• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 74
  • 23
  • 3
  • 1
  • Tagged with
  • 378
  • 203
  • 172
  • 107
  • 102
  • 74
  • 62
  • 46
  • 43
  • 38
  • 38
  • 37
  • 35
  • 35
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Etude des propriétés électro-thermo-mécaniques de nanofils en silicium pour leur intégration dans les microsystèmes / Study of electro-thermo-mechanical properties of silicon nanowires for MEMS applications

Allain, Pierre 16 October 2012 (has links)
Les propriétés électro-thermo-mécaniques remarquables qui peuvent apparaître dans les nanofils de silicium font l'objet d'un nombre croissant de travaux de recherche. Ces travaux de thèse de nature fortement expérimentale, visent à donner une meilleure connaissance de ces propriétés dans le cas de nanofils, en silicium monocristallin, fabriqués par approche descendante. Pour caractériser la piézorésistivité, deux méthodes de chargement mécaniques ont été développées : la flexion 4 points de puce et la traction/compression in situ avec un actionneur MEMS. La méthode 3ω a été choisie pour des mesures de conductivité thermiques. Ces propriétés ont été étudiées en fonction de la température et la contrainte dans une station sous pointes cryogénique.Les résultats montrent que les nanofils fabriqués à partir de substrats SOI amincis peuvent, de manière inattendue, être fortement contraints en compression après fabrication. Les nanofils de type p présentent, même en régime de mesure dynamique, des coefficients piézorésistifs élevés qui décroissent fortement avec la température et permettent une détection intégrée de mouvement de MEMS avec une limite de détection inférieure à l'Angström. Les mesures thermiques confirment l’effet d’échelle attendu de la conductivité thermique, la décroissance avec la température est compatible avec les résultats théoriques et expérimentaux précédemment publiés. / Remarkable nanoscale electro-thermo-mechanical properties of silicon nanowires are increasingly studies. This experimental thesis investigates such properties for top-down fabricated monocrystal silicon nanowires.A four points bending set-up and a MEMS actuator are developed to apply ex situ and in situ mechanical stress on nanowires. Those devices are characterised in a cryogenic environment within a microprobe station. Electrical properties and piezoresistivity are studied using those systems. Moreover, the 3ω method measures the thermal conductivity of these nanowires.From buckling of silicon nanowires, unexpected high compressive stress (>100 MPa) was identified in top silicon layers of SOI substrates. Drift-compensated measurements show that p type silicon nanowires present large piezoresistive coefficients which decrease with temperature. Additionally, the MEMS device demonstrates the possibility to detect ample MEMS movements with sub-ångström resolution using the nanowires as piezoresistive nanogauges. The thermal conductivity was found consistent with previously reported values for silicon nanowires, and expectedly decreases with temperature.
182

Applications of bipolar electrochemistry : from materials science to biological systems / Applications de l'électrochimie bipolaire : de la science des matériaux jusqu'aux systèmes biologiques

Fattah, Zahra Ali 22 November 2013 (has links)
L’électrochimie bipolaire est possible quand un substrat conducteur qui n’est pas directement connecté à un générateur est exposé à un champ électrique. Il s’agit donc d’une technique « sans fil ». La polarisation du substrat par rapport à la solution génère une différence de potentiel entre les extrémités du substrat qui peuvent devenir le siège de réactions rédox et briser ainsi la symétrie à la surface du substrat. Dans cette thèse, cette méthode a été appliquée à l’élaboration de matériaux ainsi qu’à l’étude de systèmes biologiques. L’électrochimie bipolaire a été adaptée pour la préparation « bulk » de particules asymétriques également appelées particules « Janus ».Des substrats conducteurs de différentes natures, tailles et formes ont été modifiées avec des dépôts métalliques, ioniques ou inorganiques. De plus, un contrôle de la morphologie du dépôt a été possible sur des substrats d’échelle variée. L’électrodéposition bipolaire permet d’étudier la génération de différentes morphologies métalliques, ainsi que la micro-structuration sur des objets conducteurs grâce au développement de nouveaux setups expérimentaux. Le concept s’est également montré très utile dans le domaine de la mise en mouvement de particules. D’une part, les objets asymétriques qui ont été préparés par électrodéposition bipolaire peuvent agir comme des micro-nageurs capables de mouvement de translation ou de rotation. D’autre part, l’application d’un champ électrique peut directement induire le déplacement d’objets isotropes par génération localisée de bulles. Un mouvement de lévitation combinée à l’émission de lumière est également possible. Finalement, l’électrochimie bipolaire a été utilisée pour étudier la conductivité de biomolécules (ADN), ce qui est d’une grande importance dans le domaine de la nanotechnologie. / Bipolar electrochemistry deals with the exposure of an isolated conducting substrate that has no direct connection with a power supply except via an electric field. Therefore it can be considered as a “wireless technique”. The polarization of the substrate with respect to the surrounding medium generates a potential difference between its opposite ends which can support localized electrochemical oxidation reduction reactions and break the surface symmetry of the substrate. The method was applied in the present thesis to materials science and biological systems. In the frame of designing asymmetric particles, also called “Janus” particles, bipolar electrochemistry was adapted for the bulk preparation of these objects. Conductive substrates with different nature, sizes and shapes have been modified with various materials such as metals, ionic and inorganic compounds using this approach. Moreover, a control over the deposit topology could be achieved for substrates at different length scales. Bipolar electrodeposition is also a good tool for investigating the generation of different metal morphologies. Further developments in the bipolar setup allowed us to use the technology for microstructuration of conductive objects. Furthermore the concept has shown to be very useful in the field of the induced motion of particles. The asymmetric objects that have been prepared by bipolar electrodeposition were employed as microswimmers which could show both translational and rotational motion. The application of electric fields in the bipolar setup can be used for the direct generation of motion of isotropic objects through bubble generation. A levitation motion of objects combined with light emission was possible using this concept. Finally, bipolar electrochemistry was also used for studying the intrinsic conductivity of biological molecules (DNA), which is of great importance in the nanotechnology.
183

Analyse des améliorations des propriétés électroniques des matériaux carbonés par interaction d'espèces chimiques : Approche numérique combinée à la spectroscopie Raman / Analysis of the improvements in the electronic properties of carbon materials by interaction with chemical species : Computational approach combined with Raman spectroscopy

Tristant, Damien 19 September 2016 (has links)
Pour analyser les améliorations des propriétés électroniques des matériaux carbonés, une approche par la théorie de la fonctionnelle de la densité appuyée par la spectroscopie Raman a été utilisée. Le cœur de ce travail est l’étude du dopage dans le but d’ouvrir de nouvelles voies pour la conception de matériaux à nanocomposants innovants. Ces nouvelles structures sont des fibres dont la brique élémentaire est un nanotube de carbone ou des polymères chargés en nanocarbone avec des molécules optimisant la conduction électrique. Une brève introduction est présentée sur les espèces non-covalentes, conduisant aux meilleurs résultats reportés dans la littérature, à savoir : le potassium, l’iode et les super acides. Les composés d’intercalation du graphite par des atomes de potassium sont analysés en premier. Le fort transfert de charge de l’alcalin influence directement les propriétés optiques du graphène conduisant à une signature Raman singulière avec un changement de forme lorsque l’énergie d’excitation est le double du déplacement du niveau de Fermi dû au dopage. Ensuite, une étude théorique exhaustive du dopage à l’iode est réalisée sur une monocouche de graphène. L’analyse des propriétés thermodynamiques montre qu’une augmentation progressive du taux de recouvrement des molécules engendre d’abord une transition de phase du mode d’adsorption de l’iode et se termine par la formation de complexes polyiodure. Ces complexes, via un fort transfert d’électrons, conduisent à l’augmentation de la densité d’états électronique au niveau de Fermi. Cette étude est étendue aux nanotubes de carbone, où un transfert de charge très important est obtenu après interaction soit avec des molécules d’acide chlorosulfonique par réaction d’oxydo-réduction, soit avec des molécules d’iode. Lors de la circulation d’un fort courant électrique dans ces fibres, l’effet Joule produit une désorption des dopants et réduit la conductivité électrique. Ce phénomène s’explique par le nombre de canaux de conduction disponibles déduit des signatures Raman combinée à des calculs de transport électronique. Les températures locale et moyenne sont extraites des données Raman et de transport respectivement. Ce travail constitue un ensemble cohérent de résultats pouvant servir de base pour améliorer les propriétés de transport. / To analyze the improvements in electronic properties of carbon-based materials, an approach based on the density functional theory supported by Raman spectroscopy was used. The heart of this work is the study of doping in order to open up new paths for the design of innovative materials from nanodevices. These new structures are fibers whose the main component is a carbon nanotube or nanocarbon loaded polymers with molecules, optimizing electrical conduction. A brief introduction is presented on non-covalent species, leading to the best results reported in the literature, namely potassium, iodine and super acids. The graphite intercalation compounds by potassium atoms are analyzed first. The large charge transfer of the alkali directly influences the optical properties of graphene, resulting in a unique Raman signature with a shape change when the excitation energy is twice the shift of the Fermi level due to doping. Then, an exhaustive theoretical study of iodine doping is performed on a monolayer of graphene. Analysis of thermodynamic properties shows that a gradual increase in the recovery rate of the molecules, initially generates a phase transition of iodine adsorption mode, and ends with the formation of polyiodide complexes. These complexes, via a strong electron transfer, lead to the increase of the density of states at the Fermi level. This study is extended to carbon nanotubes, where a very large charge transfer is obtained after interacting either with chlorosulfonic acid molecules by redox reaction, or with iodine molecules. When there is a flow of a large electric current in these fibers, the Joule effect produces a desorption of dopants and reduces the electrical conductivity. This phenomenon is explained by the available number of conduction channels deducted from combined Raman signatures and electronic transport calculations. The local and average temperatures are extracted from Raman and transport data respectively. This work constitutes a coherent set of results as a basis for improving the transport properties.
184

Exploring bipolar electrochemistry for the modification of unusual conducting substrates / Modification de substrats conducteurs originaux par électrochimie bipolaire

Malytska, Iuliia 10 September 2018 (has links)
L'électrochimie bipolaire est un phénomène basé sur la polarisation d'un objet conducteur soumis à un champ électrique. Contrairement à l'électrochimie conventionnelle, c’est la chute de potentiel en solution imposée par les deux électrodes sources qui permet de réaliser les réactions électrochimiques. Lorsqu'un objet conducteur est immergé dans une solution électrolytique et soumis à un champ électrique, il est polarisé et se comporte comme une électrode bipolaire. La différence de potentiel entre l'électrolyte et l'électrode bipolaire est la force motrice pour les réactions de réduction et d’oxydation promus aux deux extrémités de l'électrode bipolaire. L'oxydation se produira à l’une des extrémités, combinée simultanément avec la réduction à l'autre extrémité.L'électrochimie bipolaire est une technique d’adressage sans fil qui permet de générer une réactivité électrochimique asymétrique à la surface d'un objet conducteur. Au cours de la dernière décennie, l'électrochimie bipolaire a trouvé de nombreuses applications telles que la synthèse de micro- et nanoparticules asymétriques, l'électrodéposition, la détection, la propulsion de micro-objets, etc. L'avantage de cette technique repose sur le mode d’adressage sans fil qui peut être utilisé pour modifier des matériaux fragiles sans contact ou encore pour modifier simultanément un ensemble de particules en même temps.Dans la présente thèse, l'électrochimie bipolaire a été appliquée à différents matériaux semi-conducteurs et systèmes biologiques. De plus, les nouvelles propriétés générées sur ces nouveaux substrats ont été étudiées en utilisant diverses techniques de caractérisation.L'électrodéposition bipolaire est un outil de choix pour la génération d'objets asymétriques. En utilisant cette approche, un dépôt de métal a été réalisé sur substrats organiques de type complexes de transfert de charge. Ces nouveaux matériaux hybrides métal/organique se sont révélés de bons candidats pour la génération asymétrique de photo-voltage sous illumination.Un matériau semi-conducteur inorganique, tel que les dichalcogénures de métaux de transition a également été utilisé comme substrat pour l'électrochimie bipolaire. Différents dépôts de métaux ont été réalisés sur les macro-particules de MoSe2. Les dichalcogénures de métaux de transition sont également connus pour leur activité électrocatalytique, notamment pour la réaction d'évolution de l'hydrogène. La production d'hydrogène sans fil sur des cristaux de MoSe2 a également été réalisée par électrochimie bipolaire. De plus, l'électrochimie bipolaire peut être utilisée avec une suspension de microparticules de MoSe2 pour réaliser une électrolyse quantitative d’une solution contenant une espèce chimique oxydable.Enfin, l'électrochimie bipolaire pourrait également être utilisée pour étudier indirectement la conductivité de molécules biologiques telles que l’ADN. L'objectif principal était de développer une méthode en électrochimie bipolaire pour la modification asymétrique de l'ADN par des nanoparticules métalliques. Tout d'abord, des expériences ont été réalisées en utilisant l'électrodéposition bipolaire à l’aide d’une électrophorèse capillaire (CABED) suivie d'une imagerie par TEM. Des résultats positifs ont été obtenus mais avec une faible reproductibilité.La seconde approche consiste à étirer des molécules d'ADN sur une surface isolante par peignage et à visualiser cette fois-ci les dépôts par microcopie AFM. / Bipolar electrochemistry is a phenomenon based on the polarization of conductive objects in an electric field. In contrast to conventional electrochemistry, the drop of potential in the electrolyte solution triggers the involved redox reactions. When a conductive object is positioned in an electric field present in a solution between two feeder electrodes, it is polarized and becomes a bipolar electrode. The potential difference between the electrolyte and the bipolar electrode is the driving force for reduction/oxidation reactions at the two extremities of the bipolar electrode; oxidation will occur at one end, combined simultaneously with reduction at the other end.Bipolar electrochemistry is a concept that allows generating an asymmetric reactivity at the surface of a conductive object. During the last decade, bipolar electrochemistry found many applications such as the synthesis of asymmetric micro- and nano-particles, electrodeposition, sensing, propulsion of microobjects, electroanalysis etc. The advantage of this technique is its wireless character, which allows the modification of delicate materials and also to electrochemically address many objects simultaneously.In the present thesis, the approach was applied to different semiconducting materials and biological systems. In addition, properties of substrates of different nature have been studied using bipolar electrochemistry.In this way, it was possible to create metal deposits on organic charge transfer salts in a site-specific way. The resulting hybrid metal/organic particles were tested for the asymmetric generation of photovoltage under illumination.Inorganic transition metal dichalcogenides were also used as a substrate for bipolar electrochemistry. Deposition of different metals on MoSe2 macroparticles was performed. Transition metal dichalcogenides are known for their catalytic activity with respect to hydrogen evolution reaction. Therefore, wireless hydrogen production on MoSe2 crystals and microparticles could be demonstrated by using bipolar electrochemistry. In the latter case it is possible to envision their use for electrochemical decontamination of solutions in the bulk.Finally, bipolar electrochemistry has also been used for studying the conductivity of biological molecules (DNA). The primary goal was to develop a new approach for the asymmetric modification of DNA by metal nanoparticles. Experiments were performed by using either Capillary Assisted Bipolar Electrodeposition (CABED) with the DNA molecules present in the bulk, or by immobilizing DNA as stretched entities on model surfaces for subsequent modification. Encouraging first results could be evidenced by TEM or AFM measurements.
185

Étude des phénomènes de transport thermique dans les couches minces par thermoréflectance / Study of thermal transport phenomena in thin films by thermoreflectance

Badine, Elie 16 July 2019 (has links)
Avec la miniaturisation croissante des systèmes micro et nanoélectroniques, les problématiques thermiques revêtent un enjeu croissant. En effet, la faible taille des composants rend problématique l'évacuation de chaleur. Selon la NASA, 90% des défaillances sont imputables à des défauts d'interconnections thermiques et d'après l'US Air Force, 55% des défaillances électroniques sont attribuables à des effets thermiques. Devenues très courantes dans les domaines des nanotechnologies et des énergies renouvelables, les couches minces présentent des caractéristiques thermiques propres (confinement) et des défis métrologiques particuliers (taille des échantillons, influence du substrat sur la mesure). Le transfert de chaleur à l'échelle submicrométrique diffère du transfert de chaleur dans les matériaux massifs à cause de l'effet de confinement spatial propre aux nanostructures. Ainsi, la diffusivité thermique α et la conductivité thermique κ de ces couches minces sont des paramètres qui affectent la performance et la durée de vie de ces couches dans une application donnée. Ce mémoire de thèse porte sur le développement d'un banc de mesure, basé sur les variations de réflectivité d'un matériau en fonction de la température ou thermoréflectance, pour la caractérisation thermique à l'échelle submicrométrique. Dans ce travail, nous avons développé des modèles thermiques tridimensionnels dans des systèmes à deux et trois couches ainsi que les expressions théoriques du signal de thermoréflectance mesuré suite à une excitation thermique de la surface de l'échantillon. Ces expressions ont été développées en tenant compte de l'effet des résistances thermiques aux interfaces. Les modèles ont été validés expérimentalement par des mesures sur des couches minces d'or déposées sur un substrat de silice. Les mesures de thermoréflectance ont été ensuite appliquées à des couches minces d'acide polylactique. Finalement, des couches minces d'oxyde de zinc dopées par différentes concentrations d'aluminium ont été élaborées par voie électrochimique et leurs propriétés thermiques étudiées à l'aide du banc de mesure de thermoréflectance. / With the increasing miniaturization of micro and nanoelectronic systems, the thermal behavior of these systems has become more and more important. The small size of the components makes the heat emitted more troublesome. According to NASA, 90% of failures are due to thermal interconnection faults and according to the US Air Force, 55% of electronic failures are attribuable to thermal effects. Most electronic chips are manufactured using thin films technologies ; therefore, the characteristics of thin metal films have been the bottom line in the ongoing research in nanotechnology and renewable energy domain. Nanoscale heat transfer is different from the heat transfer in bulk materials due to the spatial confinement effect specific to nanostructures. Furthermore, the thermal diffusivity α and thermal conductivity κ of these films are critical parameters affecting their performance and lifetime in a given application. This thesis is devoted to setting up a measurement bench, based on the reflectivity variations of a material as a function of temperature (thermoreflectance), in order to thermally characterize thin films. In this work, a three-dimensional theoretical model is developed in order to describe the temperature distribution in two and three layers systems and obtain the expression of the measured thermoreflectance signal when the surface of the sample is heated by an intensity-modulated Gaussian laser beam. These expressions are obtained by taking into consideration the effect of thermal boundary resistances. These models have been validated experimentally on thin films of gold deposited on fused silica substrate. The thermoreflectance measurements have been then performed on thin films of polylactic acid. Finally, thin films of zinc oxide doped with different concentrations of aluminum have been elaborated during this thesis. The thermal characterization of these films is carried out with the thermoreflectance bench.
186

Conception et réalisation d'un système électronique ambulatoire pour l'évaluation de la microcirculation cutanée / Design and realization an ambulatory electronic system for assessment of the cutaneous microcirculation

Toumi, Dareen 10 September 2012 (has links)
La microcirculation est constituée d’un réseau vasculaire qui comprend les artérioles, les veinules et les capillaires. La microcirculation cutanée est un paramètre physiologique important pour les applications cliniques avancées comme le syndrome de Raynaud ou la prévention des escarres. De nombreuses méthodes non ambulatoires ont été développées afin de mesurer la microcirculation sanguine. La tendance actuelle dans le domaine des technologies pour la santé est la miniaturisation des capteurs et de leurs instrumentations associées pour les rendre non-invasifs, portables par le patient et ainsi adaptés aux mesures ambulatoires en conditions réelles, ou appelées aussi « écologiques ». Le manuscrit présente la conception et la réalisation d’un système électronique miniaturisé ambulatoire (µHématron), permettant de réaliser un monitoring continu, en temps réel de la conductivité thermique tissulaire qui est l’image de la microcirculation dans les capillaires. La première expérimentation effectuée a pour l’objectif de confronter le système µHématron avec un moniteur de fluxmétrie laser Doppler, au cours d’une étude destinée à évaluer le confort thermique chez l’homme. Ainsi, une étude d’influence de la température de différentes ambiances sur un certain nombre de paramètres de la peau de sujets sains, y compris la microcirculation cutanée, a été réalisée. Les corrélations obtenues entre les variations des deux signaux des deux instrumentations pour les ambiances neutres, chaudes et froides sont présentées. La deuxième expérimentation est consacrée à l’étude préliminaire de l’effet global des bas médicaux de compression sur la microcirculation cutanée des membres inférieurs de sujets sains. Grâce à l’instrumentation ambulatoire, la microcirculation a pu être évaluée de façon continue pour différentes postures des sujets : allongée, assise, débout et en marche, et ce, pour des différentes classes de bas de compression (I, II, et III). Cette étude a permis d’améliorer la compréhension de l’effet de ces bas sur les sujets sains. / The microcirculation consists of a vascular network that includes arterioles, venules and capillaries. Skin microcirculation is an important physiological parameter for advanced clinical applications such as Raynaud's syndrome or the prevention of ulcers. Many non-ambulatory methods were developed to measure blood microcirculation. The current trend in the field of health technology is the miniaturization of sensors and their associated instrumentation to make them non-invasive, portable by the patient and adapted to ambulatory measurements in time real, or also known as « ecological ». The manuscript presents the design and the realization of an ambulatory miniaturized electronic system (μHematron), to achieve continuous monitoring of the effective thermal conductivity in real-time that is the image of the microcirculation in the capillaries. The first experimentation was performed to compare the µHematron system with a laser Doppler flowmetry monitor, during a study which aims to evaluate thermal comfort in humans. A study of the effects of different temperature environments on a group of skin parameters of healthy subjects, including the cutaneous microcirculation, was performed. Correlations between changes in the two signals of both instrumentations for neutral, hot and cold temperatures are presented. The second experimentation is aimed to a preliminary study of the global effect of medical compression stockings on the cutaneous microcirculation of the lower extremities of healthy subjects. Thanks to the ambulatory instrumentation, the microcirculation has been measured continuously for different postures of subject: lying, sitting, standing and walking, and this for different classes of compression stockings (I, II, and III). This study has improved the understanding of the effect of these stockings on healthy subjects.
187

Lithium ion conducting glass-ceramics with NASICON-type structure based on the Li1+x Crx (Gey Ti1-y)2-x (PO4)3 system / Vitrocéramique conductrice au lithium-ion avec structure de type NASICON basée sur le système Li1+xCrx(GeyTi1-y)2-x(PO4)3

Nuernberg, Rafael 22 March 2018 (has links)
L'objectif principal de ce travail est de développer une nouvelle vitrocéramique structurée par NASICON avec une conductivité Li-ion élevée. Par conséquent, ce travail présente une nouvelle série de compositions de type NASICON sur la base du système Li1+xCrx(GeyTi1-y)2-x(PO4)3. Dans un premier temps, une composition spécifique de ce système a été synthétisée par la méthode de fusion et refroidissement rapide, suivie d'une cristallisation. Le comportement de cristallisation du verre précurseur a été examiné par calorimétrie différentielle à balayage et spectroscopie infrarouge. Les principaux résultats indiquent que le verre précurseur présente une nucléation homogène, a une stabilité de verre considérable et cristallise une phase de type NASICON, qui permet d'obtenir des électrolytes solides par voie vitrocéramique. Dans une deuxième étape, on examine l'effet de la substitution de Ti par Cr et Ge sur la stabilité de verre du verre précurseur, sur les paramètres structuraux de la phase cristalline NASICON et sur les propriétés électriques des vitrocéramiques. Par conséquent, un ensemble de seize compositions de ce système est synthétisé. Les principaux résultats indiquent que la stabilité de verre augmente lorsque Ti est remplacé par Ge et Cr. Après cristallisation, toutes les vitrocéramiques présentent une phase de type NASICON, et leurs paramètres de maille décroissent avec Ge et augmentent avec la teneur en Cr, ce qui permet de régler le volume de la cellule unitaire de la structure de type NASICON. De plus, la conductivité ionique et l'énergie d'activation pour la conduction du lithium dans les vitrocéramiques dépendent notamment du volume de la cellule unitaire de la structure de type NASICON. Enfin, la fenêtre de stabilité électrochimique de la vitrocéramique à structure NASICON de conductivité ionique la plus élevée est étudiée. Les mesures de voltampérométrie cyclique sont suivies par spectroscopie d'impédance électrochimique in situ, permettant de déterminer l'effet des réactions d'oxydation et de réduction sur les propriétés électriques des vitrocéramiques en question. La spectroscopie photoélectronique par rayons X, à son tour, est appliquée pour déterminer quelles espèces chimiques subissent une réduction/oxydation. Nos résultats révèlent que la stabilité électrochimique de ce matériau est limitée par la réduction des cations Ti+4 dans les faibles potentiels et par l'oxydation des anions O-2 dans les hauts potentiels. Aux hauts potentiels, un comportement similaire a également été rencontré pour d'autres conduites Li-ion de type NASICON bien connues, suggérant que le comportement électrochimique dans les potentiels oxydatifs pourrait être généralisé pour les phosphates à structure NASICON. / The primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific composition of this system is synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass is examined by differential scanning calorimetry and infrared spectroscopy. The main results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glass, on the structural parameters of NASICON-like phase and the electrical properties of the glass-ceramics. Hence, a set of sixteen compositions of this system is synthesized. The main results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the NASICON-type structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glass-ceramics are notably dependent on the unit cell volume of the NASICON-type structure. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements are followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the glass-ceramics in question to be determined. X-ray photoelectron spectroscopy, in turn, is applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations in low potentials and by the oxidation of O-2 anions in high potentials. At high potentials, similar behavior is also encountered for other well-known NASICON-like Li-ion conducting suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates.
188

GREFFAGE D'AMINES ET DE PHENOLATES SUR DES COPOLYMERES FLUORES POUR L'ELABORATION DE MEMBRANES ELECTROLYTES POUR PILES A COMBUSTIBLE

Taguet, A. 28 November 2005 (has links) (PDF)
Les piles à combustible à électrolyte membranaire utilisent actuellement une membrane perfluorée sulfonée commercialisée par Dupont : la membrane Nafion. L'objectif de cette thèse consiste à préparer des membranes fluorées par modification chimique de copolymères poly(VDF-co-HFP) commerciaux. De part leurs remarquables propriétés, ces copolymères greffés par des amines semblent être d'excellents candidats pour cette application. Une première étude a consisté à réticuler par une diamine aliphatique de tels copolymères conduisant à de bonnes propriétés thermiques, chimiques et mécaniques. L'étude du greffage d'amines contenant un cycle aromatique (aniline, benzylamine, phénylpropylamine) a permis d'une part d'identifier les sites de greffage des amines, mais également d'étudier la cinétique de greffage de ces trois amines et d'évaluer l'influence de divers paramètres expérimentaux. Finalement, l'influence du bras espaceur entre le cycle aromatique et le groupe amino, sur la cinétique de greffage a montré l'intérêt d'avoir au moins deux groupements méthylénés. L'étude suivante concernant la déshydrofluoration puis l'addition de phényléthylamine sur une molécule modèle fluorée a permis de mieux comprendre le mécanisme de greffage des amines sur des copolymères poly(VDF-co-HFP). Une amine originale contenant un cycle aromatique sulfoné a été synthétisée par télomérisation du styrène sulfoné avec un mercaptan comme agent de transfert. Après modification, cette amine originale a été greffée sur des copolymères poly(VDF-co-HFP) commerciaux. Les propriétés des membranes obtenues sont convenables pour une application comme électrolyte pour PAC, même si la conductivité protonique reste faible. Finalement, nous avons étudié le greffage d'un phénol sulfoné sur des copolymères poly(VDF-co-HFP) commerciaux et avons montré des propriétés équivalentes à celles de copolymères greffé par l ‘amine, avec des taux de gonflements à l'eau plus faibles et plus proches de ceux de la membrane Nafion.
189

Etude de phases spinelle cobaltée et d'oxydes lamellaires dérivés de Na<sub>0,6</sub>CoO<sub>2</sub> employés comme additifs conducteurs dans les accumulateurs Ni-MH

Douin, Myriam 30 January 2008 (has links) (PDF)
La technologie mousse utilisée actuellement pour la conception des électrodes positives des batteries Ni-MH, nécessite l'emploi d'un additif conducteur au cobalt en raison de la mauvaise conductivité électronique de la matière active Ni(OH)<sub>2</sub>. La recherche de nouveaux composés au cobalt constitue un point clé en vue du développement de ces batteries vers des applications de forte puissance. Dans ce contexte, deux additifs conducteurs potentiels ont été étudiés au cours de ces travaux de thèse.<br />La première partie de l'étude a été focalisée sur des phases spinelle H<sub>x</sub>Li<sub>y</sub>Co<sub>3-δ</sub>O<sub>4</sub> conductrices, synthétisées par oxydation électrochimique de l'oxyde CoO. Une forte influence du traitement thermique du matériau sur sa conductivité électronique a été mise en évidence. Des analyses par diffraction des rayons X in situ, ATG-SM, RMN et des mesures de conductivités électroniques ont permis de mettre en évidence une redistribution cationique au sein de la structure spinelle, conduisant à une augmentation du rapport atomique Co<sup>4+</sup>/Co<sup>3+</sup> dans le réseau octaédrique [Co<sub>2</sub>O<sub>4</sub>], sans variation du degré d'oxydation moyen du cobalt. Il s'ensuit une augmentation de la conductivité électronique du matériau de trois ordres de grandeur. Le second axe de la thèse concerne l'étude du comportement électrochimique de l'additif Na<sub>0.6</sub>CoO<sub>2</sub>. Les réactions d'échange/insertion des ions alcalins mises en jeu au cours des processus d'oxydation et de réduction de la phase initiale ont été étudiées en détail et un mécanisme a pu être proposé. L'oxyhydroxyde de cobalt hydraté γ, formé par oxydation de Na<sub>0.6</sub>CoO<sub>2</sub> au cours du cyclage, s'est avéré présenter de très bonnes performances lors des tests en batteries. La formation d'une phase interstratifiée intermédiaire, qui possède une cinétique de réduction lente, permet de conserver la stabilité de l'additif à bas potentiel et par conséquent, l'intégrité du réseau conducteur.
190

Étude des propriétés électroniques et des propriétés de transport de nanofils semiconducteurs et de plans de graphène.

Lherbier, Aurélien 10 October 2008 (has links) (PDF)
Ce travail de théorie et simulation est consacré a l'étude des propriétés électroniques et des propriétés de transport mésoscopique de nanostructures. Nous utilisons une méthode numérique efficace qui permet le calcul de la conductivité de Kubo-Greenwood dans un formalisme de liaisons fortes. Cette approche offre la possibilité d'étudier avec précision des systèmes de plusieurs millions d'atomes et donc de comprendre les mécanismes de transport mis en ?uvre dans les systèmes désordonnés et de faible dimensionalité. Après une brève description des deux nano-objets auxquels nous nous sommes intéressés, les nanofils de silicium 1D et les plans de graphène 2D, et après un chapitre détaillant la méthodologie numérique et les concepts liés à l'approche de Kubo-Greenwood en espace réel, nous étudions l'impact de la rugosité de surface sur le transport électronique dans les nanofils de silicium. Nous montrons que les performances en terme de transport peuvent être directement reliées a la structure électronique sous-jacente. Nous montrons également qu'en fonction de leur orientation cristallographique, de grandes différences apparaissent dans la structure électronique des nanofils de silicium, ce qui conditionne par la suite les propriétés de transport. Puis nous regardons le cas du dopage des nanofils de silicium et nous discutons des effets d'écrantage électronique. Pour finir, le dernier chapitre est consacré à l'impact du désordre d'Anderson et à l'influence des dopants sur le transport dans les plans de graphène. Nous montrons notamment que l'introduction de dopants brise la symétrie électron-trou initialement présente dans les plans de graphène.

Page generated in 0.0697 seconds