Spelling suggestions: "subject:"correcteurs"" "subject:"correcteur""
51 |
Techniques de Conception en Vue d'Améliorer la fiabilité des Mémoires Flash EmbarquéesGodard, Benoit 02 July 2008 (has links) (PDF)
Les mémoires non-volatiles de type Flash sont présentes dans un grand nombre de circuits visant des applications électroniques portatives. Leur non-volatilité et flexibilité en font des mémoires extrêmement populaires. Néanmoins, la fiabilité devient une caractéristique à améliorer en raison des besoins en surface grandissants et de leur intégration dans des applications sensibles. Des solutions de tolérance aux fautes peu coûteuses et faciles à intégrer doivent être mises en place. Tout d'abord, cette étude s'est portée sur l'analyse et l'étude de la fiabilité des Flash. Il fut l'occasion d'établir un modèle de fiabilité d'une cellule à grille flottante. Ce modèle a été ajusté suivant les paramètres issus d'une technologie Flash 180nm. Dans un second temps, deux techniques de tolérance aux fautes mêlant codes correcteurs d'erreurs et redondance ont été mises au point. La première technique, nommée correction d'erreurs par analyse de VT, fournit des capacités de correction accrues par l'analyse du niveau de programmation des cellules mémoire. Une étude mathématique puis une architecture de fiabilisation ont été proposées. Dans cette étude, on suppose que des ressources de redondance sont disponibles afin de réparer la mémoire lorsqu'une erreur est détectée. La seconde technique, appelée correction d'erreur hiérarchique, utilise des capacités de correction distribuées dans la mémoire Flash afin de réduire significativement le coût associé à une correction d'erreur avancée. Cette technique a été intégrée dans une architecture de fiabilisation disposant de ressources de redondance. Une étude basée sur les Chaines de Markov à Temps Continu a démontré l'efficacité de cette structure. Ces techniques constituent des solutions alternatives aux schémas standards utilisés dans l'industrie. Elles augmentent significativement le temps moyen à la défaillance du système sans faire exploser la surface requise à l'intégration une structure de tolérance<br />aux fautes.
|
52 |
Architectures pour des circuits fiables de hautes performances / Architectures for reliable and high performance circuitsBonnoit, Thierry 18 October 2012 (has links)
Les technologies nanométriques ont réduit la fiabilité des circuits électroniques, notamment en les rendant plus sensible aux phénomènes extérieurs. Cela peut provoquer une modification des composants de stockage, ou la perturbation de fonctions logiques. Ce problème est plus préoccupant pour les mémoires, plus sensibles aux perturbations extérieures. Les codes correcteurs d'erreurs constituent l'une des solutions les plus utilisées, mais les contraintes de fiabilité conduisent à utiliser des codes plus complexes, et qui ont une influence négative sur la bande passante du système. Nous proposons une méthode qui supprime la perte de temps due à ces codes lors de l'écriture des données en mémoire, et la limite aux seuls cas où une erreur est détectée lors de la lecture. Pour cela on procède à la décontamination du circuit après qu'une donnée erronée ait été propagée dans le circuit, ce qui nécessite de restaurer certains des états précédents de quelques composants de stockage par l'ajout de FIFO. Un algorithme identifiant leurs lieux d'implémentation a également été créé. Nous avons ensuite évalué l'impact de cette méthode dans le contexte plus large suivant : la restauration d'un état précédent de l'ensemble du circuit en vue de corriger une erreur transistoire susceptible de se produire n'importe où dans le circuit. / Nanometric technologies led to a decrease of electronic circuit reliability, especially against external phenomena. Those may change the state of storage components, or interfere with logical components. In fact, this issue is more critical for memories, as they are more sensitive to external radiations. The error correcting codes are one of the most used solutions. However, reliability constraints require codes that are more and more complex. These codes have a negative effect on the system bandwidth. We propose a generic methodology that removes the timing penalty of error correcting codes during memory's write operation. Moreover, it limits the speed penalty for read operation only in the rare case an error is detected. To proceed, the circuit is decontaminated after uncorrected data were propagated inside the circuit. This technique may require restoring some past states of few storage components by adding some FIFO. An algorithm that identifies these components was also created. Then we try to evaluate the impact of such a technique for the following issue: the global state restoration of a circuit to erase all kinds of soft errors, everywhere inside the circuit.
|
53 |
Résultants de polynômes de Ore et Cryptosystèmes de McEliece sur des Codes Rang faiblement structurés / Resultants of Ore polynomials and McEliece Cryptosystems based on weakly structured Rank CodesMurat, Gaetan 09 December 2014 (has links)
Les techniques de chiffrement les plus utilisées en cryptographie, basées sur des problèmes de théorie des nombres, présentent malgré leur efficacité des défauts notamment une vulnérabilité aux attaques menées à l'aide d'ordinateur quantiques. Il est donc pertinent d'étudier d'autres familles de cryptosystèmes. Nous nous intéressons ici aux cryptosystèmes basés sur les codes correcteurs, introduits par McEliece en 1978 qui, étant basés sur des problèmes difficiles de théorie des codes, ne présentent pas cette vulnérabilité. Ces cryptosystèmes présentent des inconvénients, qui font qu'ils sont peu utilisés en pratique. Selon le code choisi, ils peuvent être vulnérables aux attaques structurelles, mais surtout ils nécessitent des clés de taille très importante.Récemment une nouvelle famille de codes appelés codes MDPC a été introduite ainsi qu'un cryptosystème basé sur cette famille de codes. Les codes MDPC semblent être distinguables seulement en trouvant des mots de poids faibles dans leur dual, les affranchissant ainsi d'une éventuelle vulnérabilité aux attaques structurelles. De plus, en utilisant une des matrices quasi-cycliques, ils obtiennent des clés de taille très compacte.Nous avons pour notre part, travaillé dans le contexte de la métrique rang, une nouvelle métrique introduite en 1985 par Gabidulin qui semble bien adaptée à une utilisation en cryptographie :• Nous avons commencé par travailler autour de la notion de polynôme de Ore et le cas particulier important des q-polynômes. Ces derniers sont des combinaisons linéaires des itérés de l'automorphisme de Frobenius sur un corps fini.Ces polynômes constituent un objet d'étude important en métrique rang, de par leur utilisation dans les premiers cryptosystèmes dans cette métrique. Nous présentons sous une nouvelle forme des résultats déjà connus, et de nouveaux algorithmes pour le calcul du PGCD de deux polynômes de Ore et le calcul des résultants et sous-résultants de polynômes de Ore (ainsi que de polynômes usuels en généralisant au calcul des sous-résultants la formule déjà connue pour les résultants) en utilisant une matrice de multiplication à droite plus petite que la matrice de Sylvester utilisée habituellement.Ces résultats peuvent être réexploités indirectement dans le cryptosystème présenté par la suite bien que celui-ci ne soit pas basé sur les q-polynômes.• La partie suivante de notre travail est consacrée à l'introduction d'une nouvelle famille de codes en métrique rang appelés codes LRPC (pour Low Rank Parity Check codes). Ces codes ont la particularité d'avoir une matrice de parité de poids rang faible (et peuvent donc être vus comme une généralisation des codes LDPC ou MDPC à la métrique rang).Nous présentons le cryptosystème LRPC, un cryptosystème de type Mc Eliece en métrique rang basé sur les codes LRPC. Ces codes sont très peu structurés et sont donc vraisemblablement résistants aux attaques structurelles. La matrice de parité peut être choisie doublement circulante (on parle alors de codes DC-LRPC) ce qui diminue considérablement la taille de la clé.Ainsi, le cryptosystème DC-LRPC cumule les avantages d'offrir une bonne sécurité en étant basé sur un problème difficile (comme tous les cryptosystèmes basés sur les codes correcteurs), d'être faiblement structurés, de disposer d'une clé de taille assez petite (quelques milliers de bits au plus) et d'un algorithme de décodage efficace.Une attaque a été trouvée dans le cas du cryptosystème DC-LRPC. Cette attaque basée sur la notion de code replié permet de baisser significativement la sécurité du cryptosystème dans le cas où le polynôme X^(k-1)+X^(k-2)+⋯+1 est scindable (k désignant la dimension du code). Cependant ce n'est pas le cas pour les paramètres présentés où le cryptosystème reste valide. / The most commonly used encryption techniques in cryptography are based on problems in number theory. Despite their efficiency, they are vulnerable to post-quantum cryptographic attack. Therefore it is relevant to study other types of cryptosystems. In this work we study error-corrector codes based cryptosystmems, introduced by McEliece in 1978 ; being based on hard problems in coding theory, these cryptosystems do not have this weakness. However these cryptosystems are almost not used in practice because they are vulnerable to strucural attacks and they require a key with very big length. Recently a new family of codes named MDPC codes has been introduced as well as a cryptosystem that is based on these codes. It seems that MDPC codes are distinguishable only by finding words with weak weight in their dual, thus preventing them from structural attacks. Furthermore, they can have compact keys by using quasi-cyclic matrices.In the present paper we use the rank metric, a new metric for codes that was introduced by Gabidulin in and seems suited for a cryptographic use :• At first we studied Ore Polynomials and the special case of q-polynomials , the latter being iterates of the Fobenius automorphism on a finite field.These polynomials are widely in rank metric due to their use in the first code-based cryptosystems in rank metric. We reformulate already known results and give new results regarding the computation of GCD, resultants and subresultants of two Ore polynomials (as well as usual polynomials for which we give a generalization of the resultant computation to subresultants) using a right-hand multiplication matrix which is smaller than the well-known Sylvester matrix.These results may be reused in the cryptosystem we introduce in the next chapters, though this cryptosystem is not based on q-polynomials.• In the next part of our work we define the LRPC codes (for Low Rank Parity Check Codes), a new family of codes in rank metric. These codes have a parity check matrix whose rank weight is low (and thus they can be seen as a generalization of LDPC or MDPC codes to rank metric).We present the LRPC cryptosystem, a McEliece cryptosystem in rank metric based on LRPC codes. These codes are weakly structured and so are likely to resist structural attacks. We can choose a double-circulant parity check matrix which greatly lowers the key size (we name these particular codes DC-LRPC codes).Thus the DC-LRPC cryptosystems have a good security (being based on a hard problem in coding theory), are weakly structured, have small public keys and can be quickly decoded.An attack was found for DC-LRPC cryptosystem. This attack relies on folded codes and may greatly lower the security of the cryptosystem, however it works only when the polynomial X^(k-1)+X^(k-2)+⋯+1 has a divisor with big degree. We give parameters for which the cryptosystem remains valid.
|
54 |
Codes de Gabidulin en caractéristique nulle : application au codage espace-temps / Gabidulin codes in characteristic 0 : applications to space-time codingRobert, Gwezheneg 04 December 2015 (has links)
Les codes espace-temps sont des codes correcteurs dédiés aux transmissions MIMO. Mathématiquement, un code espace-temps est un ensemble fini de matrices complexes. Ses performances dépendent de plusieurs critères, dont la distance minimale en métrique rang. Les codes de Gabidulin sont des codes dans cette métrique, connus pour leur optimalité et pour l'existence d'algorithmes de décodage efficaces. C'est pourquoi ils sont utilisés pour concevoir des codes espace-temps. La principale difficulté est alors de construire des matrices complexes à partir de matrices binaires. Les travaux présentés dans ce documents consistent à généraliser les codes de Gabidulin à des corps de nombres, en particulier des extensions cyclique. Nous verrons qu'ils ont les mêmes propriétés que leurs analogues sur les corps finis. Nous étudierons plusieurs modèles d'erreurs et d'effacements et présenterons un algorithme qui permettra de retrouver l'information transmise avec une complexité quadratique. En calculant dans des corps infinis, nous serons confrontés au problème de la taille des éléments, qui augmente exponentiellement au gré des calculs. Pour éviter ce désagrément, nous verrons qu'il est possible de réduire le code afin de calculer dans un corps fini. Enfin, nous proposerons une famille de codes espace-temps dont la construction est basée sur les codes de Gabidulin généralisés. Nous verrons que leurs performances sont similaires à celles des codes existants, et qu'ils disposent d'une structure supplémentaire. / Space-time codes are error correcting codes dedicated to MIMO transmissions. Mathematically, a space-time code is a finite family of complex matrices. Its preformances rely on several parameters, including its minimal rank distance. Gabidulin codes are codes in this metric, famous for their optimality and thanks to efficient decoding algorithms. That's why they are used to design space-time codes. The main difficulty is to design complex matrices from binary matrices. The aim of the works collected here is to generalize Gabidulin codes to number fields, especially cyclique extesnions. We see that they have the same properties than Gabidulin codes over finite fields. We study several errors and erasures models and introduce a quadratic algorithm to recover transmitted information. When computing in finite fields, we are faced with the growing size problem. Indeed, the size of the coefficients grows exponentielly along the algorithm. To avoid this problem, it is possible to reduce the code, in order to compute in a finite field. Finally, we design a family of space-time codes, based on generalised Gabidulin codes. We see that our codes have performances similar to those of existing codes, and that they have additional structure.
|
55 |
Codes correcteurs quantiques pouvant se décoder itérativement / Iteratively-decodable quantum error-correcting codesMaurice, Denise 26 June 2014 (has links)
On sait depuis vingt ans maintenant qu'un ordinateur quantique permettrait de résoudre en temps polynomial plusieurs problèmes considérés comme difficiles dans le modèle classique de calcul, comme la factorisation ou le logarithme discret. Entre autres, un tel ordinateur mettrait à mal tous les systèmes de chiffrement à clé publique actuellement utilisés en pratique, mais sa réalisation se heurte, entre autres, aux phénomènes de décohérence qui viennent entacher l'état des qubits qui le constituent. Pour protéger ces qubits, on utilise des codes correcteurs quantiques, qui doivent non seulement être performants mais aussi munis d'un décodage très rapide, sous peine de voir s'accumuler les erreurs plus vite qu'on ne peut les corriger. Une solution très prometteuse est fournie par des équivalents quantiques des codes LDPC (Low Density Parity Check, à matrice de parité creuse). Ces codes classiques offrent beaucoup d'avantages : ils sont faciles à générer, rapides à décoder (grâce à un algorithme de décodage itératif) et performants. Mais leur version quantique se heurte (entre autres) à deux problèmes. On peut voir un code quantique comme une paire de codes classiques, dont les matrices de parité sont orthogonales entre elles. Le premier problème consiste alors à construire deux « bons » codes qui vérifient cette propriété. L'autre vient du décodage : chaque ligne de la matrice de parité d'un des codes fournit un mot de code de poids faible pour le second code. En réalité, dans un code quantique, les erreurs correspondantes sont bénignes et n'affectent pas le système, mais il est difficile d'en tenir compte avec l'algorithme de décodage itératif usuel. On étudie dans un premier temps une construction existante, basée sur un produit de deux codes classiques. Cette construction, qui possède de bonnes propriétés théoriques (dimension et distance minimale), s'est avérée décevante dans les performances pratiques, qui s'expliquent par la structure particulière du code produit. Nous proposons ensuite plusieurs variantes de cette construction, possédant potentiellement de bonnes propriétés de correction. Ensuite, on étudie des codes dits q-Aires~: ce type de construction, inspiré des codes classiques, consiste à agrandir un code LDPC existant en augmentant la taille de son alphabet. Cette construction, qui s'applique à n'importe quel code quantique 2-Régulier (c'est-À-Dire dont les matrices de parité possèdent exactement deux 1 par colonne), a donné de très bonnes performances dans le cas particulier du code torique. Ce code bien connu se décode usuellement très bien avec un algorithme spécifique, mais mal avec l'algorithme usuel de propagation de croyances. Enfin, un équivalent quantique des codes spatialement couplés est proposé. Cette idée vient également du monde classique, où elle améliore de façon spectaculaire les performances des codes LDPC : le décodage s'effectue en temps quasi-Linéaire et atteint, de manière prouvée, la capacité des canaux symétriques à entrées binaires. Si dans le cas quantique, la preuve éventuelle reste encore à faire, certaines constructions spatialement couplées ont abouti à d'excellentes performances, bien au-Delà de toutes les autres constructions de codes LDPC quantiques proposées jusqu'à présent. / Quantum information is a developping field of study with various applications (in cryptography, fast computing, ...). Its basic element, the qubit, is volatile : any measurement changes its value. This also applies to unvolontary measurements due to an imperfect insulation (as seen in any practical setting). Unless we can detect and correct these modifications, any quantum computation is bound to fail. These unwanted modifications remind us of errors that can happen in the transmission of a (classical) message. These errors can be accounted for with an error-Correcting code. For quantum errors, we need to set quantum error-Correcting codes. In order to prevent the clotting of errors that cannot be compensated, these quantum error-Correcting codes need to be both efficient and fast. Among classical error-Correcting codes, Low Density Parity Check (LDPC) codes provide many perks: They are easy to create, fast to decode (with an iterative decoding algorithme, known as belief propagation) and close to optimal. Their quantum equivalents should then be good candidates, even if they present two major drawbacks (among other less important ones). A quantum error correction code can be seen as a combination of two classical codes, with orthogonal parity-Check matrices. The first issue is the building of two efficient codes with this property. The other is in the decoding: each row of the parity-Check matrix from one code gives a low-Weight codeword of the other code. In fact, with quantum codes, corresponding errors do no affect the system, but are difficult to account for with the usual iterative decoding algorithm. In the first place, this thesis studies an existing construction, based on the product of two classical codes. This construction has good theoritical properties (dimension and minimal distance), but has shown disappointing practical results, which are explained by the resulting code's structure. Several variations, which could have good theoritical properties are also analyzed but produce no usable results at this time. We then move to the study of q-Ary codes. This construction, derived from classical codes, is the enlargement of an existing LDPC code through the augmentation of its alphabet. It applies to any 2-Regular quantum code (meaning with parity-Check matrices that have exactly two ones per column) and gives good performance with the well-Known toric code, which can be easily decoded with its own specific algorithm (but not that easily with the usual belief-Propagation algorithm). Finally this thesis explores a quantum equivalent of spatially coupled codes, an idea also derived from the classical field, where it greatly enhances the performance of LDPC codes. A result which has been proven. If, in its quantum form, a proof is still not derived, some spatially-Coupled constructions have lead to excellent performance, well beyond other recent constuctions.
|
56 |
Codes with locality : constructions and applications to cryptographic protocols / Codes à propriétés locales : constructions et applications à des protocoles cryptographiquesLavauzelle, Julien 30 November 2018 (has links)
Les codes localement corrigibles ont été introduits dans le but d'extraire une partie de l'information contenue dans un mot de code bruité, en effectuant un nombre limité de requêtes à ses symboles, ce nombre étant appelé la localité du code. Ces dernières années ont vu la construction de trois familles de tels codes, dont la localité est sous-linéaire en la taille du message, et le rendement est arbitrairement grand. Ce régime de paramètres est particulièrement intéressant pour des considérations pratiques.Dans cette thèse, nous donnons une rapide revue de littérature des codes localement corrigibles, avant d'en proposer un modèle combinatoire générique, à base de block designs. Nous définissons et étudions ensuite un analogue, dans le cas projectif, des relèvements affine de codes introduits par Guo, Kopparty et Sudan. Nous établissons par ailleurs plusieurs liens entre ces deux familles, pour finir par une analyse précise de la structure monomiale de ces codes dans le cas du relèvement plan.Une deuxième partie de la thèse se focalise sur l'application de ces codes à deux protocoles cryptographiques. D'abord, nous proposons un protocole de récupération confidentielle d'information (private information retrieval, PIR) à partir de codes basés sur des designs transversaux, dont la taille des blocs s'apparente à la localité d'un code localement corrigible. Les protocoles ainsi construits ont l'avantage de n'exiger aucun calcul pour les serveurs, et de présenter une faible redondance de stockage ainsi qu'une complexité de communication modérée. Ensuite, nous donnons une construction générique de preuve de récupérabilité (proof of retrievability, PoR) à base de codes admettant une riche structure d'équations de parité à petit poids. Nous en donnons finalement une analyse de sécurité fine ainsi que plusieurs instanciations fondées sur des codes à propriétés locales. / Locally correctable codes (LCCs) were introduced in order to retrieve pieces of information from a noisy codeword, by using a limited number of queries to its symbols, this number being called the locality. Three main families of LCCs reaching sublinear locality and arbitrarily high rate have been built so far. This specific range of parameters is of particular interest concerning practical applications of LCCs.In this thesis, after giving a state of the art for LCCs, we study how they can be built using block designs. We then give an analogue over projective spaces of the family of affine lifted codes introduced by Guo, Kopparty and Sudan. We exhibit several links between both families, and we give a precise analysis of the monomial structure of the code in the case of the lifting of order 2.The second part of the thesis focuses on the application of these codes to two cryptographic protocols. We first build a new private informatin retrieval (PIR) protocol from codes based on transversal designs, whose block size defines the locality of the code. Our construction features no computation on the server side, low storage overhead and moderate communication complexity. Then, we propose a new generic construction of proof-of-retrievability (PoR) that uses codes equipped with an elaborate structure of low-weight parity-check equations. We give a rigorous analysis of the security of our scheme, and we finally propose practical instantiations based on codes with locality.
|
57 |
Mitigating error propagation of decision feedback equalization in boradband communicationsWang, Rujiang 13 April 2018 (has links)
L'interférence inter-symboles (ISI) représente un des obstacles majeurs à l'obtention de communications numériques fiables. Sauf pour le cas particulier des systèmes de signalisation à réponse partielle, le taux ISI doit être réduit le plus possible pour obtenir les communications numériques les plus fiables possibles. Pour les communications numériques à large bande , une des techniques les plus utilisées pour minimiser le taux ISI est l'égalisation. Les égalisateurs décisionnels à contre-réaction (DFE) sont parmi les structures les plus fréquemment utilisées, à cause de leur simplicité et de leur bonne performance. Cette thèse s'attaque au problème de la diminution de la propagation des erreurs dans un egalisateur décisionnel à contre réaction basé sur l'erreur quadratique moyenne (MMSE-DFE). Les DFE constituent une part importante des communications numériques modernes. De façon à réduire la propagation des erreurs dans les DFE, ce qui est de fait la limitation la plus importante de ceux-ci, un modèle basé sur l'erreur quadratique moyenne (MSE) est proposé. En s'appuyant sur ce nouveau modèle, les pondérations des filtres DFE, les éminceurs d'effacement (erasure slicer) et les éminceurs souples (soft slicer) peuvent être optimisés. Après une analyse théorique, on procède aux simulations numériques de ces modèles. Ces derniers sont relativement simples à implanter, ce qui contraste avec les modèles traditionnels basés sur les chaînes de Markov. Simultanément, on obtient une précision de prédiction qui se compare très avantageusement à celle obtenue avec les critères conventionnels basés sur l'erreur quadratique moyenne. On constate que l'éminceur souple optimal obtenu excède celui obtenu par l'optimisation conjointe DFE des pondérations et un éminceur à effacement. Les filtres de pondération DFE avec un éminceur optimal souple peuvent être considérés comme un sytème MMSE DFE vrai. La seconde contribution de ce travail de thèse consiste en une nouvelle forme de codage qui interagit avec la propagation des erreurs dans un DFE pour les modulations d'ordre supérieur. Les bits redondantes dans le diagramme d'éparpillement de la nouvelle modulation obtenue augmentent de façon dramatique l'immunité à la propagation des erreurs pour les symboles ayant le même niveau moyen d'énergie. De plus, la méthode proposée n'introduit pas de délais de décodage additionnels et la robustesse à la propagation des erreurs est néanmoins maintenue, même lorsque les pondérations de contre-réaction sont grandes par rapport à celles d'un DFE conventionnel. Globalement, cette thèse explore plusieurs moyens pour combattre la propagation des erreurs dans les DFE. Cette propagation est difficile à analyser surtout à cause de la non-linéarité de l'éminceur dans la boucle de contre réaction. Notre étude démontre que l'introduction de la propagation des erreurs dans le modèle du DFE-MSE conduit à une meilleure optimisation du DFE. L'approximation statistique du bruit et de l'ISI avant l'éminceur s'avère très appropriée pour la simulation numérique. Des connaissances additionnelles sur l'utilisation des DFE dans les canaux large bande ont également été obtenues. Un élément fondamental de nos travaux est la démonstration de l'exigence cyclique en transmission pour les égalisateurs à porteuse unique dans le domaine de la fréquence (SC-FDE). Bien que le traitement du signal en milieu fréquentiel soit largement accepté comme technique pour réduire les efforts de calcul requis, l'analyse théorique et la sirnulation révèlent qu'il y a également un autre avantage au traitement dans le domaine des fréquences. En effet, on montre que lorsque la réponse impulsionnelle du canal est plus longue que le préfixe cyclique du SC-FDE, un traitement dans le domaine fréquentiel amène une meilleure fidélité du signal qu'un traitement dans le temps. On a également regardé l'effet de la limitation de la largeur de bande pour un SC-FDE. Les résultats obtenus montrent qu'il existe une diversité de fréquences aux deux extrémités des secteurs des FFT. Ceci peut amener des idées directrices pour la réalisation physique des SC-FDE, particulièrement pour tenir compte du fait que les caractéristiques des secteurs de FFT requièrent des algorithmes différents pour un canal soumis à l'évanouissement.
|
58 |
Polynomes sur les corps finis pour la cryptographie / Polynomials over finite fields for cryptographyCaullery, Florian 28 May 2014 (has links)
Les fonctions de F_q dans lui-même sont des objets étudiés dans de divers domaines tels que la cryptographie, la théorie des codes correcteurs d'erreurs, la géométrie finie ainsi que la géométrie algébrique. Il est bien connu que ces fonctions sont en correspondance exacte avec les polynômes en une variable à coefficients dans F_q. Nous étudierons trois classes de polynômes particulières: les polynômes Presque Parfaitement Non linéaires (Almost Perfect Nonlinear (APN)), les polynômes planaires ou parfaitement non linéaire (PN) et les o-polynômes.Les fonctions APN sont principalement étudiées pour leurs applications en cryptographie. En effet, ces fonctions sont celles qui offre la meilleure résistance contre la cryptanalyse différentielle.Les polynômes PN et les o-polynômes sont eux liés à des problèmes célèbres de géométrie finie. Les premiers décrivent des plans projectifs et les seconds sont en correspondance directe avec les ovales et hyperovales de P^2(F_q). Néanmoins, leurs champ d'application a été récemment étendu à la cryptographie symétrique et à la théorie des codes correcteurs d'erreurs.L'un des moyens utilisé pour compléter la classification est de considérer les polynômes présentant l'une des propriétés recherchées sur une infinité d'extension de F_q. Ces fonctions sont appelées fonction APN (respectivement PN ou o-polynômes) exceptionnelles.Nous étendrons la classification des polynômes APN et PN exceptionnels et nous donneront une description complète des o-polynômes exceptionnels. Les techniques employées sont basées principalement sur la borne de Lang-Weil et sur des méthodes élémentaires. / Functions from F_q to itself are interesting objects arising in various domains such as cryptography, coding theory, finite geometry or algebraic geometry. It is well known that these functions admit a univariate polynomial representation. There exists many interesting classes of such polynomials with plenty of applications in pure or applied maths. We are interested in three of them: Almost Perfect Nonlinear (APN) polynomials, Planar (PN) polynomials and o-polynomials. APN polynomials are mostly used in cryptography to provide S-boxes with the best resistance to differential cryptanalysis and in coding theory to construct double error-correcting codes. PN polynomials and o-polynomials first appeared in finite geometry. They give rise respectively to projective planes and ovals in P^2(F_q). Also, their field of applications was recently extended to symmetric cryptography and error-correcting codes.A complete classification of APN, PN and o-polynomials is an interesting open problem that has been widely studied by many authors. A first approach toward the classification was to consider only power functions and the studies were recently extended to polynomial functions.One way to face the problem of the classification is to consider the polynomials that are APN, PN or o-polynomials over infinitely many extensions of F_q, namely, the exceptional APN, PN or o-polynomials.We improve the partial classification of exceptional APN and PN polynomials and give a full classification of exceptional o-polynomials. The proof technique is based on the Lang-Weil bound for the number of rational points in algebraic varieties together with elementary methods.
|
59 |
Méthodes de commande avancées appliquées aux viseurs. / Line of sight stabilization using advanced control techniquesHirwa, Serge 29 October 2013 (has links)
La stabilisation inertielle de ligne de visée est essentiellement un problème de rejet de perturbations : il faut rendre la ligne de visée de la caméra embarquée dans le viseur insensible aux mouvements du porteur. Les méthodes de commande robuste du type H-infini sont bien adaptées à la résolution de ce type de problème, et plus particulièrement l’approche Loop-Shaping qui repose sur des concepts de réglage de l’automatique fréquentielle classique. Cependant, les correcteurs obtenus via cette approche sont généralement d’ordre élevé et donc difficilement implémentables sur le calculateur embarqué du viseur.Dans cette thèse, nous avons proposé des méthodologies de synthèse de correcteurs robustes d’ordre réduit et/ou de structure fixée. Pour cela, nos travaux ont été axés sur :- L’optimisation pour la synthèse H-infini à ordre et/ou structure fixée. Tout d’abord nous avons exploré les possibilités offertes par l’optimisation sous contraintes LMI (Linear Matrix Inequalities). Celles-ci se sont avérées limitées, bien que de nombreux algorithmes aient été proposés dans ce cadre depuis le début des années 90. Ensuite, nous avons opté pour l’optimisation non lisse. En effet des outils numériques récemment développés rendent accessible cette approche, et leur efficacité s’est avéré indéniable.- L’adaptation au cadre particulier du critère H-infini Loop-Shaping.La structure particulière de ce critère de synthèse a été exploitée afin de mieux prendre en compte les pondérations, et d’améliorer la réduction d’ordre du correcteur final. Enfin, une approche basée uniquement sur le réglage graphique d’un gabarit de gain fréquentiel en boucle ouverte est proposée. Ces différentes méthodologies sont illustrées, tout au long de la thèse, sur un viseur dont le modèle a été identifié à partir de mesures expérimentales. / Inertial line of sight stabilization is a disturbance rejection problem: the goal is to hold steady in the inertial space, the line of sight of a camera, which is carried on a mobile vehicle. H-infinity robust control techniques are well suited for this type of problem, in particular the Loop-Shaping approach which relies on classical frequency domain concepts. However, this approach results in high order controllers which are hardly implementable on the real time embedded electronic unit of the sight system.In this thesis, fixed order and fixed structure controller design methodologies are proposed. This development follows two main axis: - Fixed order H-infinity Optimization. First, fixed order controllers have been investigated through the LMI (Linear Matrix Inequalities) optimization framework. However the numerical efficiency of this approach is still limited, despite the large amount of research in this area since the 90’s. Then, we used recently developed and more efficient tools that recast the fixed order H-infinity synthesis problem as a nonsmooth optimization problem.- Adaptation to the H-infinity Loop-Shaping frameworkWe adapted the 4 block H-infinity criterion in order to include the weighting filters in the fixed order controller optimization, which enhance the final controller order reduction. Then, we proposed a fixed order controller design approach, based only on graphically tuning a target open loop frequency gain.
|
60 |
Protection des contenus multimédias pour la certification des données / Protection of multimedia contents for data certificationLefèvre, Pascal 15 June 2018 (has links)
Depuis plus de vingt ans, l'accès à la technologie est devenu très facile étant donné son omniprésence dans le quotidien de chacun et son faible coût. Cet accès aux technologies du numérique permet à toute personne équipée d'un ordinateur ou d'un smartphone de visualiser et de modifier des contenus digitaux. Avec les progrès en matière de stockage en ligne, la quantité de contenus digitaux tels que le son, l'image ou la vidéo sur internet a explosé et continue d'augmenter.Savoir identifier la source d'une image et certifier si celle-ci a été modifiée ou non sont des informations nécessaires pour authentifier une image et ainsi protéger la propriété intellectuelle et les droits d’auteur par exemple. Une des approches pour résoudre ces problèmes est le tatouage numérique. Il consiste à insérer une marque dans une image qui permettra de l'authentifier.Dans cette thèse, nous étudions premièrement le tatouage numérique dans le but de proposer des méthodes plus robustes aux modifications d'image grâce aux codes correcteurs. En étudiant la structure des erreurs produites par la modification d’une image marquée, un code correcteur sera plus efficace qu’un autre. Nous proposons aussi d’intégrer de nouveaux codes correcteurs appelés codes en métrique rang pour le tatouage.Ensuite, nous proposons d’améliorer l'invisibilité des méthodes de tatouage pour les images couleur. A l’insertion d’une marque, les dégradations de l’image sont perçues différemment par le système visuel humain en fonction de la couleur. Nous proposons un modèle biologique de la perception des couleurs qui nous permet de minimiser les distorsions psychovisuelles de l’image à l’insertion.Toutes ces techniques sont testées sur des images naturelles dans un contexte d’insertion d’information. / For more than twenty years, technology has become more and more easy to access. It is omnipresent in everyday life and is low cost. It allows anyone using a computer or a smartphone to visualize and modify digital contents. Also, with the impressive progress of online massive data storage (cloud), the quantity of digital contents has soared and continues to increase. To ensure the protection of intellectual property and copyright, knowing if an image has been modified or not is an important information in order to authenticate it. One approach to protect digital contents is digital watermarking. It consists in modifying an image to embed an invisible mark which can authenticate the image. In this doctorate thesis, we first study how to improve the robustness of digital image watermarking against image processings thanks to error correcting codes. By studying the error structure produced by the image processing applied on a watermarked image, we can find an optimal choice of error correcting code for the best correction performances. Also, we propose to integrate a new type of error correcting codes called rank metric codes for watermarking applications. Then, we propose to improve the invisibility of color image watermarking methods. At the embedding step, a host image suffers some distortions which are perceived differently in function of the color by the human visual system. We propose a biological model of color perception which allows one to minimize psychovisual distortions applied on the image to protect.
|
Page generated in 0.033 seconds