC complexes enhancing the autophosphorylation activity of KaiC, the model accounts for a KaiC binding site, which constantly sequestrates a large fraction of free KaiA. These theoretical predictions have been confirmed by the novel method of native mass spectrometry, which was applied in collaboration with the Heck laboratory. The mathematical model elucidates the mechanism by which the circadian clock satisfies three defining principles. First, the highly non-linear feedback loop assures a rapid and punctual switch to dephosphorylation which is essential for a precise period of approximately 24 h (free-running rhythm). Second, the dissociation of the protein complexes increases with increasing temperatures. These perturbations induce opposing phase shifts, which exactly compensate during one period (temperature compensation). Third, a shifted external rhythm of low and high temperature affects only a part of the three compensating phase perturbations, which leads to phase shifts (phase entrainment). An in silico evolution analysis shows that the existing second phosphorylatable residue of KaiC is not necessary for the existence of sustained oscillations but provides an evolutionary benefit. The analysis demonstrates that the distribution of four phosphorylated states of KaiC is optimized in order for the organism to uniquely distinguish between dusk and dawn. Consequently, this thesis emphasizes the importance of the four phosphorylated states of KaiC, which assure the outstanding performance of the core oscillator.
100

Unravelling novel molecular targets for photobiomodulation in human hair follicle towards the development of more effective light-based therapies for hair growth

Buscone, Serena January 2017 (has links)
Light and optical techniques have made a profound impact on modern medicine both in diagnostics and in therapy. Therapeutic action of light is based on photomechanical, photothermal, photochemical and photobiological interactions, depending on the wavelength, power density, exposure time and optical properties of tissue and cells. Last decade experienced a growing rise of commercial devices for management of hair growth, where all of them are based on low levels of light resulting into photobiological, non-thermal interaction of photons with cells, a process that recently has received an official term ‘photobiomodulation’. However, the design and analysis of the reported clinical studies are highly debated in a wider scientific community. The picture is further complicated by a virtual lack of proof about the exact molecular targets that mediate the physiological response of skin and hair follicles (HF) to low levels of light. The goal of this project was to investigate the expression of light-sensitive receptors in the human HF and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Cryptochromes 1 and 2 (CRY1, 2), Opsin 2 and 3 (OPN2 and OPN3), but not other Opsins 1, 4 and 5 was detected in the distinct compartments of skin and anagen HF. Evaluation of the physiological role of detected light-sensitive receptors on hair growth was performed by the modulation of photoreceptors activity in HF ex vivo model. HFs treated with KL001, a stabilizer of CRY1 protein that lengthens the circadian period, delayed HF anagen-catagen transition; while silencing of CRY1 induced premature catagen development accompanied by reduced cell proliferation. Silencing of CRY1 in the HF outer root sheath (ORS) cells in vitro caused downregulation of ii genes involved in the control of proliferation; including the cyclin dependent kinase 6 (CDK6). OPN3 also had a positive effect on metabolic activity and proliferation of the ORS cells in vitro. OPN3 silencing resulted in the altered expression of genes involved in the control of proliferation and apoptosis. Investigated CRY1, OPN2 and 3 greatly absorb in the blue to green-region of the visible spectrum. This led us to investigate the effect of blue light on HF growth. Daily treatment with blue light (453 nm, 3.2 J/cm2, 16 nm full width half maximum) prolonged anagen phase in HF ex vivo that was associated with sustained proliferation. In addition, blue light (3.2 J/cm2) significantly stimulated proliferation of ORS cells in vitro. This effect was abrogated by silencing of OPN3. To summarize, CRY 1, OPN 2 and OPN 3 are expressed in the distinct compartments of the HF, including HF stem cells. Blue light (453 nm) at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. The further research should be conducted to decipher interactions between blue light and the investigated receptors in the HFs. In addition, the beneficial effect of blue light at low radiant exposure on hair growth raises a possibility of increasing therapeutic efficacy when combined with topical chemistry used for management of hair growth.

Page generated in 0.0535 seconds