• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 14
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Processus de contact sur des graphes aléatoires / Contact process on random graphs

Can, Van Hao 01 June 2016 (has links)
Le processus de contact est l'un des systèmes de particules en interaction les plus étudiés. Il peut s'interpréter comme un modèlepour la propagation d'un virus dans une population ou sur un réseau. L'objectif de cette thèse est d'étudier la relation entre la structure locale du réseau et le comportement global du processus sur le réseau tout entier.Le cadre typique dans lequel on se place est celui d’une suite de graphes aléatoires $(G_n)$ convergeant localement vers un graphe limite $G$.On étudie alors le comportement asymptotique du temps d’extinction $tau_n$ du processussur $G_n$; lorsqu’initialement tous les individus sont infectés. Nous montrons sur plusieurs exemples qu’il existe unetransition de phase lorsque $lambda$ - le taux d'infection du processus - traverse une valeur critique $ lambda_c (G)$, qui ne dépend que de $G$.Plus précisément, pour certains modèles de graphes aléatoires comme le modèle de configuration, le graphe d'attachement préférentiel, le graphe géométrique aléatoire, le graphe inhomogène, nous montrons que $ tau_n $ est d'ordre soit logarithmique soit exponentiel; selon que $ lambda$ est soit inférieur ou supérieur à $lambda_c (G) $.De plus, dans certains cas, nous montrons des résultats de métastablité: en régime sur-critique, $ tau_n $ divisé par son espérance converge en loi vers une variable aléatoire exponentielle de moyenne $1$, et la densité des sites infectés reste stable (et non nulle) sur une période de temps d’ordre typiquement $tau_n$. / The contact process is one of the most studied interacting particle systems and is also often interpreted as a model for the spread of a virus in a population or a network. The aim of this thesis is to study the relationship of the local structure of the network and the global behavior of the contact process (the virus) on the whole network. Let $(G_n)$ be a sequence of random graphs converging weakly to a graph $G$. Then we study $tau_n$, the extinction time of the contact process on $G_n$ starting from full occupancy. We prove in some examples that there is a phase transition of $tau_n$ when $lambda$ - the infection rate of the contact process crosses a critical value $lambda_c(G)$ depending only on $G$. More precisely, for some models of random graphs, such as the configuration model, preferential attachment graph, random geometric graph, inhomogeneous graph, we show that $tau_n$ is of logarithmic (resp. exponential) order when $lambda < lambda_c(G)$ (resp. $lambda < lambda_c(G)$). Moreover, in some cases we also prove metastable results: in the super-critical regime, $tau_n$ divided by its expectation converges in law to an exponential random variable with mean $1$, and the density of the infected sites is stable for a long time.
22

Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processes

Anderson Augusto Ferreira 31 March 2009 (has links)
Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field
23

Rastros de contatos e grafos dinâmicos / Contact traces and dynamic graphs

Milson Silva Monteiro 15 December 2016 (has links)
Com base em três modelos de mobilidade MapBasedMovement, RandomWayPoint e RandomWalk presentes no simulador The One, sugerimos e discutimos vários modelos es- tocásticos para mobilidade. Primeiramente, a dinâmica das unidades móveis é reduzida a um processo chamado grafo dinâmico, de forma que a configuração espacial das unidades móveis em cada instante de tempo está resumida em um grafo. Os vértices desse grafo são unidades móveis e não mudam conforme o tempo: consideramos um sistema fechado, as unidades não desaparecem e não aparecem novas. O elo entre duas unidades (vértices) em um instante de tempo significa um contato neste instante (a distância entre as unidades é menor que um raio de contato), assim o conjunto de elos muda durante a evolução do sistema. Em seguida, modelamos a evolução do grafo dinâmico como um conjunto de pro- cessos aleatórios binários de forma que cada componente do processo está associada com um par de unidades móveis indicando presença ou ausência de contato entre elas. Três componentes principais constroem o processo: (i) distribuição de tempo de intercontato, (ii) distribuição de tempo de contato, e (iii) independência/interação entre as unidades. Nesta Tese mostramos teoricamente e através de simulações como escolher todos os três componentes para três modelos de mobilidade mencionados acima na situação de baixa densidade de unidades móveis, chamado DTNs (Delay Tolerant Networks). Considerar a modelagem da mobilidade desse ponto de vista é novo e não existe na literatura, até onde sabemos. Existe uma discussão na literatura sobre o tempo de intercontato, mas não conhecemos os resultados e discussão sobre a distribuição do tempo de contato e a interdependência de processos de contatos. / Based on three mobility models MapBasedMovement, RandomWayPoint and Ran- domWalk present on The One Simulator we suggest and discuss various stochastic mo- dels for mobility. First the dynamics of mobile units is reduced to process called dynamic graph, so that the spatial configuration of mobile units in every moment of time is sum- med up in a graph. The vertices of this graph are mobile units and do not change with the time: consider a closed system, the units dont disappear and not appear new. The link between two units (vertices) in an instant of time means a contact right now (dis- tance between the units is less that the radius contact). So the set of links changes during the system evolution. As a second step, the evolution of dynamic graph model as a set of random processes. Each process component is associated with a pair of mobile units indicating presence or absence of contact between them. Three major components build process: (i) distribution of intercontact time , (ii) distribution of contact time, and (iii) Independence interaction between units. In this work we show theoretically and by si- mulation how to choose all three components for three mobility models mentioned above on the situation of low density of mobile units, called DTNs (Delay Tolerant Networks). Consider the mobility modeling from that point of view is new and does not exist in the literature for our knowledge. There is a discussion in the literature about the intercontact time, but we dont know the results and discussion on the distribution of contact time and the interdependence of contact process.
24

Processus de contact avec ralentissements aléatoires : transition de phase et limites hydrodynamiques / Contact process with random slowdowns : phase transition and hydrodynamic limits

Kuoch, Kevin 28 November 2014 (has links)
Dans cette thèse, on étudie un système de particules en interaction qui généralise un processus de contact, évoluant en environnement aléatoire. Le processus de contact peut être interprété comme un modèle de propagation d'une population ou d'une infection. La motivation de ce modèle provient de la biologie évolutive et de l'écologie comportementale via la technique du mâle stérile, il s'agit de contrôler une population d'insectes en y introduisant des individus stérilisés de la même espèce: la progéniture d'une femelle et d'un individu stérile n'atteignant pas de maturité sexuelle, la population se voit réduite jusqu'à potentiellement s'éteindre. Pour comprendre ce phénomène, on construit un modèle stochastique spatial sur un réseau dans lequel la population suit un processus de contact dont le taux de croissance est ralenti en présence d'individus stériles, qui forment un environnement aléatoire dynamique. Une première partie de ce document explore la construction et les propriétés du processus sur le réseau Z^d. On obtient des conditions de monotonie afin d'étudier la survie ou la mort du processus. On exhibe l'existence et l'unicité d'une transition de phase en fonction du taux d'introduction des individus stériles. D'autre part, lorsque d=1 et cette fois en fixant l'environnement aléatoire initialement, on exhibe de nouvelles conditions de survie et de mort du processus qui permettent d'expliciter des bornes numériques pour la transition de phase. Une seconde partie concerne le comportement macroscopique du processus en étudiant sa limite hydrodynamique lorsque l'évolution microscopique est plus complexe. On ajoute aux naissances et aux morts des déplacements de particules. Dans un premier temps sur le tore de dimension d, on obtient à la limite un système d'équations de réaction-diffusion. Dans un second temps, on étudie le système en volume infini sur Z^d, et en volume fini, dans un cylindre dont le bord est en contact avec des réservoirs stochastiques de densités différentes. Ceci modélise des phénomènes migratoires avec l'extérieur du domaine que l'on superpose à l'évolution. À la limite on obtient un système d'équations de réaction-diffusion, auquel s'ajoutent des conditions de Dirichlet aux bords en présence de réservoirs. / In this thesis, we study an interacting particle system that generalizes a contact process, evolving in a random environment. The contact process can be interpreted as a spread of a population or an infection. The motivation of this model arises from behavioural ecology and evolutionary biology via the sterile insect technique ; its aim is to control a population by releasing sterile individuals of the same species: the progeny of a female and a sterile male does not reach sexual maturity, so that the population is reduced or potentially dies out. To understand this phenomenon, we construct a stochastic spatial model on a lattice in which the evolution of the population is governed by a contact process whose growth rate is slowed down in presence of sterile individuals, shaping a dynamic random environment. A first part of this document investigates the construction and the properties of the process on the lattice Z^d. One obtains monotonicity conditions in order to study the survival or the extinction of the process. We exhibit the existence and uniqueness of a phase transition with respect to the release rate. On the other hand, when d=1 and now fixing initially the random environment, we get further survival and extinction conditions which yield explicit numerical bounds on the phase transition. A second part concerns the macroscopic behaviour of the process by studying its hydrodynamic limit when the microscopic evolution is more intricate. We add movements of particles to births and deaths. First on the d-dimensional torus, we derive a system of reaction-diffusion equations as a limit. Then, we study the system in infinite volume in Z^d, and in a bounded cylinder whose boundaries are in contact with stochastic reservoirs at different densities. As a limit, we obtain a non-linear system, with additionally Dirichlet boundary conditions in bounded domain.
25

Oleum für die Industrie

Haustein, Mike January 2015 (has links)
Im Oktober 1875 erschien Clemens Winklers Schlüsselpublikation zum Schwefelsäure-Kontaktverfahren. Der Freiberger Chemiker lieferte nicht nur die wesentlichen Grundlagen des Prozesses, sondern initiierte eine Entwicklung, die der chemischen Industrie ein modernes Produktionsverfahren für eine wichtige Grundchemikalie in die Hand gab und damit ihre Entwicklung entscheidend beförderte. Neben Winklers Leistungen werden auch die bisher wenig gewürdigten Anstrengungen der Freiberger Hüttenwerke herausgestellt, denen es nach einigen Umwegen 1879 gelungen war, die erste wirklich funktionsfähige Kontaktanlage in Betrieb zu nehmen.
26

COMPORTEMENT COOPÉRATIF DANS DES SYSTÈMES COMPLEXES

Karsai, Márton 28 May 2009 (has links) (PDF)
Ma motivation lors de mon doctorat fut d'examiner le comportement coopératif dans des systèmes complexes en utilisant les méthodes de la physique statistique et de l'informatique. Le but de mon travail fut d'étudier le comportement critique des systèmes à N corps durant leurs transitions de phase et de décrire de façon analytique leurs caractéristiques universelles, au moyen de calculs numériques. Afin d'y arriver j'ai effectué des études dans quatre sujets différents qui sont présentés dans la dissertation de la manière suivante:<br /><br />Après une brève introduction, j'ai résumé les points capitaux en relation avec les résultats théoriques. J'ai brièvement abordé le sujet des transitions de phase et des phénomènes critiques, de même que la théorie des classes d'universalité et des exposants critiques. Ensuite j'ai introduit les modèles statistiques important qui sont examinés plus tard dans la thèse et j'ai donné une petite description des modèles désordonnés. Dans le chapitre suivant, j'ai tout d'abord mis en avant les définitions de la théorie des graphes dont j'ai eu besoin pour introduire les structures géométriques appliquées et j'ai passé en revue les principales propriétés des réseaux régulières et j'ai défini les conditions de bord généralement utilisées. J'ai terminé ce chapitre avec une petite introduction sur les réseaux complexes. Le chapitre suivant contient les méthodes numériques appliquées que j'ai utilisées au cours des études numériques. J'ai écrit quelques mots sur les méthodes de Monte-Carlo et j'ai introduit l'algorithme d'optimisation combinatoire utilisé, et ses justifications mathématiques. Pour terminer j'ai décrit mes propres techniques pour générer des réseaux sans échelle.<br /><br />Suite à cette introduction théorique les résultats scientifiques ont été présentés de la manière suivante:<br /><br />Le 1er sujet auquel je me suis intéressé est une étude des transitions de phase hors équilibre dans les réseaux sans échelle de longueur, où la distribution des connectivités était ajustée, de telle façon qu'une transition de phase puisse être réalisée même dans les réseaux réalistes ayant un degré exposant γ ≤ 3. Le système hors équilibre étudié était le "contact process" qui est un modèle de réaction-diffusion appartenant à la classe d'universalité de la percolation dirigé.<br /><br />Le deuxième problème que j'ai étudié fut le modèle de Potts aléatoire ferromagnétique avec de grandes valeurs de $q$ sur des réseaux évolutifs sans échelle. Ce problème est équivalent à un problème de coopération optimale, où les agents essaient de trouver une situation optimale, où les bénéfices de coopération de paire (ici les couplages de Potts) et la somme totale du support, qui est la même pour tous les projets (introduite ici comme la température), sont maximisés. Une transition de phase apparaît dans le système entre un état où tous les agents sont corrélés, et un état désordonné à haute température. J'ai examiné ce modèle en utilisant un algorithme d'optimisation combinatoire sur les réseaux de Barabási-Albert sans échelle de longueur avec des couplages homogènes et aussi avec des couplages pondérés par des variables aléatoires indépendantes, suivant une distribution quasi-continue avec différents intensité de désordre.<br /><br />Le troisième problème examiné fut en rapport également avec le modèle de Potts ferromagnétique aléatoire à grand nombre d'états. J'ai examiné la densité critique des amas qui touchent l'un ou l'autre des bords dans une géométrie rectangulaire. Conformément à une prédiction de la théorie conforme je me suis attendu au même comportement que celui dérivé exactement pour la percolation critique dans des bandes infinies. J'ai calculé des moyennes à l'aide de l'algorithme d'optimisation combinatoire mentionné ci-dessus et j'ai comparé les moyennes numériques aux courbes théoriques attendues.<br /><br />Le dernier problème que j'ai étudié fut le modèle antiferromagnétique d'Ising bidimensionnel sur réseau triangulaire à température zéro en l'absence de champ extérieur. Ce modèle a été intensément étudié au cours des deux dernières décennies, dans la mesure où il montre les caractéristiques exotiques à l'équilibre due à la frustration géométrique. Cependant des explications contradictoires ont été publiées dans la littérature à propos du comportement dynamique en hors équilibre, suivant qu'il était caractérisé par une croissance diffusive avec correction logarithmique ou par une dynamique sous diffusives avec des exposants effectifs. Mon but fut de trouver des preuves indépendantes pour l'une des explications et d'examiner le comportement dynamique dans le régime de vieillissement.
27

Moment-Closure Approximations for Contact Processes in Adaptive Networks / Moment-Abschluss Näherungen für Kontaktprozesse in Adaptiven Netzwerken

Demirel, Güven 02 July 2013 (has links) (PDF)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.
28

Moment-Closure Approximations for Contact Processes in Adaptive Networks

Demirel, Güven 14 May 2013 (has links)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.:1. Introduction .................................................................................. 1 2. Moment-closure approximations of complex networks ................. 5 3. Cyclic dominance in adaptive network models of opinion formation .......... 25 4. Performance of moment-closure approximations of adaptive networks .... 35 5. Information and consensus in a fish school ................................. 65 6. Epidemic spreading on growing heterogeneous adaptive networks ......... 83 7. Conclusions ................................................................................. 101 Appendix A: Moment expansion for node update rules ................... 107

Page generated in 0.0408 seconds