• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Control of DC Power Distribution Systems and Low-Voltage Grid-Interface Converter Design

Chen, Fang 27 April 2017 (has links)
DC power distribution has gained popularity in sustainable buildings, renewable energy utilization, transportation electrification and high-efficiency data centers. This dissertation focuses on two aspects of facilitating the application of dc systems: (a) system-level control to improve load sharing, voltage regulation and efficiency; (b) design of a high-efficiency interface converter to connect dc microgrids with the existing low-voltage ac distributions, with a special focus on common-mode (CM) voltage attenuation. Droop control has been used in dc microgrids to share loads among multiple sources. However, line resistance and sensor discrepancy deteriorate the performance. The quantitative relation between the droop voltage range and the load sharing accuracy is derived to help create droop design guidelines. DC system designers can use the guidelines to choose the minimum droop voltage range and guarantee that the sharing error is within a defined range even under the worst cases. A nonlinear droop method is proposed to improve the performance of droop control. The droop resistance is a function of the output current and increases when the output current increases. Experiments demonstrate that the nonlinear droop achieves better load sharing under heavy load and tighter bus voltage regulation. The control needs only local information, so the advantages of droop control are preserved. The output impedances of the droop-controlled power converters are also modeled and measured for the system stability analysis. Communication-based control is developed to further improve the performance of dc microgrids. A generic dc microgrid is modeled and the static power flow is solved. A secondary control system is presented to achieve the benefits of restored bus voltage, enhanced load sharing and high system efficiency. The considered method only needs the information from its adjacent node; hence system expendability is guaranteed. A high-efficiency two-stage single-phase ac-dc converter is designed to connect a 380 V bipolar dc microgrid with a 240 V split-phase single-phase ac system. The converter efficiencies using different two-level and three-level topologies with state-of-the-art semiconductor devices are compared, based on which a two-level interleaved topology using silicon carbide (SiC) MOSFETs is chosen. The volt-second applied on each inductive component is analyzed and the interleaving angles are optimized. A 10 kW converter prototype is built and achieves an efficiency higher than 97% for the first time. An active CM duty cycle injection method is proposed to control the dc and low-frequency CM voltage for grounded systems interconnected with power converters. Experiments with resistive and constant power loads in rectification and regeneration modes validate the performance and stability of the control method. The dc bus voltages are rendered symmetric with respect to ground, and the leakage current is reduced. The control method is generalized to three-phase ac-dc converters for larger power systems. / Ph. D.
22

Full Bridge LLC Converter Secondary Architecture Study for Photovoltaic Application

Yan, Jinghui 13 March 2018 (has links)
The increasing global energy demand calls for attention on renewable energy development. Among the available technology, the photovoltaic (PV) panels is a popular solution. Thus, targeted Power Conditioning Systems (PCSs) are drawing increased attention in research. Microconverter is one of the PCS that can support versatile applications in various power line architectures. This work focuses on the comparison of circuit secondary side architectures for LLC converter for microconverter application. As the research foundation, general characteristic of solar energy and PV panel operation are introduced for the understanding of the needs. Previous works are referenced and compared for advantages and limitation. Base on conventional secondary resonant full bridge LLC converter, the two sub-topologies of different secondary rectification network: active, full bridge secondary and active voltage doubler output end LLC converter are presented in detail. The main operating principle is also described in mathematical formula with the corresponding cycle-by-cycle operation to ensure the functional equality before proceeding to performance comparison. Circuit efficiency analysis is conducted on the main power stage and the key components with frequency consideration. The hardware circuit achieved the designed function while the overall hardware efficiency result agrees with analysis. In the implementation, the transformer is costume built for the system pacification. Another part is the parasitic effect analysis. At a high operating frequency and to achieve very high-frequency operation, parasitic effect need to be fully understood and considered as it may have the dominating effect on the system. / Master of Science
23

DC To DC Converter Topologies For High Voltage Power Supplies Under Pulsed Loading

Vishwanathan, Neti 02 1900 (has links) (PDF)
No description available.
24

Enhanced instantaneous power theory for control of grid connected voltage sourced converters under unbalanced conditions

Alves Montanari, Allan January 1900 (has links)
This thesis introduces a new method especially designed to control the instantaneous power in voltage sourced converters operating under unbalanced conditions, including positive, negative and zero sequence content. A transformation technique, labelled mno transformation, was developed to enable the decomposition of the total instantaneous power flowing on three-phase transmission topologies into constant and oscillating terms. It is applied to three-wire and four-wire schemes, especially accommodating zero sequence unlike previous approaches. Classical and modern electric power theories are presented, particularly focusing on their definitions for adverse AC scenarios. The main mathematical transformations conceived to analyze such situations are summarized, showing their respective advantages and disadvantages. An enhanced instantaneous power theory is introduced. The novel proposed power equations, named mno instantaneous power components, expands the application of the p-q theory, which is attached to the αβ0 transformation. The mno instantaneous power theory is applied to develop an innovative power control method for grid connected voltage sourced converters in order to minimize power oscillations during adverse AC scenarios, particularly with zero sequence content. The method permits to sustain constant instantaneous three-phase power during unbalanced conditions by controlling independently the constant and the oscillating terms related to the instantaneous power. The effectiveness of the proposed control approach and the proposed power conditioning scheme was demonstrated using electromagnetic transient simulation of a VSC connected to an AC system. / May 2017
25

Hybrid and nonlinear control of power converters

Alawieh, Aya 26 September 2012 (has links) (PDF)
Switched electronic systems are used in a huge number of everyday domestic and industrial utilities: liquid crystal displays, home appliances, lighting, personal computers, power plants, transportation vehicles and so on. Efficient operations of all such applications depend on the essential "hidden work" done by switched electronic systems, whose behavior is determined by a suitable interconnection and control of analog and digital devices. As a motivation of this work, we consider the DC-DC power converters. This thesis contributes to provide hybrid and nonlinear control problem solutions to several types of power converters. In the first part we are interested in the problem of voltage regulation of power converters operating in discontinuous conducting mode. Two power converters are considered: the boost converter and the buck-boost converter. The system does not admit a (continuous--time) average model approximation, hence is a hybrid system where the control objective is the generation of a periodic orbit and the actuator commands are switching times. Our main contribution is a simple robust algorithm that gives explicit formulas for the switching times without approximations. Simulation and experimental results that illustrate the robustness of the scheme to parameter uncertainty, as well as performance comparisons with current practice, are presented. In the second part a class of power converters that can be globally stabilized with an output-feedback PI controller has been identified. Moreover, we will prove that the I&I observer can be combined with the PI controller preserving the GAS properties of the closed-loop. The class is characterized by a simple linear matrix inequality. The new controller is illustrated with the widely-popular, and difficult to control, single-ended primary inductor converter, for which simulation and experimental results are presented.
26

Wearable Systems in Harsh Environments : Realizing New Architectural Concepts

Chedid, Michel January 2010 (has links)
Wearable systems continue to gain new markets by addressing improved performance and lower size, weight and cost. Both civilian and military markets have incorporated wearable technologies to enhance and facilitate user's tasks and activities. A wearable system is a heterogeneous system composed of diverse electronic modules: data processing, input and output modules. The system is constructed to be body-borne and therefore, several constraints are put on wearable systems regarding wearability (size, weight, placement, etc.) and robustness rendering the task of designing wearable systems challenging. In this thesis, an overview of wearable systems was given by discussing definition, technology challenges, market analysis and design methodologies. Main research targeted at network architectures and robustness to environmental stresses and electromagnetic interference (EMI). The network architecture designated the data communication on the intermodule level - topology and infrastructure. A deeper analysis of wearable requirements on the network architecture was made and a new architecture is proposed based on DC power line communication network (DC-PLC). In addition, wired data communication was compared to wireless data communication by introducing statistical communication model and looking at multiple design attributes: power efficiency, scalability, and wearability. The included papers focused on wearable systems related issues including analysis of present situation, environmental and electrical robustness studies, theoretical and computer aided modelling, and experimental testing to demonstrate new wearable architectural concepts. A roadmap was given by examining the past and predicting the future of wearable systems in terms of technology, market, and architecture. However, the roadmap was updated within this thesis to include new market growth figures that proved to be far less than was predicted in 2004. User and application environmental requirements to be applied on future wearable systems were identified. A procedure is presented to address EMI and evaluated solutions in wearable application through modelling and simulation. Environmental robustness and wearability of wearable systems in general, and washability and conductive textile in particular are investigated. A measurement-based methodology to model electrical properties of conductive textile when subjected to washing was given. Employing a wired data communication network was found to be more appropriate for wearable systems than wireless networks when prioritizing power efficiency. The wearability and scalability of the wired networks was enhanced through conductive textile and DC-PLC, respectively. A basic wearable application was built to demonstrate the suitability of DC-PLC communication with conductive textile as infrastructure. The conductive textile based on metal filament showed better mechanical robustness than metal plated conductive textile. A more advanced wearable demonstrator, where DC-PLC network was implemented using transceivers, further strengthened the proposed wearable architecture. Based on the overview, the theoretical, modelling and experimental work, a possible approach of designing wearable systems that met several contradicting requirements was given.
27

Thermal Management for Multi-phase Current Mode Buck Converters

Cao, Ke 11 August 2011 (has links)
The main goal of this thesis is to develop an active thermal management control scheme for multi-phase current mode buck converters in order to improve the long term reliability of the converters. A thermal management unit (TMU) with independent linear compensators for the thermal loops is incorporated into the existing digital controller to regulate the current through each phase so that equal temperature distribution is achieved across all phases. A lumped parameter thermal model of the multi-phase converter is built as the basis of the TMU. MATLAB simulation results are used to verify the TMU concept. Experimental results from a digitally controlled 12 V to 1 V, 50 A, 250 kHz four-phase peak current mode buck converter demonstrate the effectiveness of the proposed thermal management technique in the presence of uneven air flow. The steady-state performance, dynamic transient load performance, effect of gate drive voltage and efficiency measurements are investigated and discussed.
28

Thermal Management for Multi-phase Current Mode Buck Converters

Cao, Ke 11 August 2011 (has links)
The main goal of this thesis is to develop an active thermal management control scheme for multi-phase current mode buck converters in order to improve the long term reliability of the converters. A thermal management unit (TMU) with independent linear compensators for the thermal loops is incorporated into the existing digital controller to regulate the current through each phase so that equal temperature distribution is achieved across all phases. A lumped parameter thermal model of the multi-phase converter is built as the basis of the TMU. MATLAB simulation results are used to verify the TMU concept. Experimental results from a digitally controlled 12 V to 1 V, 50 A, 250 kHz four-phase peak current mode buck converter demonstrate the effectiveness of the proposed thermal management technique in the presence of uneven air flow. The steady-state performance, dynamic transient load performance, effect of gate drive voltage and efficiency measurements are investigated and discussed.
29

Fully Digital Parallel Operated Switch-mode Power Supply Modules For Telecommunications

Kutluay, Koray 01 October 2005 (has links) (PDF)
Digitally-controlled, high power universal telecommunication power supply modules have been developed. In this work, the converter control strategy, and its design and implementation first, by means of parallel-operated, dual, 8-bit microcontrollers, and then by using a high processing power digital signal processor (DSP) have been emphasized. The proposed dual-processor based digital controller provides an extended operating output voltage range of the power supplies, user programmable current limit setting, serial communication based active load current sharing with automatic master-slave selection among parallel-operated modules, user selectable number of back-up battery cells, programmable temperature compensation curves, and automatic derating without extra hardware requirement. Overload and output short-circuit protection features are also controlled by software. One of the processors in the digital controller is employed for user interface purposes such as long term records, display, and alarm facilities, and remote control, which are inherently slow processes. The fast processing speed required by output voltage setting, current limit, and load current sharing however is to be fulfilled by a second processor dedicated to the adjustment of output voltages of modules. Tight dynamic load regulation requirement of a telecommunication power supply has been fulfilled by a 150 MIPS DSP, in place of a low cost, 8-bit microcontroller. The implemented digitally-controlled, 1.8 kW, 0-70V telecommunication power supplies have been tested successfully in several locations in the field.
30

Some Aspects Of Voltage Stability Improvement In Planning And Operation Of Power Systems

Visakha, K 07 1900 (has links) (PDF)
No description available.

Page generated in 0.0268 seconds