Spelling suggestions: "subject:"coherent X-Ray diffraction"" "subject:"coherent X-Ray iffraction""
1 |
Diffraction des rayons X cohérents appliquée à la physique du métal / Coherent X-ray diffraction applied to metal physicsDupraz, Maxime 17 November 2015 (has links)
Les propriétés mécaniques des petits objets diffèrent fortement de celles du matériau massif à partir du moment où leurs dimensions deviennent comparables ou inférieures à celles du libre parcours moyen des dislocations (typiquement quelques microns). Par exemple, leur limite élastique augmente quand leur taille diminue. D'autre part les nanostructures sont exposées à de fortes contraintes, telles que celles imposées par les relations épitaxiales avec le substrat.Il existe donc un besoin clair (supporté par des intérêts industriels) d'une meilleure compréhension des phénomènes physiques qui gouvernent les propriétés des matériaux aux échelles nanométriques.Le laboratoire SIMAP est engagé dans ce domaine de recherche et s'y attelle en combinant croissance d'échantillons, méthodes de caractérisation en laboratoire, méthodes numériques et techniques synchrotron.Une des expériences clés développées par notre équipe est la caractérisation in situ des mécanismes de déformation induits par une pointe d'AFM sur une nanostructure par la diffraction des rayons X cohérents. La diffraction des rayons-X cohérents est une technique émergente de synchrotron; qui permet la mesure détaillée de la structure du cristal, y compris le champ de déformation 3D et les défauts potentiels dans des objets micro ou nano structurés. En principe, une image 3D de la structure de l'échantillon peut-être obtenue à partir des données de diffraction cohérente. En pratique, reconstruire une image de l'échantillon peut s'avérer délicat en présence d'un champ de déformation inhomogène et de nombreux défauts cristallins. Le profil du front d'onde qui est généralement assez éloigné d'une onde plane, peut encore ajouter une complication supplémentaire au problème. Dans ces travaux de thèse, il est démontré qu'une image 3D de l'objet peut être reconstruite dans le cas de systèmes modérément complexes. / The mechanical properties of small objects deviate strongly from the bulk behaviour, as soon as their size becomes comparable or smaller to the dislocation mean free path (typically a few microns). For instance, their elastic limit increase when their size is reduced. On a another hand, nanostructures are exposed to strong constraints, such as that imposed by epitaxial relations with a substrate. Altogether, there is a clear need (supported by industrial interests) for a better understanding of the fundamental phenomena that govern the mechanical properties of materials at the nanometre scale. The lab SIMaP is engaged in this research and tackles the topic by combining sample growth, laboratory characterisation methods, numerical models, and synchrotron techniques.One key experiment developed by our team is the in situ characterisation of the deformation mechanism induced by an AFM tip on a nanostructure using Coherent X-ray Diffraction (CXD). CXD is an emerging synchrotron technique that allows the detailed measurement of the crystal structure,including strain field and defects, of micro/nano-objects. In principle, a 3D image of the structure of the sample can be obtained from the CXD data. However, it remains difficult in realistic cases, when the strain is very inhomogeneous and crystal defects numerous. The problem is further complicated by the wavefront of the beam, which is usually far from a plane wave, particularly when the AFM tip shadows part of the incoming beam. In this PHD work, it is demonstrated that a 3D image of the object can be reconstructed in case of moderately complex systems.
|
2 |
Nanofocusing Refractive X-Ray Lenses / Refraktive Nanofokussierende RöntgenlinsenBoye, Pit 04 March 2010 (has links) (PDF)
This thesis is concerned with the optimization and development of the production of nanofocusing refractive x-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution x-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established.
In this work, the theoretical basics of x-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in x-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small x-ray beams well beyond the 100nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented.
Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The first one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wavefield along the focused beam yields findings about the optic used. The collected data give interesting information about the lenses and their aberrations. Comparison of simulated and measured data shows good agreement.
Following this, the fabrication process of diamond lenses is described. Diamond with its extraordinary properties is well-suited as lens material for refractive lenses.
Finally, a concluding overview of the present and future work of nanofocusing lenses is given. / Diese Dissertation beschäftigt sich mit der Entwicklung und Optimierung der Herstellungsprozesse von refraktiven nanofokussierenden Röntgenlinsen. Diese aus Silizium oder Diamant hergestellten Optiken, sind hervorragend für hochauflösende Röntgen\-mikroskopie geeignet. Ziel dieser Arbeit ist es, einen reproduzierbaren Herstellungsprozess zu erarbeiten, der es erlaubt, Siliziumlinsen von hoher Präzision, Qualität und Quantität zu fertigen. Zusätzlich soll ein Prozess für Diamantlinsen entwickelt und etabliert werden.
In der folgenden Arbeit werden die theoretischen Grundlagen von Röntgenstrahlung und deren Wechselwirkung mit Materie beschrieben. Spezielle Aspekte der Synchrotronstrahlung werden hervorgehoben. Wichtig im Zusammenhang mit Röntgenmikroskopie sind die verschieden Optiken. Deren Details, Vor- und Nachteile, insbesondere die der brechenden Linsen, werden genannt. Zur Erzeugung fein gebündelter Röntgenmikrostrahlen im Bereich unter 100nm lateraler Größe benötigt man sehr kurze Brennweiten. Mit brechenden Linsen lässt sich dieses mittels eines kompakten Linsendesigns von vielen hintereinander gestapelten Einzellinsen realisieren. Die so genannten refraktiven nanofokussierenden Linsen (NFLs) besitzen eine parabolische Zylinderform mit lateralen Strukturgrößen im Mikrometerbereich. NFLs werden mittels spezieller Technologien der Mikroprozessierung hergestellt. Diese Mikrostrukturierungsverfahren werden mit ihren jeweiligen Prozessschritten und zugehörenden Technologien vorgestellt. Die Ergebnisse der Optimierung und der endgültige Mikrostrukturierungsprozess für Siliziumlinsen werden dargelegt.
Im Anschluss daran werden zwei Experimente erläutert, die beispielhaft für die Anwendung von NFLs stehen. Ersteres ist ein ortsaufgelöstes Fluoreszenzrasterexperiment einer geologischen Probe und das zweite ein kohärentes Röntgen-Beugungsexperiment (CXDI). CXDI ist in der Lage, aus kohärent aufgenommen Beugungsbildern das beleuchtete Objekt zu rekonstruieren. Kombiniert mit einem rasternden Verfahren, welches Ptychographie genannt wird, ist diese Methode in der Lage, die Beleuchtungsfunktion und das Objekt gleichzeitig zu rekonstruieren. Besonderes die rekonstruierte Beleuchtungsfunktion und die Möglichkeit der computergestützten Propagation des Wellenfeldes entlang des fokussierten Strahls, geben aufschlussreiche Informationen über die verwendete Optik. Neue Erkenntnisse über die Linsen und deren Aberrationen können so gewonnen werden. Vergleiche von simulierten mit gemessenen Daten zeigen gute Übereinstimmung.
Daran anschließend erfolgt die Beschreibung der Entwicklung eines Fabrikationsprozess für Diamantlinsen. Diamant mit seinen außergewöhnlichen Materialeigenschaften ist besonders gut als Linsenmaterial für refraktive Röntgenlinsen geeignet.
Abschliessend wird ein zusammenfassender Überblick über die derzeitigen und die zu erwartenden Entwicklungen bei refraktiven Linsen gegeben.
|
3 |
Manufacturing and characterization of porous calcium carbonate for industrial applications / Fabrication et caractérisation de carbonate de calcium poreux pour application dans l’industrieCherkas, Oxana 28 March 2018 (has links)
L'objectif de cette thèse était de synthétiser des particules de carbonate de calcium (CaCO3) poreuses pour applications industrielles comme charge dans du papier à cigarette, ainsi que pour l'encapsulation d’'arômes. Nous avons cherché à maîtriser les paramètres de synthèse pour obtenir de la vatérite de taille contrôlée. Nous avons étudié sa transformation à haute température et dans l’'eau, car ce polymorphe est métastable. La transition de phase vatérite/calcite a été étudié par DRX et imagerie par diffraction des rayons X cohérents qui permet d’accéder à l’'image en 3D des particules. Nous avons montré que la vatérite de taille 1 à 2µm présentant 20% de porosité peut être synthétisée de façon reproductible. Les particules préparées ont été introduites comme charge dans du papier à cigarette pour évaluer l’'impact de nouvelles formes de CaCO3 sur les propriétés physiques du papier ainsi que sur la réduction des certains composées nocifs contenus dans la fumée. Nous avons développé l’analyse conjointe de l’'absorption et de la diffraction des rayons X pour estimer la charge réelle introduite ainsi que la porosité des papiers. Nous avons démontré que l’'utilisation de CaCO3 sous forme des sphères poreuses permet d’'augmenter la diffusivité du papier et de réduire l’'émission de CO dans la fumée principale.L’encapsulation d'arômes par la co-cristallisation et l'inclusion moléculaire dans le carbonate de calcium a été aussi étudiée. Nous avons montré que CaCO3 peut être utilisé comme matrice d’'imprégnation d'arômes avec une efficacité d’'encapsulation de plus que 55%. Les particules aromatiques ont été après ajoutées dans le papier pour évaluation sensorielle. / The aim of this thesis was to synthesize porous calcium carbonate (CaCO3) particles for industrial applications as fillers for cigarette paper as well as a matrix for flavour encapsulation. We show that we can control the fabrication of porous particles of vaterite with a given size by tuning the parameters of synthesis. After the synthesis, the stability of vaterite in aqueous solution and at high temperature was studied. The phase transition was analyzed by XRD and coherent X-ray diffraction imaging that allows us to have a 3D-image of the particles. Finally, particles of 1-2 μm size with 20% porosity were reproducibly synthesized. Prepared vaterite particles were introduced as a filler in cigarette paper, with the goal to evaluate their impact on the physical properties of papers as well as on the reduction of some harmful compounds during the smoking. It was demonstrated that the use of vaterite can increase the diffusivity of paper and reduce the CO emission in the mainstream smoke. We also show that the use of X-ray absorption and diffraction can provide an estimation of the filler fraction and porosity of the papers in a non-destructive way. The encapsulation of flavours in CaCO3 particles was performed by co-crystallization and molecular inclusion. It was demonstrated that CaCO3 can be used as a matrix for flavour impregnation with more than 55% of encapsulation efficiency. Flavoured particles was added in paper for sensory evaluation. We shown that it is possible, to flavour the final product with flavoured calcium carbonate particles.
|
4 |
Etude des inhomogénéités de déformation dans les films minces polycristallins par diffraction X cohérente / Strain heterogenities in polycristalline thin films as probed by X-ray coherent diffractionVaxelaire, Nicolas 02 May 2011 (has links)
Les comportements mécaniques des films minces polycristallins sont encore mal compris à l'échelle sub-micronique. En particulier des hétérogénéités locales de déformation importantes sont attendues, mais elles restent difficile à quantifier expérimentalement. Les nouvelles possibilités offertes par les micro-faisceaux synchrotron de rayons X ont donc été utilisées dans ce travail pour éclairer cette problématique.Une réflexion de Bragg provenant d'un grain unique sub-micronique a été acquise avec une très bonne résolution dans l'espace réciproque en trois dimensions lors d'un cycle thermique. Les propriétés de cohérence du faisceau ont été utilisées pour reconstruire à trois dimensions une composante du champ de déplacement intra-grain avec une résolution d'une vingtaine de nanomètres dans les trois directions. Cette technique est basée sur des algorithmes de reconstruction de phase qui néanmoins connaissent des stagnations dans le cas des échantillons fortement déformés. Une méthodologie basée sur la connaissance de la forme du grain a donc été développée pour contourner ces difficultés. Des analyses complémentaires de diffraction X de laboratoire et de microdiffraction monochromatique ont également mis en évidence des hétérogénéités importantes de déformation entre les différents grains. / Strain heterogeneities in polycrystalline thin films are of great interest in technology because many fabrication and reliability problems are stress related. Nevertheless measuring local strains in sub-micron grains remains a real experimental challenge. This thesis is focused on recent and promising results in the field of strain measurements in small dimensions via X-ray micro-diffraction. A 3D mapping of 111 Bragg reflection from a Au sub-micron single grain was measured during a thermal cycle. Coherent properties of the beam has been used to retrieve a component of the displacement field in 3D from this single grain with a resolution around 17x17x22 nm via phase retrieval procedures. However algorithms do not always converge when the grain is highly strained. Thus alternative techniques are proposed and tested to overcome this stagnation. Complementary results from laboratory diffraction and micro 3D X-Ray Diffraction have also been analysed to compare strain at different scales. Strong strain heterogeneities has been evidenced between grains.
|
5 |
Nanofocusing Refractive X-Ray LensesBoye, Pit 05 February 2010 (has links)
This thesis is concerned with the optimization and development of the production of nanofocusing refractive x-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution x-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established.
In this work, the theoretical basics of x-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in x-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small x-ray beams well beyond the 100nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented.
Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The first one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wavefield along the focused beam yields findings about the optic used. The collected data give interesting information about the lenses and their aberrations. Comparison of simulated and measured data shows good agreement.
Following this, the fabrication process of diamond lenses is described. Diamond with its extraordinary properties is well-suited as lens material for refractive lenses.
Finally, a concluding overview of the present and future work of nanofocusing lenses is given. / Diese Dissertation beschäftigt sich mit der Entwicklung und Optimierung der Herstellungsprozesse von refraktiven nanofokussierenden Röntgenlinsen. Diese aus Silizium oder Diamant hergestellten Optiken, sind hervorragend für hochauflösende Röntgen\-mikroskopie geeignet. Ziel dieser Arbeit ist es, einen reproduzierbaren Herstellungsprozess zu erarbeiten, der es erlaubt, Siliziumlinsen von hoher Präzision, Qualität und Quantität zu fertigen. Zusätzlich soll ein Prozess für Diamantlinsen entwickelt und etabliert werden.
In der folgenden Arbeit werden die theoretischen Grundlagen von Röntgenstrahlung und deren Wechselwirkung mit Materie beschrieben. Spezielle Aspekte der Synchrotronstrahlung werden hervorgehoben. Wichtig im Zusammenhang mit Röntgenmikroskopie sind die verschieden Optiken. Deren Details, Vor- und Nachteile, insbesondere die der brechenden Linsen, werden genannt. Zur Erzeugung fein gebündelter Röntgenmikrostrahlen im Bereich unter 100nm lateraler Größe benötigt man sehr kurze Brennweiten. Mit brechenden Linsen lässt sich dieses mittels eines kompakten Linsendesigns von vielen hintereinander gestapelten Einzellinsen realisieren. Die so genannten refraktiven nanofokussierenden Linsen (NFLs) besitzen eine parabolische Zylinderform mit lateralen Strukturgrößen im Mikrometerbereich. NFLs werden mittels spezieller Technologien der Mikroprozessierung hergestellt. Diese Mikrostrukturierungsverfahren werden mit ihren jeweiligen Prozessschritten und zugehörenden Technologien vorgestellt. Die Ergebnisse der Optimierung und der endgültige Mikrostrukturierungsprozess für Siliziumlinsen werden dargelegt.
Im Anschluss daran werden zwei Experimente erläutert, die beispielhaft für die Anwendung von NFLs stehen. Ersteres ist ein ortsaufgelöstes Fluoreszenzrasterexperiment einer geologischen Probe und das zweite ein kohärentes Röntgen-Beugungsexperiment (CXDI). CXDI ist in der Lage, aus kohärent aufgenommen Beugungsbildern das beleuchtete Objekt zu rekonstruieren. Kombiniert mit einem rasternden Verfahren, welches Ptychographie genannt wird, ist diese Methode in der Lage, die Beleuchtungsfunktion und das Objekt gleichzeitig zu rekonstruieren. Besonderes die rekonstruierte Beleuchtungsfunktion und die Möglichkeit der computergestützten Propagation des Wellenfeldes entlang des fokussierten Strahls, geben aufschlussreiche Informationen über die verwendete Optik. Neue Erkenntnisse über die Linsen und deren Aberrationen können so gewonnen werden. Vergleiche von simulierten mit gemessenen Daten zeigen gute Übereinstimmung.
Daran anschließend erfolgt die Beschreibung der Entwicklung eines Fabrikationsprozess für Diamantlinsen. Diamant mit seinen außergewöhnlichen Materialeigenschaften ist besonders gut als Linsenmaterial für refraktive Röntgenlinsen geeignet.
Abschliessend wird ein zusammenfassender Überblick über die derzeitigen und die zu erwartenden Entwicklungen bei refraktiven Linsen gegeben.
|
6 |
Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses / Rastersondenmikroskopie mit harter RöntgenstrahlungPatommel, Jens 08 March 2011 (has links) (PDF)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range.
During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy.
This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III. / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern.
Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen.
Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.
|
7 |
Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive LensesPatommel, Jens 12 November 2010 (has links)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range.
During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy.
This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III.:1 Introduction ............................................... 1
2 Basic Properties of Hard X Rays ............................ 3
2.1 Free Propagation of X Rays ............................... 3
2.1.1 The Helmholtz Equation ................................. 4
2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6
2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8
2.1.4 Fresnel-Kirchhoff Propagation .......................... 11
2.2 Interaction of X Rays with Matter ........................ 13
2.2.1 Complex Index of Refraction ............................ 13
2.2.2 Attenuation ............................................ 15
2.2.3 Refraction ............................................. 18
3 The X-Ray Source ........................................... 21
3.1 Requirements ............................................. 21
3.1.1 Energy and Energy Bandwidth ............................ 21
3.1.2 Source Size and Divergence ............................. 23
3.1.3 Brilliance ............................................. 23
3.2 Synchrotron Radiation .................................... 24
3.3 Layout of a Synchrotron Radiation Facility ............... 27
3.4 Liénard-Wiechert Fields .................................. 29
3.5 Dipole Magnets ........................................... 31
3.6 Insertion Devices ........................................ 36
3.6.1 Multipole Wigglers ..................................... 36
3.6.2 Undulators ............................................. 37
4 X-Ray Optics ............................................... 39
4.1 Refractive X-Ray Lenses .................................. 40
4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41
4.3 Nanofocusing Lenses (NFLs) ............................... 43
4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45
4.5 Focal Distance ........................................... 46
4.6 Transverse Focus Size .................................... 50
4.7 Beam Caustic ............................................. 52
4.8 Depth of Focus ........................................... 53
4.9 Beam Divergence .......................................... 53
4.10 Chromaticity ............................................ 54
4.11 Transmission and Cross Section .......................... 55
4.12 Transverse Coherence .................................... 56
4.12.1 Mutual Intensity Function ............................. 57
4.12.2 Free Propagation of Mutual Intensity .................. 57
4.12.3 Mutual Intensity In The Focal Plane ................... 58
4.12.4 Diffraction Limited Focus ............................. 59
4.13 Coherent Flux ........................................... 60
4.14 Two-Stage Focusing ...................................... 64
4.14.1 The Prefocusing Parameter ............................. 65
4.14.2 Required Refractive Power ............................. 67
4.14.3 Flux Considerations ................................... 70
4.14.4 Astigmatic Prefocusing ................................ 75
5 Nanoprobe Setup ............................................ 77
5.1 X-Ray Optics ............................................. 78
5.1.1 Nanofocusing Lenses .................................... 79
5.1.2 Entry Slits ............................................ 82
5.1.3 Pinhole ................................................ 82
5.1.4 Additional Shielding ................................... 83
5.1.5 Vacuum and Helium Tubes ................................ 83
5.2 Sample Stages ............................................ 84
5.2.1 High Resolution Scanner ................................ 84
5.2.2 High Precision Rotational Stage ........................ 85
5.2.3 Coarse Linear Stages ................................... 85
5.2.4 Goniometer Head ........................................ 85
5.3 Detectors ................................................ 86
5.3.1 High Resolution X-Ray Camera ........................... 86
5.3.2 Diffraction Cameras .................................... 89
5.3.3 Energy Dispersive Detectors ............................ 91
5.3.4 Photodiodes ............................................ 93
5.4 Control Software ......................................... 94
6 Experiments ................................................ 97
6.1 Lens Alignment ........................................... 97
6.2 Focus Characterization ................................... 99
6.2.1 Knife-Edge Scans ....................................... 100
6.2.2 Far-Field Measurements ................................. 102
6.2.3 X-Ray Ptychography ..................................... 103
6.3 Fluorescence Spectroscopy ................................ 105
6.3.1 Fluorescence Element Mapping ........................... 107
6.3.2 Fluorescence Tomography ................................ 110
6.4 Diffraction Experiments .................................. 111
6.4.1 Microdiffraction on Phase Change Media ................. 112
6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113
6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115
6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117
7 Conclusion and Outlook ..................................... 121
Bibliography ................................................. 125
List of Figures .............................................. 139
List of Publications ......................................... 141
Danksagung ................................................... 145
Curriculum Vitae ............................................. 149
Erklärung .................................................... 151 / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern.
Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen.
Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.:1 Introduction ............................................... 1
2 Basic Properties of Hard X Rays ............................ 3
2.1 Free Propagation of X Rays ............................... 3
2.1.1 The Helmholtz Equation ................................. 4
2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6
2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8
2.1.4 Fresnel-Kirchhoff Propagation .......................... 11
2.2 Interaction of X Rays with Matter ........................ 13
2.2.1 Complex Index of Refraction ............................ 13
2.2.2 Attenuation ............................................ 15
2.2.3 Refraction ............................................. 18
3 The X-Ray Source ........................................... 21
3.1 Requirements ............................................. 21
3.1.1 Energy and Energy Bandwidth ............................ 21
3.1.2 Source Size and Divergence ............................. 23
3.1.3 Brilliance ............................................. 23
3.2 Synchrotron Radiation .................................... 24
3.3 Layout of a Synchrotron Radiation Facility ............... 27
3.4 Liénard-Wiechert Fields .................................. 29
3.5 Dipole Magnets ........................................... 31
3.6 Insertion Devices ........................................ 36
3.6.1 Multipole Wigglers ..................................... 36
3.6.2 Undulators ............................................. 37
4 X-Ray Optics ............................................... 39
4.1 Refractive X-Ray Lenses .................................. 40
4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41
4.3 Nanofocusing Lenses (NFLs) ............................... 43
4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45
4.5 Focal Distance ........................................... 46
4.6 Transverse Focus Size .................................... 50
4.7 Beam Caustic ............................................. 52
4.8 Depth of Focus ........................................... 53
4.9 Beam Divergence .......................................... 53
4.10 Chromaticity ............................................ 54
4.11 Transmission and Cross Section .......................... 55
4.12 Transverse Coherence .................................... 56
4.12.1 Mutual Intensity Function ............................. 57
4.12.2 Free Propagation of Mutual Intensity .................. 57
4.12.3 Mutual Intensity In The Focal Plane ................... 58
4.12.4 Diffraction Limited Focus ............................. 59
4.13 Coherent Flux ........................................... 60
4.14 Two-Stage Focusing ...................................... 64
4.14.1 The Prefocusing Parameter ............................. 65
4.14.2 Required Refractive Power ............................. 67
4.14.3 Flux Considerations ................................... 70
4.14.4 Astigmatic Prefocusing ................................ 75
5 Nanoprobe Setup ............................................ 77
5.1 X-Ray Optics ............................................. 78
5.1.1 Nanofocusing Lenses .................................... 79
5.1.2 Entry Slits ............................................ 82
5.1.3 Pinhole ................................................ 82
5.1.4 Additional Shielding ................................... 83
5.1.5 Vacuum and Helium Tubes ................................ 83
5.2 Sample Stages ............................................ 84
5.2.1 High Resolution Scanner ................................ 84
5.2.2 High Precision Rotational Stage ........................ 85
5.2.3 Coarse Linear Stages ................................... 85
5.2.4 Goniometer Head ........................................ 85
5.3 Detectors ................................................ 86
5.3.1 High Resolution X-Ray Camera ........................... 86
5.3.2 Diffraction Cameras .................................... 89
5.3.3 Energy Dispersive Detectors ............................ 91
5.3.4 Photodiodes ............................................ 93
5.4 Control Software ......................................... 94
6 Experiments ................................................ 97
6.1 Lens Alignment ........................................... 97
6.2 Focus Characterization ................................... 99
6.2.1 Knife-Edge Scans ....................................... 100
6.2.2 Far-Field Measurements ................................. 102
6.2.3 X-Ray Ptychography ..................................... 103
6.3 Fluorescence Spectroscopy ................................ 105
6.3.1 Fluorescence Element Mapping ........................... 107
6.3.2 Fluorescence Tomography ................................ 110
6.4 Diffraction Experiments .................................. 111
6.4.1 Microdiffraction on Phase Change Media ................. 112
6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113
6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115
6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117
7 Conclusion and Outlook ..................................... 121
Bibliography ................................................. 125
List of Figures .............................................. 139
List of Publications ......................................... 141
Danksagung ................................................... 145
Curriculum Vitae ............................................. 149
Erklärung .................................................... 151
|
Page generated in 0.1145 seconds