• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 79
  • 78
  • 35
  • 14
  • 12
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 656
  • 102
  • 102
  • 72
  • 62
  • 61
  • 52
  • 48
  • 45
  • 39
  • 39
  • 37
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Identification des micro-mécanismes de déformation du PET amorphe et semi-cristallin in situ au cours d’un essai mécanique / Identification of the micro-mechanisms of deformation in amorphous and semi-crystalline PET in situ during a mechanical test

Ben Hafsia, Khaoula 03 June 2016 (has links)
Selon leur formulation et leur mise en forme et grâce à leur complexité microstructurale induite, les polymères thermoplastiques bénéficient d’une grande diversité de propriétés thermomécaniques. Cependant, l’évolution de la microstructure de ces matériaux au cours de leur utilisation reste difficile à identifier. Afin de mieux comprendre les modifications microstructurales ayant lieu au cours de sollicitations thermomécaniques, différentes techniques non destructives de caractérisation en temps réel et in situ ont été développées. Dans ce contexte, un Poly (Ethylène Téréphtalate) (PET) amorphe et semi-cristallin a été étudié afin de mettre en évidence l’effet de la microstructure sur les propriétés macroscopiques du matériau. Pour ce faire, plusieurs couplages de techniques expérimentales de caractérisation ont été mis en œuvre tels que la spectroscopie Raman et la diffraction/diffusion des rayons X couplées au système de VidéoTraction™ ou la spectroscopie Raman couplée à la calorimétrie différentielle à balayage (DSC) pour une caractérisation des micromécanismes de déformation et du comportement thermique du matériau respectivement. Le suivi de différentes bandes vibrationnelles judicieusement identifiées a permis d’établir un nouveau critère robuste et capable de mesurer avec exactitude le taux de cristallinité du matériau ou de remonter aux températures caractéristiques de sa morphologie (Tg, Tc, Tcc, Tf) grâce aux informations extraites d’un spectre Raman. De plus, un système de caractérisation relaxationnelle par un couplage de la spectroscopie diélectrique dynamique avec un essai de traction a été utilisé afin de mettre en évidence l’effet de la mobilité moléculaire sur la déformation élasto-visco-plastique du PET. D’un point de vue mécanique, les principaux micromécanismes de déformation ont été étudiés en temps réel pendant un essai de traction à différentes températures et vitesses de déformation vraies constantes : l’orientation macromoléculaire, l’endommagement volumique, le développement de mésophase et la cristallisation induite sous contrainte, ont été observés et quantifiés in situ en utilisant les couplages précédents au synchrotron Petra III de Hambourg et au synchrotron Elettra de Trieste. En parallèle, une étude de la mobilité moléculaire (paramètre déterminant à la prédominance de tel ou tel micromécanisme de déformation) a été menée via des analyses relaxationnelles réalisées au cours de la déformation du matériau. En complément, des expériences en temps réel, des études post mortem par les techniques précédemment citées et par radiographie X, microscopie électronique à balayage et tomographie X ont été réalisées afin d’apprécier l’influence de la relaxation mécanique du PET. / According to their formulations and forming processes and thanks to the complexity of their induced microstructure, thermoplastic polymers show a wide range of thermomechanical properties. However, the identification of the evolution of the microstructure of these materials during their use remains difficult. To better understand the microstructural changes occurring during thermomechanical loadings, various in situ and non-destructive techniques of characterization have been used. In this context, a Poly (Ethylene Terephthalate) (PET) amorphous and semi-crystalline was studied in order to highlight the effect of the microstructure on the macroscopic properties of the material. This way, different coupling systems combining several experimental characterization techniques have been implemented such as Raman spectroscopy and X-rays diffraction/scattering coupled to the VidéoTraction™ system or Raman spectroscopy coupled with differential scanning calorimetry (DSC) for the characterization of the deformation micro-mechanisms and the thermal behavior of the material respectively. Monitoring specific vibrational bands thoroughly identified allowed the establishment of a new robust criterion which enables to accurately measure the crystallinity ratio of the material and the identification of the characteristic temperatures of its morphology (Tg, Tc, Tcc, Tm). In addition, a relaxational characterization system by coupling dynamic dielectric spectroscopy to a tensile test has been used in order to highlight the effect of molecular mobility on the elasto-visco-plastic deformation of PET. From a mechanical point of view, the main deformation micro-mechanisms have been studied in real time during a tensile test at different temperatures and constant true strain rates: macromolecular orientation, volume damage, development of mesophase and strain induced crystallization were observed and quantified in situ using the coupled characterization technics presented previously at Petra III (Hambourg) and Elettra (Trieste) synchrotrons. In parallel, a study of the molecular mobility (a determining parameter for the predominance of one deformation micromechanism to another) was conducted via relaxational analysis performed during the deformation of the material. In addition to in situ experiments, post mortem analysis by the previously mentioned technics and by X radiography, scanning electron microscopy and X tomography were performed to assess the influence of the mechanical relaxation of the polymer.
652

Structural and magnetic properties of ultrathin Fe3O4 films: cation- and lattice-site-selective studies by synchrotron radiation-based techniques

Pohlmann, Tobias 19 August 2021 (has links)
This work investigates the growth dynamic of the reactive molecular beam epitaxy of Fe3O4 films, and its impact on the cation distribution as well as on the magnetic and structural properties at the surface and the interfaces. In order to study the structure and composition of Fe3O4 films during growth, time-resolved high-energy x-ray diffraction (tr-HEXRD) and time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) measurements are used to monitor the deposition process of Fe3O4 ultrathin films on SrTiO3(001), MgO(001) and NiO/MgO(001). For Fe3O4\SrTiO3(001) is found that the film first grows in a disordered island structure, between thicknesses of 1.5nm to 3nm in FeO islands and finally in the inverse spinel structure of Fe3O4, displaying (111) nanofacets on the surface. The films on MgO(001) and NiO/MgO(001) show a similar result, with the exception that the films are not disordered in the early growth stage, but form islands which immediately exhibit a crystalline FeO phase up to a thickness of 1nm. After that, the films grown in the inverse spinel structure on both MgO(001) and NiO/MgO(001). Additionally, the tr-HAXPES measurements of Fe3O4/SrTiO3(001) demonstrate that the FeO phase is only stable during the deposition process, but turns into a Fe3O4 phase when the deposition is interrupted. This suggests that this FeO layer is a strictly dynamic property of the growth process, and might not be retained in the as-grown films. In order to characterize the as-grown films, a technique is introduced to extract the cation depth distribution of Fe3O4 films from magnetooptical depth profiles obtained by fitting x-ray resonant magnetic reflectivity (XRMR) curves. To this end, x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra are recorded as well as XRMR curves to obtain magnetooptical depth profiles. To attribute these magnetooptical depth profiles to the depth distribution of the cations, multiplet calculations are fitted to the XMCD data. From these calculations, the cation contributions at the three resonant energies of the XMCD spectrum can be evaluated. Recording XRMR curves at those energies allows to resolve the magnetooptical depth profiles of the three iron cation species in Fe3O4. This technique is used to resolve the cation stoichiometry at the surface of Fe3O4/MgO(001) films and at the interfaces of Fe3O4/MgO(001) and Fe3O4/NiO. The first unit cell of the Fe3O4(001) surface shows an excess of Fe3+ cations, likely related to a subsurface cation-vacancy reconstruction of the Fe3O4(001) surface, but the magnetic order of the different cation species appears to be not disturbed in this reconstructed layer. Beyond this layer, the magnetic order of all three iron cation species in Fe3O4/MgO(001) is stable for the entire film with no interlayer or magnetic dead layer at the interface. For Fe3O4/NiO films, we unexpectedly observe a magnetooptical absorption at the Ni L3 edge in the NiO film corresponding to a ferromagnetic order throughout the entire NiO film, which is antiferromagnetic in the bulk. Additionally, the magnetooptical profiles indicate a single intermixed layer containing both Fe2+ and Ni2+ cations.
653

Chloride penetration assessment on self-healing capability of conventional, high-performance, and ultra high-performance concrete

Doostkami, Hesam 02 September 2024 (has links)
Tesis por compendio / [ES] El hormigón, material de construcción fundamental en la ingeniería civil, ha sido muy estudiado para cuantificar y mejorar su resiliencia y vida útil. La exposi-ción prolongada a ciertas condiciones ambientales, y la carga mecánica en con-diciones de servicio, pueden resultar en la aparición de fisuras (< 0.4 mm), que no amenazan la integridad de la estructura, pero en algunos casos pueden redu-cir su durabilidad. En los últimos años, se han buscado nuevos enfoques para ob-tener la autosanación o autorreparación de fisuras en el hormigón. El hormigón autosanable se considera un enfoque prometedor para desarro-llar materiales de construcción duraderos y respetuosos con el medio ambiente. La autosanación en el hormigón implica la reducción de las fisuras, lo que reduci-ría las consecuencias negativas de su presencia. El hormigón tiene una capacidad inherente de autosanación, denominada sanación autógena, pero su capacidad es limitada. Se han investigado diversos enfoques para estimular la autosanación, incluida la introducción de productos innovadores dentro de la matriz del hor-migón o la mejora de sus capacidades inherentes. Esta tesis examina la capacidad de autosanado de varios tipos de hormigón, incluidos los convencionales, de altas prestaciones y de ultra altas prestaciones, y estudia y propone diferentes metodologías para evaluar y comparar hormigones con diferente comportamiento, como aquellos con tendencia a la multifisura-ción. Las metodologías realizadas son ensayos de cierre de fisuras, ensayos de permeabilidad y ensayos de penetración de cloruros. La tesis también examina la incorporación de diversos aditivos, como Aditivos Cristalinos, Polímeros Su-perabsorbentes, sepiolita, nanofibras de alúmina, nanocelulosa y bacterias, con el fin de estudiar su potencial mejora de la capacidad de autosanado. El objetivo de esta investigación surge de la necesidad de comprender me-jor los mecanismos de autosanado y su efecto en la durabilidad de las estructuras de hormigón. Esto incluye la evaluación y cuantificación del autosanado de dife-rentes hormigones, que sanaron en diferentes ambientes y condiciones de ini-ciación. Estos parámetros se eligen para proporcionar una evaluación integral de la respuesta del material. La aplicabilidad práctica de los resultados obtenidos se verifica en prototipos reducidos y a escala real, ampliando los experimentos más allá de las limitaciones del laboratorio y aumentando el nivel de madurez de la tecnología. Esta tesis proporciona un análisis amplio y en profundidad del hormigón au-tosanable. Los resultados obtenidos tienen el potencial no sólo de mejorar el conocimiento académico en el campo sino también de estimular mejoras en el diseño y la construcción de estructuras de hormigón duraderas y resilientes. / [CA] El formigó, un material de construcció fonamental a l'enginyeria civil, ha es-tat estudiat sovint per quantificar i millorar la seva resiliència i vida útil. L'exposi-ció perllongada a certes condicions ambientals, i la càrrega mecànica en condi-cions de servei, pot resultar en l'aparició de fisures (< 0.4 mm), que no suposen un perill per a la integritat de l'estructura, però que en alguns casos poden re-duir la seua durabilitat. En els últims anys, s'han buscat nous enfocs per obtenir l'autosanació o autoreparació de fissures al formigó. El formigó autosanable es considera un enfoc prometedor per desenvolupar materials de construcció duraders i respectuosos amb el medi ambient. L'auto-sanació al formigó implica la reducció de les fissures, cosa que reduiria les con-seqüències negatives de la seva presència. El formigó té una capacitat inherent d'autosanació, anomenada sanació autògena, però la seva capacitat és limitada. S'han investigat diversos enfocs per estimular l'autosanació, inclosa la introduc-ció de productes innovadors dins la matriu del formigó o la millora de les capaci-tats inherents. Aquesta tesi examina la capacitat d'autosanat de diversos tipus de formigó, inclosos els convencionals, d'altes prestacions i d'ultra altes prestacions, i estudia i proposa diferents metodologies per avaluar i comparar formigons amb com-portament diferent, com aquells amb tendència a la multifisuració. Les metodo-logies realitzades són assaigs de tancament de fissures, assaigs de permeabilitat i assaigs de penetració de clorurs. La tesi també examina la incorporació de diver-sos additius, com Additius Cristal·lins, Polímers Superabsorbents, sepiolita, nano-fibres d'alumini, nanocel·lulosa i bactèries, per tal d'estudiar la potencial millora de la capacitat d'autosanat. L'objectiu d'aquesta investigació sorgeix de la necessitat de comprendre mi-llor els mecanismes dautosanat i el seu efecte en la durabilitat de les estructures de formigó. Això inclou l'avaluació i la quantificació de l'autosanat de diferents formigons, que van curar-se en diferents ambients i condicions d'iniciació. Aquests paràmetres es trien per proporcionar una avaluació integral de la res-posta del material. L'aplicabilitat pràctica dels resultats obtinguts es verifica en prototips reduïts ia escala real, ampliant els experiments més enllà de les limita-cions del laboratori i augmentant el nivell de maduresa de la tecnologia. Aquesta tesi proporciona una anàlisi àmplia i en profunditat del formigó au-tosanable. Els resultats obtinguts tenen el potencial no només de millorar el coneixement acadèmic al camp sinó també d'estimular millores en el disseny i la construcció d'estructures de formigó duraderes i resilients. / [EN] Concrete, a primary construction material in civil engineering, has been fre-quently examined to quantify and improve its resilience and lifespan. Prolonged exposure to certain environmental conditions, as well as mechanical loading in service conditions, may result in the development of small cracks (< 0.4 mm), which do not threaten the safety of the structure but, in some cases, may reduce its durability. In the last few years, researchers have pursued novel approaches to obtain self-healing or self-repair of cracks in concrete. Self-healing concrete has emerged as a promising approach to developing durable and environmentally friendly construction materials. Self-healing in concrete involves the reduction of cracks, which would reduce the negative consequences of its presence. Concrete has an inherent self-healing capacity and autogenous healing, but its capability is limited. Diverse approaches have been investigated to stimulate self-healing, including introducing innovative products inside concrete matrix or improving its inherent abilities. The current thesis examines the self-healing capability of various concrete types, including conventional, high-performance, and ultra-high-performance concretes, and studies and proposes different methodologies for evaluating and comparing concretes with different behavior, such as those with the tendency to show multi-cracking. The methodologies performed are crack closing tests, permeability tests, and chloride penetration tests. The thesis also examines the incorporation of various additives, such as Crystalline Admixture, Superabsor-bent Polymers, sepiolite, alumina nano-fibers, nanocellulose, and bacteria, to study their potential enhancement of the self-healing capability. The purpose of this research comes from the need to comprehend the self-healing mechanisms and their influence on the durability of concrete structures. This includes the evaluation and quantification of the material's performance in different concretes that healed in different healing exposures and with different initiation conditions. These parameters are chosen to provide a comprehensive assessment of the material's performance. The practical applicability of the re-sults obtained is verified in reduced and full-scale prototypes, upgrading the experiments beyond the limitations of the laboratory and increasing the Tech-nology Readiness Level. This thesis provides a broad and in-depth analysis of self-healing concrete, ex-amining its potential. The findings cannot only enhance academic knowledge but also stimulate improvements in the design and construction of long-lasting and resilient concrete structures. / Doostkami, H. (2024). Chloride penetration assessment on self-healing capability of conventional, high-performance, and ultra high-performance concrete [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207287 / Compendio
654

Caractérisation physique et chimique des substances à activité thérapeutique : application aux études de profil de stabilité et de préformulation / Physical and chemical characterization of active pharmaceutical ingredients in the framework of preformulation and stability studies

Gana, Inès 21 May 2015 (has links)
Le développement d’un médicament pour une cible thérapeutique donnée passe par plusieurs étapes qui se résument en une étape de criblage, une phase préclinique et plusieurs phases cliniques. Ces étapes permettent de sélectionner une substance active et de démontrer son efficacité thérapeutique et sa sécurité toxicologique. Ces deux critères définissent la qualité du médicament qui, une fois démontrée, doit être garantie pendant toute sa durée de validité. La qualité est évaluée au moyen d’études de stabilité qui sont réalisées d’abord sur la matière première de la substance active au cours de la phase de pré-développement du médicament, ensuite sur le produit fini. La stabilité intrinsèque de la substance active concerne à la fois ses propriétés chimiques et ses propriétés physiques qui sont liées à la nature de la substance. L’étude de stabilité repose d’abord sur la caractérisation de ces propriétés, et ensuite sur l’étude de la sensibilité de la substance à l’égard des facteurs environnementaux pouvant modifier les propriétés intrinsèques de la substance. L’approche adoptée dans ce travail repose d’une part sur l’évaluation de la stabilité chimique c’est à dire de la réactivité chimique des substances à usage pharmaceutique au travers des études de pureté chimique et des études de dégradation forcée de ces substances en solution, et d’autre part, sur l’évaluation de la stabilité physique. Dans ce cadre, l’étude du polymorphisme cristallin revêt une grande importance, tout comme l’aptitude à la formation d’hydrates ou de solvates. Cette étude, basée sur la thermodynamique, consiste pour l’essentiel à construire un diagramme de phases pression-température permettant de définir les domaines de stabilité relative des différentes formes cristallines. Cinq substances actives, existant à l’état solide et entrant dans la composition de médicaments administrés par voie orale, ont été étudiées dans le cadre de ce travail. L’analyse chimique du tienoxolol, présentant un effet anti-hypertenseur, a montré qu’il est très sensible à l’hydrolyse et à l’oxydation. Sept produits de dégradation ont été identifiés pour ce produit dont un schéma probable de fragmentation a été établi. Des diagrammes de phases pression-température ont été construits pour le bicalutamide et le finastéride, médicaments du cancer de prostate, en utilisant une approche topologique basée simplement sur les données disponibles dans la littérature. Cette étude a montré que la relation thermodynamique (énantiotropie ou monotropie) entre les formes cristallines sous conditions ordinaires peut être modifiée en fonction de la température et de la pression. Ce résultat est important pour la production des médicaments car il montre comment une telle information peut être obtenue par des mesures simples et accessibles aux laboratoires de recherche industrielle, sans que ces derniers soient contraints d’expérimenter sous pression. La méthode topologique de construction de diagramme de phases a été validée ensuite en la comparant à une méthode expérimentale consistant à suivre, par analyse thermique, des transitions de phases en fonction de la pression. La méthode expérimentale a été appliquée à deux composés, la benzocaine, anesthésique local, et le chlorhydrate de cystéamine, médicament utilisé pour les cystinoses. Les deux formes étudiées de benzocaine présentent une relation énantiotrope qui se transforme en relation monotrope à haute pression. Une nouvelle forme cristalline (forme III) du chlorhydrate de cystéamine a été découverte au cours de ce travail. La relation thermodynamique entre cette forme III et la forme I est énantiotrope dans tout le domaine de température et de pression. De plus, le chlorhydrate de cystéamine, classé hygroscopique, a fait l’objet d’une étude quantitative de sa sensibilité à l’eau, montrant qu’il devient déliquescent sans formation préalable d’hydrate (...) / The development of a drug for a given therapeutic target requires several steps, which can be summarized by drug screening, a preclinical phase and a number of clinical phases. These steps allow the selection of an active substance and a verification of its therapeutic efficacy and toxicological safety. The latter two criteria define the quality of the drug, which once demonstrated, must be guaranteed throughout its shelf life. Quality is assessed through stability studies that are carried out with the raw material of the active substance (preformulation phase) and with the final product. The intrinsic stability of the active substance depends on its chemical and physical properties and their characterization is the core of the stability studies, which in addition consists of sensitivity studies of the active pharmaceutical ingredient (API) for environmental factors that can modify the intrinsic properties of the substance. The approach presented in this work is based on the one hand on the assessment of the chemical stability, i.e. the reactivity of APIs through chemical purity studies and forced degradation in solution, and on the other hand on the assessment of the physical stability. For the latter, crystalline polymorphism is of great importance, as is the ability of the API to form hydrates or solvates. The study of crystalline polymorphism is based on the construction of pressure-temperature phase diagrams in accordance with thermodynamic requirements leading to the stability condition domains of the different crystalline forms. The stability behavior of five APIs used or meant for oral applications has been studied as part of this work. The chemical analysis of tienoxolol, an antihypertensive drug, has demonstrated its sensitivity for hydrolysis and oxidation. Seven degradation products were identified and patterns of fragmentation have been established. Pressure-temperature phase diagrams have been constructed for bicalutamide and finasteride, drugs against prostate cancer, using a topological approach based on data available in the literature. The study demonstrates that the thermodynamic relationship (enantiotropy or monotropy) between crystalline forms under ordinary conditions can change depending on the pressure. This is important for drug development as it demonstrates how stability information can be obtained by standard laboratory measurements accessible to industrial research laboratories without the necessity to carry out experiments under pressure. The topological approach for the construction of phase diagrams has subsequently been validated by measuring transition temperatures as a function of pressure. Experiments have been carried out with benzocaine, a local anesthetic, and with cysteamine hydrochloride, a drug used against cystinosis. Two crystalline forms were observed in the case of benzocaine. They exhibit an enantiotropic relationship that becomes monotropic at high pressure. For cysteamine hydrochloride, a new crystalline form (form III) was discovered. The thermodynamic relationship between the new form III and the known form I is enantiotropic for the entire temperature and pressure range. Cysteamine hydrochloride’s sensitivity to water has been studied, as it is hygroscopic. It has been demonstrated that it becomes deliquescent in the presence of water and no trace of a hydrate has been found. Finally, a study combining thermal and chromatographic methods showed that, under the effect of temperature, cysteamine hydrochloride turns into cystamine in the solid as well as in the liquid state, The latter is known to be an important impurity of cysteamine hydrochloride. In conclusion, the approach developed in this work allowed to characterize the stability properties of a number of APIs and to determine the factors that may change these properties and influence the intrinsic stability (...)
655

Haftmechanismen kaltgasgespritzter Aluminiumschichten auf keramischen Oberflächen

Drehmann, Rico 17 October 2017 (has links) (PDF)
Aluminiumschichten werden durch Kaltgasspritzen auf fünf verschiedene poly- und monokristalline keramische Werkstoffe (Al2O3 , AlN, SiC, Si3N4 , MgF2 ) appliziert. Dabei erfolgt eine Variation der Substrattemperatur und der Partikelgröße. Ausgewählte Proben werden einer nachfolgenden Wärmebehandlung unterzogen. Die im Fokus der Arbeit stehende Erforschung der an der Grenzfläche zwischen Aluminium und Keramik wirkenden Haftmechanismen erfolgt sowohl mithilfe einer mechanischen Charakterisierung (Stirnzugversuche) als auch durch verschiedene mikroskopische, spektroskopische und hochauflösende Methoden. Die Bewertung der Untersuchungsergebnisse zeigt, dass im Allgemeinen ein Anstieg der Haftzugfestigkeit mit steigender Substrat- und Wärmebehandlungstemperatur sowie mit zunehmender thermischer Effusivität des Substratwerkstoffs zu verzeichnen ist. Eine vergleichbare Auswirkung hat innerhalb bestimmter Grenzen die Zunahme der Partikelgröße. Mit der Heteroepitaxie wird neben der mechanischen Verklammerung ein weiterer wichtiger Haftmechanismus kaltgasgespritzter metallischer Schichten auf keramischen Substraten identifiziert. Die Ausbildung von quasiadiabatischen Scherbändern und statische Rekristallisationsprozesse wirken dabei als wichtige begleitende Mechanismen. Als Nachweis für heteroepitaktisches Wachstum ist die Existenz von (annähernd) parallelen, senkrecht oder geneigt zur Grenzfläche stehenden Ebenenpaaren, die eine geringe Gitterfehlanpassung aufweisen, zu werten. Der Vergleich mit PVD-Schichten zeigt, dass in Bezug auf die Orientierung von Gitterebenen verschiedene Mechanismen der Heteroepitaxie existieren, die von der atomaren Mobilität des Beschichtungswerkstoffs bestimmt werden.
656

Haftmechanismen kaltgasgespritzter Aluminiumschichten auf keramischen Oberflächen

Drehmann, Rico 17 October 2017 (has links)
Aluminiumschichten werden durch Kaltgasspritzen auf fünf verschiedene poly- und monokristalline keramische Werkstoffe (Al2O3 , AlN, SiC, Si3N4 , MgF2 ) appliziert. Dabei erfolgt eine Variation der Substrattemperatur und der Partikelgröße. Ausgewählte Proben werden einer nachfolgenden Wärmebehandlung unterzogen. Die im Fokus der Arbeit stehende Erforschung der an der Grenzfläche zwischen Aluminium und Keramik wirkenden Haftmechanismen erfolgt sowohl mithilfe einer mechanischen Charakterisierung (Stirnzugversuche) als auch durch verschiedene mikroskopische, spektroskopische und hochauflösende Methoden. Die Bewertung der Untersuchungsergebnisse zeigt, dass im Allgemeinen ein Anstieg der Haftzugfestigkeit mit steigender Substrat- und Wärmebehandlungstemperatur sowie mit zunehmender thermischer Effusivität des Substratwerkstoffs zu verzeichnen ist. Eine vergleichbare Auswirkung hat innerhalb bestimmter Grenzen die Zunahme der Partikelgröße. Mit der Heteroepitaxie wird neben der mechanischen Verklammerung ein weiterer wichtiger Haftmechanismus kaltgasgespritzter metallischer Schichten auf keramischen Substraten identifiziert. Die Ausbildung von quasiadiabatischen Scherbändern und statische Rekristallisationsprozesse wirken dabei als wichtige begleitende Mechanismen. Als Nachweis für heteroepitaktisches Wachstum ist die Existenz von (annähernd) parallelen, senkrecht oder geneigt zur Grenzfläche stehenden Ebenenpaaren, die eine geringe Gitterfehlanpassung aufweisen, zu werten. Der Vergleich mit PVD-Schichten zeigt, dass in Bezug auf die Orientierung von Gitterebenen verschiedene Mechanismen der Heteroepitaxie existieren, die von der atomaren Mobilität des Beschichtungswerkstoffs bestimmt werden.

Page generated in 0.0719 seconds