• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente / Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope

Kochersperger, Matthieu 09 July 2018 (has links)
Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un premier temps les cycles proches et les cycles évanescents associés à un tel morphisme. Dans un deuxième temps nous cherchons à comprendre la théorie de Hodge des morphismes sans pente.La première partie de cette thèse est consacrée à apporter des compléments au travail de P. Maisonobe sur les morphismes sans pente. Nous commençons par construire un morphisme de comparaison entre cycles proches algébriques (pour les $mathscr{D}$-modules) et cycles proches topologiques (pour les faisceaux pervers). Nous montrons ensuite que ce morphisme est un isomorphisme dans le cas d'un morphisme sans pente. Enfin nous construisons un foncteur cycles évanescents topologiques pour un morphisme sans pente et nous démontrons que ce foncteur et le foncteur cycles proches topologiques de P. Maisonobe se placent dans le diagramme de triangles exacts attendu.Dans la seconde partie de cette thèse nous étudions les morphismes sans pente pour les modules de Hodge mixtes. Nous démontrons dans un premier temps la commutativité des cycles proches et des cycles évanescents itérés appliqués à un module de Hodge mixte dans le cas d'un morphisme sans pente. Dans un deuxième temps nous définissons la notion << strictement sans pente >> pour un module de Hodge mixte et nous démontrons sa stabilité par image directe propre. Nous démontrons comme application la compatibilité de la filtration de Hodge et des filtrations de Kashiwara-Malgrange pour certains modules de Hodge purs supportés sur une hypersurface à singularités quasi-ordinaires. / In this thesis we are interested in singularities of complex varieties defined as the zero locus of a morphism without slope. In a first time we study nearby cycles and vanishing cycles associated to such morphisms. In a second time we want to understand Hodge theory of morphisms without slope.The first part of this thesis is devoted to add some complements to the work of P. Maisonobe on morphisms without slope. We start with the construction of a comparison morphism between algebraic nearby cycles (for $mathscr{D}$-modules) and topological nearby cycles (for perverse sheaves). Then we show that this morphism is an isomorphism in the case of a morphism without slope. Finally we construct a topological vanishing cycles functor for a morphism without slope et we prove that this functor and the topological nearby cycles functor of P. Maisonobe fit into the expected diagram of exact triangles.In the second part of the thesis we study morphisms without slope for mixed Hodge modules. We first show the commutativity of iterated nearby cycles and vanishing cycles applied to a mixed Hodge module in the case of a morphism without slope. Second we define the notion "strictly without slope" for a mixed Hodge module and we show that it is preserved by proper direct image. As an application we prove the compatibility of the Hodge filtration and Kashiwara-Malgrange filtrations for some pure Hodge modules with support an hypersurface with quasi-ordinary singularities.
12

Intersection cohomology of hypersurfaces

Wotzlaw, Lorenz 28 January 2008 (has links)
Bekannte Theoreme von Carlson und Griffiths gestatten es, die Variation von Hodgestrukturen assoziiert zu einer Familie von glatten Hyperflächen sowie das Cupprodukt auf der mittleren Kohomologie explizit zu beschreiben. Wir benutzen M. Saitos Theorie der gemischten Hodgemoduln, um diesen Kalkül auf die Variation der Hodgestruktur der Schnittkohomologie von Familien nodaler Hyperflächen zu verallgemeinern. / Well known theorems of Carlson and Griffiths provide an explicit description of the variation of Hodge structures associated to a family of smooth hypersurfaces together with the cupproduct pairing on the middle cohomology. We give a generalization to families of nodal hypersurfaces using M. Saitos theory of mixed Hodge modules.
13

<i>A</i>-Hypergeometric Systems and <i>D</i>-Module Functors

Avram W Steiner (6598226) 15 May 2019 (has links)
<div>Let A be a d by n integer matrix. Gel'fand et al.\ proved that most A-hypergeometric systems have an interpretation as a Fourier–Laplace transform of a direct image. The set of parameters for which this happens was later identified by Schulze and Walther as the set of not strongly resonant parameters of A. A similar statement relating A-hypergeometric systems to exceptional direct images was proved by Reichelt. In the first part of this thesis, we consider a hybrid approach involving neighborhoods U of the torus of A and consider compositions of direct and exceptional direct images. Our main results characterize for which parameters the associated A-hypergeometric system is the inverse Fourier–Laplace transform of such a "mixed Gauss–Manin system". </div><div><br></div><div>If the semigroup ring of A is normal, we show that every A-hypergeometric system is "mixed Gauss–Manin". </div><div><br></div><div>In the second part of this thesis, we use our notion of mixed Gauss–Manin systems to show that the projection and restriction of a normal A-hypergeometric system to the coordinate subspace corresponding to a face are isomorphic up to cohomological shift; moreover, they are essentially hypergeometric. We also show that, if A is in addition homogeneous, the holonomic dual of an A-hypergeometric system is itself A-hypergeometric. This extends a result of Uli Walther, proving a conjecture of Nobuki Takayama in the normal homogeneous case.</div>
14

Transformation de Mellin faisceautique et D-modules

Fabbro, Hervé 16 May 2006 (has links) (PDF)
Dans un premier temps, nous décrivons le complexe des solutions du transformé de Mellin algébrique d'un D-module M en fonction des solutions de M. Pour cela, nous définissons un foncteur de transformation de Mellin faisceautique. Nous montrons alors que le transformé de Mellin du complexe des solutions à décroissance rapide en 0 et à l'infini d'un D-module holonome régulier M est quasi-isomorphe au complexe des solutions du transformé de Mellin algébrique de M, l'hypothèse de régularité n'étant plus nécessaire à une variable.<br />Dans un second temps, nous faisons un travail analogue avec la transformation de Mellin inverse : les résultats sont plus partiels. Nous définissons une transformation de Mellin inverse faisceautique. Nous démontrons alors qu'il existe des morphismes naturels reliant le complexe des solutions du transformé de Mellin inverse algébrique d'un module aux différences avec le transformé de Mellin inverse faisceautique du complexe des solutions à croissance au plus exponentielle d'ordre 1 à l'infini dans des bandes verticales. Nous montrons ensuite que dans le cas d'un module aux différences à une variable et à une seule pente strictement positive, ces morphismes sont des isomorphismes.
15

Equations fonctionnelles pour une fonction sur<br />un espace singulier

Torrelli, Tristan 06 November 1998 (has links) (PDF)
Afin d'étendre à un cadre singulier des résultats de la théorie du polynôme de Bernstein-Sato, nous étudions ici les polynômes de Bernstein d'une fonction analytique f associée aux sections du module de cohomologie locale algébrique R à support une intersection complète locale X définie par un morphisme analytique g. En effet, il résulte de la construction algébrique des cycles évanescents que les racines de ces polynômes sont étroitement liées aux valeurs propres de la monodromie locale de f sur X.<br /><br />Après avoir donné des résultats sur les polynômes de Bernstein associés aux sections d'un D-Module holonome, nous faisons l'étude du cas g lisse à l'origine, puis f lisse et X hypersurface. Nous étudions ensuite l'existence de polynômes de Bernstein génériques et relatifs des sections de R associées à une déformation analytique, reliant ces questions à la géométrie d'espaces conormaux.<br /><br />Reprenant des idées de B. Malgrange, nous donnons ensuite une construction adaptée à l'étude des polynômes de Bernstein des sections de R lorsque les morphismes g et (f,g) définissent des intersections complètes à singularité isolée à l'origine. Cette construction impose notamment la quasi-homogénéité de g et nécessite des calculs d'annulateurs. Nous nous consacrons enfin aux calculs de polynômes de Bernstein basés sur ces résultats. Nous donnons d'abord un algorithme de calcul lorsque en plus des hypothèses adéquates, nous supposons que la partie initiale de f définit une singularité isolée sur X. Quand de plus f est quasi-homogène, nous obtenons des formules explicites. Nous terminons notre étude par des exemples de calculs lorsque X est un cône quadratique non dégénéré.
16

On local cohomology and local homology based on an arbitrary support

Sarria, Luis Alberto Alba 15 December 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-11T16:01:13Z No. of bitstreams: 1 arquivototal.pdf: 1341956 bytes, checksum: 725d00067ec252af7f139395f2803b1b (MD5) / Made available in DSpace on 2017-08-11T16:01:13Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1341956 bytes, checksum: 725d00067ec252af7f139395f2803b1b (MD5) Previous issue date: 2015-12-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work develops the theories of local cohomology and local homology with respect to an arbitrary set of ideals and generalises most of the important results from the classical theories. It also introduces the category of quasi-holonomic D-modules and proves some finiteness properties of local cohomology modules which generalise Lyubeznik's results in some sense. / Este trabalho desenvolve as teorias de cohomologia e homologia locais com respeito a um conjunto arbitrário de ideais e generaliza vários dos resultados importantes das teorias clássicas. Também, introduz a categoria dos D-módulos quase-holônomos e prova alguns resultados de finitude de cohomologia local que generalizam, em algum sentido, os resultados de G. Lyubeznik.

Page generated in 0.0374 seconds