Spelling suggestions: "subject:"compact operator"" "subject:"kompact operator""
1 |
Disjointness preserving operators on function spacesLin, Ying-Fen 27 January 2005 (has links)
Let $T$ be a bounded disjointness preserving linear operator from $C_0(X)$ into $C_0(Y)$, where $X$ and $Y$ are locally compact Hausdorff spaces. We give several equivalent conditions for $T$ to be compact; they are: $T$ is weakly compact; $T$ is completely continuous; $T= sum_n delta_{x_n} otimes h_n$ for a sequence of distinct points ${x_n}_n$ in $X$ and a norm null mutually
disjoint sequence ${h_n}_n$ in $C_0(Y)$. The structure of a
graph with countably many vertices associated to such a compact operator $T$ gives rise to a new complete description of the spectrum of $T$. In particular, we show that a nonzero complex number $la$ is an eigenvalue of $T$ if and only if $lambda^k= h_1(x_k) h_2(x_1) cdots h_k(x_{k-1})$ for some positive integer $k$.
We also give a decomposition of compact disjointness preserving operators $T$ from $C_0(X,E)$ into $C_0(Y,F)$, where $X$ and $Y$ are locally compact Hausdorff spaces, $E$ and $F$ are Banach spaces. That is, $T= sum_n de_{x_n} otimes h_n$ for a sequence of distinct points ${x_n}_n$ in $X$ and a norm null mutually disjoint sequence ${h_n}_n$, where $h_n: Y o B(E,F)$ is continuous and vanishes at infinity in the uniform operator topology and $h_n(y)$ is compact for each $y$ in $Y$. For completely continuous disjointness preserving linear operators, we get a similar decomposition. More precisely, completely continuous
disjointness preserving operators $T$ have a countable sum
decomposition of completely continuous atoms $de_{x_n} otimes h_n$, where $h_n: Y o B(E,F)$ is continuous, vanishes at infinity in the strong operator topology and $h_n$ is uniformly completely continuous. In case of weakly compact disjointness preserving linear operators, $T$ have a countable sum decomposition of weakly compact atoms whenever the Banach space $E$ is separable. A counterexample is given whenever $E$ in nonseparable.
|
2 |
On the Numerical Range of Compact OperatorsDabkowski, Montserrat 01 June 2022 (has links) (PDF)
One of the many characterizations of compact operators is as linear operators whichcan be closely approximated by bounded finite rank operators (theorem 25). It iswell known that the numerical range of a bounded operator on a finite dimensionalHilbert space is closed (theorem 54). In this thesis we explore how close to beingclosed the numerical range of a compact operator is (theorem 56). We also describehow limited the difference between the closure and the numerical range of a compactoperator can be (theorem 58). To aid in our exploration of the numerical range ofa compact operator we spend some time examining its spectra, as the spectrum of abounded operator is closely tied to its numerical range (theorem 45). Throughout,we use the forward shift operator and the diagonal operator (example 1) to illustratethe exceptional behavior of compact operators.
|
3 |
Topologické a deskriptivní metody v teorii funkčních a Banachový prostorů / Topological and descriptive methods in the theory of function and Banach spacesKačena, Miroslav January 2011 (has links)
The thesis consists of four research papers. The first three deal with the Choquet theory of function spaces. In Chapter 1, a theory on products and projective limits of function spaces is developed. It is shown that the product of simplicial spaces is a simplicial space. The stability of the space of maximal measures under continuous affine mappings is studied in Chapter 2. The third chapter employs results from the previous chapters to construct an example of a function space where the abstract Dirichlet problem is not solvable for any class of Baire-n functions with $n\in N$. It is shown that such an example cannot be constructed via the space of harmonic functions. In the final chapter, the recently introduced class of sequentially Right Banach spaces is being investigated. Connections to other isomorphic properties of Banach spaces are established and several characterizations are given.
|
4 |
Versões das propriedades A e B de Lindenstrauss para operadores compactosBrito, Leonardo da Silva, 92-99307-3945 23 March 2018 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-16T14:49:10Z
No. of bitstreams: 2
Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-16T14:49:24Z (GMT) No. of bitstreams: 2
Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-16T14:49:24Z (GMT). No. of bitstreams: 2
Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-23 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / The main goal in this dissertation is to study the versions for compact operators of
Lindenstrauss property A and B. In the course of our work, we present results concerning
weak-star topology, Schauder basis, approximation properties, Banach spaces that locally
depend upon finitely many coordinates, strictly convex spaces, uniformly convex spaces,
among others. In 2014 Miguel Martín answered positively the following question: Are
there compact operators between Banach spaces that can not be approximated by compact
operators that attain their norms? In order to do that, he introduced two properties called
properties Ak and Bk or versions for compact operators of Lindenstrauss properties. In
this dissertation we present some results regarding Lindenstrauss properties A and B, and
we also provide several results regarding properties Ak and Bk. / O objetivo desta dissertação é estudar as versões das propriedades A e B de Lindenstrauss
para operadores compactos. No decorrer do nosso trabalho, apresentamos resultados sobre
a topologia fraca-estrela, bases de Schauder, propriedades da aproximação, espaços de Banach
cuja norma depende localmente de finitas coordenados, espaço estritamente convexo,
espaço uniformemente convexo, dentre outros. Em 2014 Miguel Martín publicou um artigo
respondendo de maneira positiva a seguinte pergunta: Existem operadores compactos
entre espaços de Banach que não podem ser aproximados por operadores compactos que
atingem a norma? Ao fazer isso, introduziu, no mesmo trabalho, duas propriedades chamadas
de propriedades Ak e Bk ou versões para operadores compactos das propriedades
de Lindenstrauss. Nesta dissertação, são apresentados de maneira detalhada resultados
relacionados às propriedades A e B de Lindenstrauss e propriedades Ak e Bk.
|
5 |
The essential norm of multiplication operators on Lp(µ)Voigt, Jürgen 19 April 2024 (has links)
We show that the formula for the essential norm of a multiplication operator on L p, for 1 < p < ∞, also holds for p = 1. We also provide a proof for the formula which works simultaneously for all p ∈ [1,∞).
|
6 |
非線性微分方程的數值解余世偉, YU, SHI-WEI Unknown Date (has links)
在本篇論文中,我們主要是探討有邊界值的二次微分一積分方程式的解的存在性及唯
一性的問題。在LAKSHRNIKANTHAN 和KHAVANIN的“二次微分一積分方程式及單調法“
(THE METHOD OF MIXED MONOTONY AND SECOND ORDER INTEGRO-DIFFERENTIAL SYSTE
M, ANAL.28(1988),199-206)中,他們利用到混合單調法的技巧:
將不具有任何單調性質的函數擴充到一混合單調函數(亦即此函數對某些變數是單調
非遞減,而對另外某些變數是單調非遞增),然後利用其上解及下解(UPPER, LOWER
SOLUTION)來生成兩個單調數列,而此二單調數列具有同時均勻的收斂到原方程式的
解的性質,而完成其存在性,其唯一性則是利用最大原則法(MAXIMUM PRINCIPLE )
,而完成了他們對二次微分一積分方程式的解的探討。
在上述中,我們認為作者給予擴充函數的性質太強了,故我們對條件放寬,允許它不
是混合單調函數,而另外給了較弱的限制條件,此時我們與證明方法有了改變,我們
用到了SCHAUDER的定點定理(FIXED POINT THEOREM ):若T是一區間映到相同區間
的緊緻運算子(COMPACT OPERATOR),則存在一點X使得T(X)=X。於是解便可
得到,其唯一性亦是利用最大原則法得到。
最後,我們必須確定我們所使用的擴充函數確實存在,所以我們給了一個關於擴充函
數存在的充分條件來保證它的確存在,而不只是一種理想函數而已。到此,再加上一
些數值結果,我們就完成了整篇的論文。
|
7 |
Charakterisierungen schwacher Kompaktheit in Dualräumen / Characterizations of weak compactness in dual spacesMöller, Christian 15 September 2003 (has links)
In this thesis we present an extensive characterization of weak* sequentially precompact subsets of the dual of a sequentially order complete M-space with an order unit. This central part of the thesis generalizes results due to H.H. Schaefer and X.D. Zhang showing that small weak* compact subsets of the dual of a space of bounded measurable real-valued functions (continuous real-valued functions on a compact quasi-Stonian space) are weakly compact. Moreover, while the proofs of Schaefer and Zhang use measure theoretical arguments, the arguments presented here are purely elementary and are based on the well-known result, that the space l1 has the Schur property. Finally some applications are given. For example, we investigate compact or sequentially precompact subsets, which consist of order-weakly compact operators, in the space of continuous linear operators defined on a sequentially order complete Riesz space with values in a Banach space provided with the strong operator topology: as an immediate consequence of the results, we can easily deduce extended versions of the Vitali-Hahn-Saks theorem for vector measures. For this we need a generalization of the Yosida-Hewitt decomposition theorem, which is proved here with other techniques like the factorization of an order-weakly compact operator through a Banach lattice with order continuous norm.
|
8 |
Composition Operators on Classes of Holomorphic Functions on Banach SpacesSantacreu Ferra, Daniel 05 September 2022 (has links)
[ES] El objetivo principal de esta tesis es el estudio de diferentes propiedades (principalmente ergódicas) de operadores de composición y de composición ponderados actuando en espacios de funciones holomorfas definidas en un espacio de Banach de
dimensión infinita.
Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación
φ : U → U, la acción f 7 → Cφ ( f ) = f ◦ φ define un operador, llamado operador de
composición (y a φ se le llama símbolo del operador). Consideramos este operador
actuando en diferentes espacios de funciones. La filosofía general es intentar caracterizar en cada caso las propiedades de nuestro interés en función de condiciones en φ.
También, dada ψ: U → C, el operador de multiplicación se define como Mψ( f ) = ψ · f
y (con φ como antes), el operador de composición ponderado como Cψ,φ ( f ) = ψ·( f ◦φ)
(en este caso ψ se conoce como el peso o multiplicador del operador). Nuevamente, la
idea es describir propiedades de estos operadores en términos de condiciones sobre φ
y/o ψ. Claramente Cψ,φ = Mψ ◦ Cφ , y tomando φ = idU (la identidad en U) o ψ ≡ 1
(la función constante 1) recuperamos Mψ y Cφ .
Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas
f : B → C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas
en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas
en B. Vamos a considerar operadores de composición y de composición ponderados
definidos en cada uno de estos espacios (tomando entonces U = B en la definición).
También consideramos operadores de composición definidos en el espacio vectorial
de polinomios continuos y m-homogéneos (denotado P (m X )). En este caso tomamos
U = X .
La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resultados básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos
con operadores de composición ergódicos en media y acotados en potencias definidos en P (m X ). En el Capítulo 3 estudiamos operadores de composición ergódicos
en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando también el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4
estudiamos la compacidad de operadores de composición ponderados definidos en
H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (débil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación
en potencias y ergodicidad en media de operadores de composición ponderados actuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media
del operador de multiplicación. / [CA] L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment
ergòdiques) d’operadors de composició i de composició ponderats actuant en espais
de funcions holomorfes en un espai de Banach de dimensió infinita.
Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació φ : U →
U, l’acció f 7 → Cφ ( f ) = f ◦ φ defineix un operador, anomenat operador de compo-
sició (i φ s’anomena símbol de l’operador). Considerem aquest operador actuant en
diferents espais de funcions. La filosofia general és intentar caracteritzar en cada
cas les propietats del nostre interés en funció de condicions en φ. També, donada
ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) = ψ · f i (amb φ com
abans), l’operador de composició ponderat com a Cψ,φ ( f ) = ψ · ( f ◦ φ) (en aquest cas
ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure
propietats d’aquests operadors en termes de condicions sobre φ i/o ψ. Clarament
Cψ,φ = Mψ ◦ Cφ , i prenent φ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1)
recuperem Mψ i Cφ .
Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B → C
es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat
i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope-
radors de composició i de composició ponderats definits en cadascun d’aquests espais
(prenent llavors U = B en la definició). També considerem operadors de composició
definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (m X )).
En aquest cas prenem U = X .
La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats
bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope-
radors de composició ergòdics en mitjana i fitats en potències definits en P (m X ). En el
Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències
definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola
d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi-
ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel
i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre
la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats
actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en
mitjana de l’operador de multiplicació. / [EN] The main aim in this thesis is to study different properties (mostly ergodic) of compo-
sition and weighted composition operators acting on spaces of holomorphic functions
defined on an infinite dimensional complex Banach space.
Let X be a Banach space and U some open subset. Given a mapping φ : U → U
the action f 7 → Cφ ( f ) = f ◦ φ defines an operator, called composition operator (and
φ is called the symbol of the operator). We consider this operator acting on different
spaces of functions. The general philosophy is to try to characterise in each case the
properties of our interest in terms of conditions on φ. Also, given ψ: U → C the
multiplication operator is defined as Mψ( f ) = ψ· f and (with φ as above), the weighted
composition operator as Cψ,φ ( f ) = ψ · ( f ◦ φ) (here ψ is called the weight or multiplier
of the operator). Again, the idea is to describe properties of these operators in terms
of conditions on ψ and/or φ. Clearly Cψ,φ = Mψ ◦ Cφ , and taking φ = idU (the identity
on U) or ψ ≡ 1 (the constant function 1) we recover Mψ and Cφ .
We denote the open unit ball of X by B. The space of all holomorphic functions
f : B → C is denoted by H(B). We write Hb(B) for the space holomorphic functions of
bounded type on B, and H∞(B) for the space of bounded holomorphic functions on
B. We are going to consider composition and weighted composition operators defined
on each one of these spaces (taking then U = B in the definition). We also consider
composition operators defined on the vector space of all continuous m-homogeneous
polynomials on X (which is denoted by P (m X )). In this case we take U = X .
The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba-
sic results, needed to make the text self-contained. In Chapter 2 we deal with mean
ergodic and power bounded composition operators defined on P (m X ). In Chapter 3
we study mean ergodic and power bounded composition operators defined on H(B),
Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert
space. In Chapter 4 we study compactness of weighted composition operators defined
on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness
on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded-
ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B)
and H∞(B), as well as about compactness and mean ergodicity of the multiplication
operator. / Santacreu Ferra, D. (2022). Composition Operators on Classes of Holomorphic Functions on Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185235
|
9 |
Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with DelayBiglands, Adrian Unknown Date
No description available.
|
10 |
Weighted Composition Operators on Spaces of Analytic FunctionsGomez Orts, Esther 30 May 2022 (has links)
[ES] El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composición ponderados en diferentes espacios ponderados de funciones analíticas.
Dado un peso v estrictamente positivo y continuo en el disco complejo, consideramos unos ciertos espacios de Banach de funciones analíticas en el discto complejo. Estos espacios son los conjuntos de las funciones holomorfas en el disco f tales que el supremo, de los z en el disco, de v(z)|f(z)| es finito. También consideramos los espacios de las funciones holorfas f que cumplen que v(z)|f(z)| tiende a cero cuando |z| se acerca a 1.
Dada una sucesión de pesos, trabajamos con los espacios formados por las intersecciones y uniones de los espacios de Banach ponderados determinados por los pesos de la sucesión. El espacio resultante de la intersección es un espacio de Fréchet y es el límite proyectivo de los espacios de Banach citados. Este espacio está provisto de la topología del límite proyectivo. El espacio resultante de la unión es un espacio LB (límite de Banach), y es el límite inductivo de los espacios citados, con la topología del límite inductivo. Cuando la sucesión de pesos viene determinada por los pesos (1-|z|)^n con n natural, el espacio resultante de la unión se llama espacio de Korenblum, que también es un límite inductivo.
En la tesis estudiamos la continuidad, compacidad e invertibilidad de los operadores de composición ponderados en los espacios descritos arriba. También estudiamos algunas propiedades de su espectro y de su espectro puntual. / [CA] L'objectiu d'aquesta tesi és estudiar distintes propietats dels operadors de composició ponderats en diferents espais ponderats de funcions analítiques. Donat un pes v estrictament positiu i continu en el disc del pla complex, considerem uns certs espais de Banach de funcions analítiques en el disc complex. Aquests espais són els conjunts de les funcions holomorfes en el disc f tals que el suprem, dels z en el disc, de v(z)|f(z)| és finit. També considerem els espai de les funcions que verifiquen que v(z)|f(z)| tendeix a zero quan |z| s'apropa a 1. Donada una successió de pesos, treballem amb els espais formats per les interseccions i unions dels espais de Banach ponderats determinats pels pesos de la successió. L'espai resultant de la intersecció és un espai de Fréchet, i és el límit projectiu dels espais de Banach esmentats. Aquest espai està prove ̈ıt de la topologia del l ́ımit projectiu. L'espai resultant de la unió és un espai LB (límit de Banach), i és el límit inductiu dels espais esmentats, amb la topologia del límit inductiu. Quan la successió de pesos està determinada pels pesos (1-|z|)^n amb n natural, l'espai resultant de la unió s'anomena espai de Korenblum, que també és un límit inductiu. En al tesi estudiem la continu ̈ıtat, , compacitat i invertibilitat de l'operador de composició ponderat en els espais descrits abans. També estudiem algunes propietats del seu espectre i del seu espectre puntual. / [EN] The aim of this thesis is to study some properties of the weighted composition operators on different weighted spaces of analytic functions.
Given a weight v strictly positive and continuous on the complex disc, we consider certain Banach spaces of analytic functions on the complex disc. These spaces are the sets of the holomorphic functions on the disc f such that the supremum, when z is in the disc, of v(z)|f(z)| is finite. We also consider the spaces of the holomorphic functions f such that v(z)|f(z)| tends to 0 whenever |z| goes to 1.
Given a sequence of weights, we work with the spaces described by the intersection or union of the weighted Banach spaces determined by the weights in the sequence. The space of the intersection is a Fréchet space and it is the projective limit of the mentioned Banach spaces. This space is endowed with the projective limit topology. The space given by the union is an LB-space (limit of Banach), and it is the inductive limit of the mentioned spaces, with the inductive limit topology. When the sequence is given by the weights (1-|z|)^n with n natural, the space of the union is called Korenblum space, which is also an inductive limit.
In the thesis we study the continuity, compactness and invertibility of the weighted composition operators on the spaces described above. We also study some properties of the spectrum and point spectrum. / Gomez Orts, E. (2022). Weighted Composition Operators on Spaces of Analytic Functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183028
|
Page generated in 0.0485 seconds