• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 16
  • 15
  • 1
  • Tagged with
  • 161
  • 161
  • 47
  • 44
  • 44
  • 44
  • 25
  • 19
  • 18
  • 18
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin

Ulbricht, David, Tindall, Catherine A., Oertwig, Kathrin, Hanke, Stefanie, Sträter, Norbert, Heiker, John T. 27 January 2020 (has links)
Kallikrein-related peptidases KLK5, KLK7 and KLK14 are important proteases in skin desquamation and aberrant KLK activity is associated with inflammatory skin diseases such as Netherton syndrome but also with various serious forms of cancer. Previously, we have identified KLK7 as the first protease target of vaspin (Serpin A12). Here, we report KLK14 as a second KLK protease to be inhibited by vaspin. In conclusion, vaspin represents a multispecific serpin targeting the kallikrein proteases KLK7 and KLK14, with distinct exosites regulating recognition of these target proteases and opposing effects of heparin binding on the inhibition reaction.
82

Efficient extracellular recombinant production and purification of a Bacillus cyclodextrin glucanotransferase in Escherichia coli

Sonnendecker, Christian, Wei, Ren, Kurze, Elisabeth, Wang, Jinpeng, Oeser, Thorsten, Zimmermann, Wolfgang 13 April 2018 (has links)
Background: Cyclodextrin glucanotransferases (CGTases) catalyze the synthesis of cyclodextrins, cyclic oligosaccharides composed of glucose monomers that find applications in the pharmaceutical, food, and cosmetic industries. An economic application of these industrially important enzymes requires their efficient production and recovery. In this study, the effect of Sec-type signal peptides on the recombinant expression of a CGTase derived from Bacillus sp. G825-6 was investigated in Escherichia coli BL21(DE3) using a codon-adapted gene. In addition, a novel purification method for the CGTase using starch adsorption was developed. Results: Expression vectors encoding N-terminal PelB, DacD, and the native Bacillus sp. G825-6 CGTase signal peptides (SP) were constructed for the recombinant CGTase. With the DacD SP derived from E. coli, a 3.9- and 3.1-fold increase in total enzyme activity was obtained compared to using the PelB and the native CGTase SP, respectively. DacD enabled a 7.3-fold increase of activity in the extracellular fraction after induction for 24 h compared to the native CGTase SP. After induction for 48 h, 75% of the total activity was detected in the extracellular fraction. By a batch wise adsorption to starch, the extracellular produced CGTase could be purified to homogeneity with a yield of 46.5% and a specific activity of 1637 U/mg. Conclusions: The signal peptide DacD promoted the high-level heterologous extracellular expression of a recombinant CGTase from Bacillus sp. G825-6 with a pET20b(+) vector in E. coli BL21(DE3). A protocol based on starch adsorption enabled a fast and efficient purification of the recombinant enzyme.
83

Basic Residues of β-Sheet A Contribute to Heparin Binding and Activation of Vaspin (Serpin A12)

Ulbricht, David, Oertwig, Kathrin, Arnsburg, Kristin, Saalbach, Anja, Pippel, Jan, Sträter, Norbert, Heiker, John T. 06 March 2019 (has links)
Many members of the serine protease inhibitor (serpin) family are activated by glycosaminoglycans (GAGs). Visceral adipose tissue-derived serpin (vaspin), serpin A12 of the serpin family, and its target protease kallikrein 7 (KLK7) are heparin-binding proteins, and inhibition of KLK7 by vaspin is accelerated by heparin. However, the nature of GAG binding to vaspin is not known. Here, we measured vaspin binding of various glycosaminoglycans and low molecular weight heparins by microscale thermophoresis and analyzed acceleration of protease inhibition by these molecules. In addition, basic residues contributing to heparin binding and heparin activation were identified by a selective labeling approach. Together, these data show that vaspin binds heparin with high affinity (KD = 21 ± 2 nm) and that binding takes place at a basic patch on top of β-sheet A and is different from other heparin-binding serpins. Mutation of basic residues decreased heparin binding and activation of vaspin. Similarly, reactive center loop insertion into sheet A decreased heparin binding because it disturbs the basic cluster. Finally, using vaspin-overexpressing keratinocyte cells, we show that a significant part of secreted vaspin is bound in the extracellular matrix on the cell surface. Together, basic residues of central β-sheet A contribute to heparin binding and activation of vaspin. Thus, binding to GAGs in the extracellular matrix can direct and regulate vaspin interaction with target proteases or other proteins and may play an important role in the various beneficial functions of vaspin in different tissues.
84

Bedeutung nicht-kodierender RNAs im Immunsystem

Hösler, Nadine 19 June 2015 (has links)
Immer mehr Berichte deuten darauf hin, dass nicht-kodierende RNAs an der Regulation des Immunsystems beteiligt sind. In dieser Arbeit wurden nicht-kodierende RNAs identifiziert, die durch zwei unterschiedliche immunologische Prozesse in zwei verschiedenen Zelltypen reguliert wurden. Zum einen wurde das Transkriptom von Multiplen Myelom-Zellen in Abhängigkeit von der Interleukin 6-Stimulation untersucht. Dabei wurden einige sehr lange, IL 6-regulierte macroRNAs identifiziert, die STAIRs (STAT3-induced RNAs). Bei den STAIRs handelt es sich wahrscheinlich um funktionelle, kontinuierliche, nicht-kodierende macroRNAs, die im Zellkern angereichert sind. Einige STAIRs dienen eventuell zusätzlich oder ausschließlich als Primärtranskript für gespleißte, lange ncRNAs (lncRNAs), die weitere Funktionen in der Zelle ausüben können. Die STAIRs weisen eine große Bandbreite an Gewebsspezifität auf und bei den Untersuchungen in dieser Arbeit zeigten sich Hinweise, dass sie sich für verschiedene Krebserkrankungen als Biomarker eignen könnten. Die zweite Transkriptomanalyse wurde bei der Aktivierung naiver T Zellen durchgeführt. Dabei offenbarte sich, dass die Zellen bei diesem Prozess einen dramatischen Wechsel ihres Transkriptionsprogrammes vollziehen und eine Vielzahl nicht Protein-kodierender Gene reguliert werden. Es wurde die Regulation von ncRNAs, die bisher noch nicht im Zusammenhang mit T Zellen beschrieben wurden, beobachtet und erneut unbekannte, differentiell exprimierte Bereiche identifiziert. Im Anschluss wurde STAIR18, eine nicht-kodierende RNA, die durch die beiden untersuchten Signalwege reguliert wird, eingehender untersucht. Es zeigte sich, dass STAIR18 im menschlichen Genom dupliziert ist und beide Loci die gespleißte, lange ncRNA152 in diversen Varianten transkribieren. ncRNA152 ist hauptsächlich im Zytoplasma lokalisiert und befindet sich dort anscheinend in perinukleären Aggregaten. Die verschiedenen ncRNA152-Isoformen scheinen unter-schiedliche Funktionen auszuführen. Einerseits ist eine Wirkung als competing endogenous RNA wahrscheinlich. Eine weitere Aufgabe der ncRNA152 scheint darin zu bestehen, das STAT3-Primärtranskript zu stabilisieren oder dessen Prozessierung zu fördern.:1 Einleitung 1 1.1 Nicht-kodierende RNAs 1 1.1.1 Funktionen langer nicht-kodierender RNAs 2 1.1.2 Lange nicht-kodierende RNAs in Krebserkrankungen 4 1.2 Die Signaltransduktion von IL-6 und STAT3 5 1.2.1 Die IL-6/STAT3-Signalkaskade 5 1.2.2 Der Transkriptionsfaktor STAT3 7 1.2.3 Interleukin 6 und STAT3 in Krebserkrankungen 9 1.2.4 STAT3-regulierete nicht-kodierende RNAs 12 1.3 T-Zellen 13 1.3.1 T Zellaktivierung 14 1.3.2 Lange nicht-kodierende RNAs in T Zellen 16 1.4 Zielstellung 18 2 Material und Methoden 20 2.1 Bioinformatische Methoden 20 2.1.1 Evaluierung von Tiling Array-Daten 20 2.1.2 Evaluierung von Hochdurchsatz-Sequenzierungen 21 2.1.3 Auswertung von Mikroarray-Daten 21 2.1.4 DNA-Sequenzanalysen 22 2.1.5 Design von Oligonukleotiden 23 2.1.6 Statistische Auswertung 24 2.2 Molekularbiologische Methoden 25 2.2.1 Zellfraktionierung 25 2.2.2 Isolation von RNA 25 2.2.3 Reverse Transkription 26 2.2.4 Quantitative real-time PCR 27 2.2.5 Klonierung 29 2.3 Zellbiologische Methoden 36 2.3.1 Präparation primärer T-Helferzellen 36 2.3.2 Zellkultur und Stimulation eukaryontischer Zellen 38 2.3.3 Durchflusszytometrie 40 2.3.4 Transiente Transfektion eukaryontischer Zellen 42 2.3.5 Reportergenanalysen 44 2.3.6 Fluoreszenz in situ Hybridisierung 45 2.3.7 Gewebe- und Patientenproben 48 3 Ergebnisse 50 3.1 Identifizierung und Charakterisierung neuer STAT3-regulierter ncRNA-Gene 50 3.1.1 Genomweite Untersuchung STAT3-regulierter ncRNAs 50 3.1.2 Validierung der IL-6-Tiling Array-Daten 65 3.1.3 Intrazelluläre Lokalisation der STAIRs 67 3.1.4 Expressionsprofile der STAIRs 68 3.2 Identifizierung regulierter ncRNA-Gene während der T Zellaktivierung 72 3.2.1 Etablierung der in vitro Aktivierung primärer T Zellen 72 3.2.2 Genomweite Untersuchung regulierter RNAs während der T-Zellaktivierung 74 3.2.3 Validierung der T-Zellaktivierungs-Genomdaten 83 3.3 Untersuchung der nicht-kodierenden RNA STAIR18 / ncRNA152 83 3.3.1 STAIR18 ist im humanen Genom dupliziert 84 3.3.2 Von beiden STAIR18-Loci werden gespleißte Transkripte generiert 86 3.3.3 Regulation der ncRNA152 90 3.3.4 Untersuchung des STAIR18/ncRNA152-Promotors 96 3.3.5 Intrazelluläre Lokalisation von STAIR18 und ncRNA152 101 3.3.6 Überexpression der ncRNA152 in XG-1-Zellen 106 3.3.7 Knockdown der ncRNA152 in XG-1-Zellen 107 3.3.8 Identifizierung putativer Zielgene der ncRNA152 109 4 Diskussion 111 4.1 IL 6/STAT3 regulierte macroRNAs 111 4.1.1 Charakterisierung der STAIRs 114 4.1.2 STAIRS als potentielle Biomarker 121 4.2 Regulation von lncRNAs während der T Zellaktivierung 122 4.3 Untersuchung von STAIR18/ncRNA152 128 4.3.1 Regulation von STAIR18 und der ncRNA152 129 4.3.2 Lokalisation von STAIR18 und der ncRNA152 130 4.3.3 Manipulation der ncRNA152-Expression 131 4.3.4 Bedeutung der ncRNA152 133 5 Zusammenfassung 135 6 Summary 138 7 Literaturverzeichnis 141 8 Anhang 153 Danksagung 168 Publikationen 16969 Selbstständigkeitserklärung 170
85

Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch

Ender, Anna, Etzel, Maja, Hammer, Stefan, Findeiß, Sven, Stadler, Peter, Mörl, Mario 16 February 2022 (has links)
We describe a synthetic riboswitch element that implements a regulatory principle which directly addresses an essential tRNA maturation step. Constructed using a rational in silico design approach, this riboswitch regulates RNase P-catalyzed tRNA 5'-processing by either sequestering or exposing the single-stranded 5'-leader region of the tRNA precursor in response to a ligand. A single base pair in the 5'-leader defines the regulatory potential of the riboswitch both in vitro and in vivo. Our data provide proof for prior postulates on the importance of the structure of the leader region for tRNA maturation. We demonstrate that computational predictions of ligand-dependent structural rearrangements can address individual maturation steps of stable non-coding RNAs, thus making them amenable as promising target for regulatory devices that can be used as functional building blocks in synthetic biology.
86

Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

Müller, Eike, Wang, Weijia, Qiao, Wenlian, Bornhäuser, Martin, Zandstra, Peter W., Werner, Carsten, Pompe, Tilo 24 August 2016 (has links) (PDF)
Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
87

Targeting MYC Function as a Strategy for Tumor Therapy / Hemmung der MYC-Funktion als Strategie für die zielgerichtete Tumortherapie

Jung, Lisa Anna January 2016 (has links) (PDF)
A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC’s mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy. / Eine Vielzahl humaner Tumore entsteht durch die aberrante Expression des Onkoproteins MYC. Da MYC als Transkriptionsfaktor viele zelluläre Prozesse reguliert, ist er auch maßgeblich an der Entwicklung von normalem Gewebe beteiligt. Die direkte Hemmung von MYC stellt eine große Herausforderung für die Wirkstoffentwicklung dar. Studien mit dem dominant-negativen MYC-Allel namens OmoMYC belegten, dass MYC ein potenzieller Angriffspunkt für die zielgerichtete Tumortherapie ist. Die systemische Expression dieser MYC-Mutante löste eine dauerhafte Tumorregression aus und zeigte milde sowie vollständig reversible Nebenwirkungen. In der vorliegenden Arbeit wurde der molekulare Wirkmechanismus von OmoMYC untersucht, wobei sowohl Methoden der Strukturbiologie als auch der funktionalen Genomik angewendet wurden. Die Kristallstruktur des OmoMYC Proteins wurde im freien und E-Box-gebundenen Zustand bestimmt. Dadurch konnte gezeigt werden, dass OmoMYC ein stabiles Homodimer bildet. Als solches erkennt es DNA mittels derselben basenspezifischen Interaktionen wie der MYC/MAX-Komplex. Dabei bindet OmoMYC DNA mit einer ähnlichen Affinität wie das MYC/MAX-Heterodimer. Die genomweite Expressionsanalyse mittels RNA-Sequenzierung identifiziert eine Reduktion sowohl der MYC-abhängigen Transkriptionsaktiverung als auch der Transkriptionsrepression durch OmoMYC. Mittels Chromatin-Immunpräzipitation gefolgt von einer Hochdurchsatz-Sequenzierung wird gezeigt, dass OmoMYC mit MYC/MAXKomplexen auf Chromatin konkurriert und so deren Besetzung global an Konsensus-Bindestellen verringert. Die stärkste Reduktion zeigt sich an Promoterregionen mit schwacher Affinität für die MYC-Bindung, welche durch onkogene MYC-Proteinmengen aufgefüllt werden. Gene set enrichment-Analysen unter Berücksichtigung von OmoMYC-regulierten Genen erlaubten die Identifizierung von Tumor-Subgruppen mit hohen MYC-Proteinmengen in zahlreichen Tumorentitäten. Zusammen mit einem fokussierten shRNA-Screen können so neue Zielproteine für die Bekämpfung von MYC-getriebenen Tumoren, wie zum Beispiel ATAD3A, BOP1 und ADRM1, identifiziert werden. Zusammenfassend weisen die Ergebnisse darauf hin, dass OmoMYC spezifisch das Tumorzellwachstum inhibiert, indem es die Expression von zentralen Proteinen limitiert, welche durch erhöhte MYC-Proteinmengen reguliert werden. Somit können neue Strategien zur Tumortherapie identifiziert werden, die auf onkogene Funktionen von MYC zielen.
88

Functional characterization of the TTF complex and its role in neurodevelopmental disorders / Funktionelle Charakterisierung des TTF-Komplexes und seine Rolle in neurologischen Entwicklungsstörungen

Brosi, Cornelia January 2021 (has links) (PDF)
The eukaryotic gene expression requires extensive regulations to enable the homeostasis of the cell and to allow dynamic responses due to external stimuli. Although many regulatory mechanisms involve the transcription as the first step of the gene expression, intensive regulation occurs also in the post-transcriptional mRNA metabolism. Thereby, the particular composition of the mRNPs plays a central role as the components associated with the mRNA form a specific “mRNP code” which determines the fate of the mRNA. Many proteins which are involved in this regulation and the mRNA metabolism are affected in diseases and especially neurological disorders often result from an aberrant mRNP code which leads to changes in the regulation and expression of mRNPs. The focus of this work was on a trimeric protein complex which is termed TTF complex based on its subunits TDRD3, TOP3β and FMRP. Biochemical investigations revealed that the three components of the TTF complex are nucleo-cytosolic shuttle proteins which localize in the cytoplasm at the steady-state, associate with mRNPs and are presumably connected to the translation. Upon cellular stress conditions, the TTF components concentrate in stress granules. Thus, the TTF complex is part of the mRNP code, however its target RNAs and function are still completely unknown. Since the loss of functional FMRP results in the fragile X syndrome and TOP3β is associated with schizophrenia and intellectual disability, the TTF complex connects these phenotypically related neuro-psychiatric disorders with each other on a molecular level. Therefore, the aim of this work was to biochemically characterize the TTF complex and to define its function in the mRNA metabolism. In this work, evidence was provided that TDRD3 acts as the central unit of the TTF complex and directly binds to FMRP as well as to TOP3β. Thereby, the interaction of TDRD3 and TOP3β is very stable, whereas FMRP is a dynamic component. Interestingly, the TTF complex is not bound directly to mRNA, but is recruited via the exon junction complex (EJC) to mRNPs. This interaction is mediated by a specific binding motif of TDRD3, the EBM. Upon biochemical and biological investigations, it was possible to identify the interactome of the TTF complex and to define the role in the mRNA metabolism. The data revealed that the TTF complex is mainly associated with “early” mRNPs and is probably involved in the pioneer round of translation. Furthermore, TOP3β was found to bind directly to the ribosome and thus, establishes a connection between the EJC and the translation machinery. A reduction of the TTF components resulted in selective changes in the proteome in cultured cells, whereby individual protein subsets seem to be regulated rather than the global protein expression. Moreover, the enzymatic analysis of TOP3β indicated that TOP3β is a type IA topoisomerase which can catalytically attack not only DNA but also RNA. This aspect is particularly interesting with regard to the connection between early mRNPs and the translation which has been revealed in this work. The data obtained in this work suggest that the TTF complex plays a role in regulating the metabolism of an early mRNP subset possibly in the course of the pioneer round of translation. Until now, the link between an RNA topoisomerase and the mRNA metabolism is thereby unique and thus provides a completely new perspective on the steps in the post-transcriptional gene expression and its regulation. / Die eukaryotische Genexpression bedarf einer umfassenden Regulation um die Homöostase der Zelle zu gewährleisten und um dynamische Reaktionen auf externe Einflüsse zu ermöglichen. Obwohl viele der regulatorischen Mechanismen die Transkription als ersten Schritt der Genexpression betreffen, findet auch eine intensive Regulierung auf der Ebene des post-transkriptionellen mRNA-Metabolismus statt. Dabei spielt die jeweilige Zusammensetzung der mRNPs eine zentrale Rolle, da je nachdem, mit welchen Faktoren eine mRNA assoziiert ist, ein sog. „mRNP-Code“ entsteht, der das Schicksal der mRNA bestimmt. Viele der an der Regulierung und dem mRNA-Metabolismus beteiligten Proteine sind in Krankheiten betroffen und gerade neurologische Erkrankungen resultieren häufig von einem fehlerhaften mRNP-Code, der zu Veränderungen in der Regulation und Expression von mRNPs führt. Im Zentrum dieser Arbeit stand ein trimerer Proteinkomplex, der aufgrund seiner Untereinheiten TDRD3, TOP3β und FMRP als TTF-Komplex bezeichnet wird. Biochemische Daten haben gezeigt, dass die drei Komponenten des TTF-Komplexes nucleo-cytoplasmatische „Shuttle“-Proteine sind, die sich im „steady-state“ hauptsächlich im Cytoplasma befinden, mit mRNPs assoziieren und vermutlich mit der Translation in Verbindung stehen. Unter zellulären Stressbedingungen konzentrieren sich die TTF-Komponenten in Stress Granula. Der TTF-Komplex ist damit Teil des mRNP-Codes, dessen zelluläre Ziel-RNAs und Funktion bislang aber völlig unbekannt sind. Da der Verlust von funktionellem FMRP zu der Ausprägung des fragilen X Syndroms (FXS) führt und TOP3β mit Schizophrenie und geistiger Retardation in Verbindung steht, verbindet der TTF-Komplex phänotypisch verwandte neuro-psychiatrische Krankheiten auf molekularer Ebene miteinander. Das Ziel dieser Arbeit war es daher, den TTF-Komplex biochemisch zu charakterisieren und seine Funktion im mRNA-Metabolismus zu definieren. Im Zuge dieser Arbeit gelang der Nachweis, dass TDRD3 als zentrale Einheit des TTF-Komplexes agiert und sowohl FMRP als auch TOP3β direkt bindet. Die Interaktion von TDRD3 und TOP3β ist hierbei sehr stabil, FMRP ist hingegen eine dynamische Komponente. Interessanterweise wird der TTF-Komplex nicht direkt an mRNA gebunden, sondern über den Exon-Junction-Komplex (EJC) an mRNPs rekrutiert. Diese Interaktion wird durch ein spezifisches Bindungsmodul in TDRD3, dem sog. EBM vermittelt. In einer Reihe von biochemischen und systembiologischen Studien konnte das Interaktom des TTF-Komplexes bestimmt und seine Rolle im mRNA-Metabolismus definiert werden. Die Daten offenbarten, dass der TTF-Komplex primär mit „frühen“ mRNPs assoziiert ist und sehr wahrscheinlich an der „pioneer round of translation“ beteiligt ist. Weiterhin zeigte sich, dass TOP3β das Ribosom direkt bindet und somit eine Verbindung des EJC und der Translationsmaschinerie etabliert. Die Reduktion von Komponenten des TTF-Komplexes in kultivierten Zellen führte zu selektiven Änderungen im Proteom, wobei einzelne Proteinteilgruppen, jedoch nicht die globale Expression durch den TTF-Komplex reguliert zu sein scheinen. Die enzymatische Analyse von TOP3β hat darüber hinaus gezeigt, dass es sich um eine Topoisomerase vom Typ IA handelt, die nicht nur DNA sondern auch RNA angreifen kann. Dieser Aspekt ist besonders interessant im Zusammenhang der in dieser Arbeit aufgedeckten Verbindung von frühen mRNPs mit der Translation. Die im Rahmen dieser Arbeit erhaltenen Daten legen nahe, dass der TTF-Komplex eine Rolle bei der Regulation des Metabolismus „früher“ mRNP-Teilgruppen möglicherweise im Zuge der „Pionierrunde“ der Translation spielt. Dabei ist die Verbindung einer RNA-Topoisomerase mit dem mRNA-Metabolismus bisher einzigartig und eröffnet so eine ganz neue Sichtweise auf die post-transkriptionellen Schritte der Genexpression und ihre Regulation.
89

Identification of an atypical peptide binding mode of the BTB domain of the transcription factor MIZ1 with a HUWE1-derived peptide / Identifikation eines neuen Bindungsmodus zwischen der BTB-Domäne des Transkriptionsfaktors MIZ1 und eines Peptids aus der HECT-E3-Ligase HUWE1

Orth, Barbara January 2021 (has links) (PDF)
Ubiquitination is a posttranslational modification with immense impact on a wide range of cellular processes, including proteasomal degradation, membrane dynamics, transcription, translation, cell cycle, apoptosis, DNA repair and immunity. These diverse functions stem from the various ubiquitin chain types, topologies, and attachment sites on substrate proteins. Substrate recruitment and modification on lysine, serine or threonine residues is catalyzed by ubiquitin ligases (E3s). An important E3 that decides about the fate of numerous substrates is the HECT-type ubiquitin ligase HUWE1. Depending on the substrate, HUWE1 is involved in different processes, such as cell proliferation and differentiation, DNA repair, and transcription. One of the transcription factors that is ubiquitinated by HUWE1 is the MYC interacting zinc finger protein 1 (MIZ1). MIZ1 is a BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox virus and zinc finger) zinc finger (ZF) protein that binds to DNA through its 13 C2H2-type zinc fingers and either activates or represses the transcription of target genes, including genes involved in cell cycle arrest, such as P21CIP1 (CDKN1A). The precise functions of MIZ1 depend on its interactions with the MYC-MAX heterodimer, but also its heterodimerization with other BTB-ZF proteins, such as BCL6 or NAC1. How MIZ1 interacts with HUWE1 has not been studied and, as a consequence, it has not been possible to rationally develop tools to manipulate this interaction with specificity in order to better understand the effects of the interaction on the transcriptional function of MIZ1 on target genes or processes downstream. One aspect of my research, therefore, aimed at characterizing the MIZ1-HUWE1 interaction at a structural level. I determined a crystal structure of the MIZ1-BTB-domain in complex with a peptide, referred to as ASC, derived from a C terminal region of HUWE1, previously named ‘activation segment’. The binding mode observed in this crystal structure could be validated by binding and activity assays in vitro and by cell-based co-IP experiments in the context of N-terminally truncated HUWE1 constructs. I was not able to provide unambiguous evidence for the identified binding mode in the context of full-length HUWE1, indicating that MIZ1 recognition by HUWE1 requires yet unknown regions in the cell. While the structural details of the MIZ1-HUWE1 interaction remains to be elucidated in the context of the full-length proteins, the binding mode between MIZ1BTB and ASC revealed an interesting, atypical structural feature of the BTB domain of MIZ1 that, to my knowledge, has not been described for other BTB-ZF proteins: The B3 region in MIZ1BTB is conformationally malleable, which allows for a HUWE1-ASC-peptide-mediated β-sheet extension of the upper B1/B2-strands, resulting in a mixed, 3 stranded β-sheet. Such β-sheet extension does not appear to occur in other homo- or heterodimeric BTB-ZF proteins, including MIZ1-heterodimers, since these proteins typically possess a pre-formed B3-strand in at least one subunit. Instead, BCL6 co repressor-derived peptides (SMRT and BCOR) were found to extend the lower β-sheet in BCL6BTB by binding to an adjacent ‘lateral groove’. This interaction follows a 1:1 stoichiometry, whereas the MIZ1BTB-ASC-complex shows a 2:1 stoichiometry. The crystal structure of the MIZ1BTB-ASC-complex I determined, along with comparative binding studies of ASC with monomeric, homodimeric, and heterodimeric MIZ1BTB variants, respectively, suggests that ASC selects for MIZ1BTB homodimers. The structural data I generated may serve as an entry point for the prediction of additional interaction partners of MIZ1 that also have the ability to extend the upper β-sheet of MIZ1BTB. If successful, such interaction partners and structures thereof might aid the design of peptidomimetics or small-molecule inhibitors of MIZ1 signaling. Proof-of-principle for such a structure-guided approach targeting BTB domains has been provided by small-molecule inhibitors of BCL6BTB co-repressors interactions. If a similar approach led to molecules that interfere with specific interactions of MIZ1, they would provide intriguing probes to study MIZ1 biology and may eventually allow for the development of MIZ1-directed cancer therapeutics. / Ubiquitinierung ist eine posttranslationale Modifikation mit weitreichendem Einfluss auf eine Vielzahl von zellulären Prozessen, wie proteasomale Degradation, Membrandynamik, Transkription, Translation, Zellzyklus, Apoptose, DNA-Reparatur und Immunität. Grundlage für diese Diversität ist die Möglichkeit, dass Substrate an unterschiedlichen Stellen mit verschiedenen Ubiquitin-Kettentypen modifiziert werden können. Die Substratrekrutierung und -modifikation an Lysin-, Serin oder Threonin Resten wird durch Ubiquitin-Ligasen (E3s) katalysiert. Eine wichtige Ubiquitin-Ligase, die zahlreiche Substrate reguliert, ist die HECT-Ligase HUWE1. Abhängig vom Substrat ist HUWE1 an verschiedenen Prozessen, wie der Zellproliferation und -differenzierung, DNA-Reparatur, aber auch Transkription beteiligt. Ein Transkriptionsfaktor, der von HUWE1 ubiquitiniert wird, ist MIZ1 (MYC interacting zinc finger protein 1). MIZ1 ist ein BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox Virus and Zinc finger) Zinkfinger(ZF)-Protein, das über seine 13 C2H2 Zinkfinger an DNA bindet und so die Transkription von verschiedenen Zielgenen aktivieren oder reprimieren kann. MIZ1-Zielgene sind unter anderem am Zellzyklusarrest beteiligt, wie z.B. das Gen P21CIP1 (CDKN1A). Die biologischen Funktionen von MIZ1 werden unter anderem durch seine Interaktion mit dem MYC MAX-Heterodimer, aber auch durch Heterodimerisierung mit anderen BTB ZF Proteinen, wie BCL6 oder NAC1, reguliert. Wie MIZ1 mit der HUWE1-Ligase interagiert, wurde bislang strukturell noch nicht untersucht, weshalb noch nicht gezielt kleine Moleküle zur Manipulation der Interaktion entwickelt werden konnten, um Einfluss auf die transkriptionellen Funktionen von MIZ1 oder seiner Zielgene zu nehmen. Meine Untersuchungen zielten daher unter anderem darauf ab, die MIZ1-HUWE1-Interaktion auf struktureller Ebene zu charakterisieren. Ich konnte eine Kristallstruktur der MIZ1-BTB-Domäne in Komplex mit dem HUWE1-Peptid ASC lösen, dessen Sequenz in der C-terminalen Region von HUWE1 zu finden ist und zuvor als „activation segment“ definiert wurde. Der in dieser Kristallstruktur beobachtete Bindungsmodus konnte durch Bindungs- und Aktivitätsassays in vitro und durch co-IP-Experimente in zellbasierten Assays validiert werden, jedoch nur im Zusammenhang mit N-terminal verkürzten HUWE1 Konstrukten. Es war mir nicht möglich, diesen Bindungsmodus im Kontext des HUWE1-Proteins voller Länge nachzuweisen, was darauf hindeutet, dass bei der MIZ1-Erkennung durch HUWE1 in der Zelle andere Regionen beteiligt sein könnten. Während die strukturellen Details der MIZ1-HUWE1-Interaktion im Kontext der Proteine voller Länge noch aufgeklärt werden müssen, zeigte der Bindungsmodus zwischen MIZ1BTB und ASC ein atpyisches Strukturmerkmal der BTB-Domäne von MIZ1, das meines Wissens bislang in keinem anderen BTB-ZF-Protein beschrieben wurde: Die B3-Region in MIZ1BTB zeigt eine untypische konformationelle Flexibilität, die es erlaubt, dass das HUWE1-ASC-Peptid die B1/B2-Stränge im oberen Segment von MIZ1BTB zu einem 3-strängigen β-Faltblatt erweitert. Eine solche β-Faltblatt-Erweiterung scheint in anderen homo- oder heterodimeren BTB-ZF-Proteinen, einschließlich MIZ1-Heterodimeren, nicht aufzutreten, da diese Proteine typischerweise bereits einen B3-Strang in mindestens einer Untereinheit aufweisen. Stattdessen konnte beobachtet werden, dass Peptidliganden, wie sie von den BCL6 Co-Repressoren SMRT und BCOR abgeleitet wurden, ein β-Faltblatt im unteren Segment von BCL6BTB erweitern, indem sie in der sogenannten „lateral groove“ binden, die in unmittelbarer Nähe des betreffenden β-Faltblattes lokalisiert ist. Während die Interaktion von BCL6BTB mit Co-Repressor-Peptiden eine 1:1 Stöchiometrie zeigt, beobachtete ich für den MIZ1BTB-ASC-Komplex eine 2:1 Stöchiometrie. Die Kristallstruktur des MIZ1BTB-ASC-Komplexes, zusammen mit Bindungsassays, die die Interaktion zwischen ASC und monomerem, homodimerem bzw. heterodimerem MIZ1BTB untersuchten, deuten darauf hin, dass ASC spezifisch mit MIZ1BTB-Homodimeren interagiert. Daher könnten die von mir gewonnenen Strukturinformationen dazu dienen, weitere MIZ1-Bindungspartner vorherzusagen. Falls erfolgreich, könnten die neu identifizierten Interaktionspartner und zugehörige Strukturen dazu genutzt werden, Peptidomimetika und niedermolekulare Inhibitoren zu entwickeln, die spezifische Interaktionen von MIZ1 und die zugehörigen zellulären Prozesse stören und somit als Werkzeuge zum besseren Verständnis der MIZ1 Biologie dienen könnten. Vorbild dabei können zahlreiche niedermolekulare Verbindungen sein, die zur Störung der Co-Repressor-Peptid-Bindung an BCL6BTB entwickelt wurden. Wenn es auf ähnliche Weise gelänge, spezifischen Einfluss auf die transkriptionelle Funktion von MIZ1 zu nehmen, so könnte dies von hohem therapeutischen Nutzen in der Bekämpfung verschiedener Krebsarten sein.
90

Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function / Fluorogene Aptamere und Fluoreszierende Nukleosid-Analoga als Sonden für RNA-Struktur und -Funktion

Steinmetzger, Christian January 2020 (has links) (PDF)
RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the “vegetable” nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow–red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili–HBI complexes, a novel base–ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices. / Weit über das zentrale Dogma der Molekularbiologie hinaus ist RNA an einer Vielzahl zellulärer Prozesse beteiligt. Um diese Prozesse aufzuklären, sie umfassend zu verstehen und sich zunutze zu machen bedarf es geeigneter Detektionsmethoden für RNA. Innerhalb des letzten Jahrzehnts wurden fluorogene Aptamere als ideales Werkzeug für diesen Zweck erkannt. Dabei handelt es sich um vergleichsweise kurze Oligonukleotide, die mittels in vitro-Selektion zur spezifischen Bindung bestimmter organischer Fluorophore erzeugt werden. Analog zu fluoreszierenden Proteinen können sie zur Fluoreszenzmarkierung von RNA eingesetzt werden. Die wichtigste Klasse fluorogener Aptamere bindet und aktiviert Derivate des latenten Fluorophors 4-Hydroxybenzylidenimidazolon (HBI), welcher ursprünglich im Kern fluoreszierender Proteine autokatalytisch aus einem Tripeptid-Fragment entsteht und deren spektrale Eigenschaften bestimmt. Vertreter dieser Klasse, namentlich Spinach, Broccoli und Corn, haben sich als alltägliches Werkzeug zur Fluoreszenzmarkierung von RNA etabliert. Diesem Erfolg gegenüber stehen Unzulänglichkeiten, die das Potential einzelner Aptamere begrenzen. Beispielsweise kann es zur Ausbildung inaktiver Faltungszustände der RNA kommen oder die Fluoreszenzaktivierung erfordert eine hohe Magnesiumkonzentration, welche in Zellen nicht frei verfügbar ist. Im Fall des Corn-Aptamers bildet sich ein Homodimer, was unter Umständen die zu untersuchende RNA beeinträchtigen kann. Darüber hinaus ist, aufgrund der spezifischen Fluorophorbindung, jeweils nur geringes Potenzial zur gezielten Beeinflussung spektraler Eigenschaften vorhanden. Kern dieser Arbeit ist die umfassende Charakterisierung des neuen Chili-Systems. Chili ist die optimierte Version eines Aptamers, welches einen grün fluoreszierenden Komplex mit 4-Hydroxy-3,5-dimethoxybenzylidenimidazolon (DMHBI) ausbildet. Im Gegensatz zu anderen HBI-bindenden Aptameren vollzieht Chili einen Protonenaustausch mit seinem Liganden, woraus Fluoreszenz-emission mit einer ungewöhnlich hohen Stokes-Verschiebung von über 130 nm resultiert. Die Struktur des ursprünglichen Liganden wurde im Hinblick auf höhere Affinität und stärkere Fluoreszenzemission optimiert, wobei ein bis zu 7.5-facher Gewinn an Helligkeit erzielt wurde. Als besonders vorteilhaft hat sich dafür die Einführung eines positiv geladenen Substituenten herausgestellt, der in dieser Form ein Alleinstellungsmerkmal von Chili ist. Auch stark modifizierte DMHBI-Derivate, die ein größeres konjugiertes System besitzen, werden von Chili gebunden und fluoreszieren daraufhin im gelben bis roten Bereich des sichtbaren Spektrums. Studien zur Ligandenbindungskinetik und thermischen Denaturierung des Aptamers legen nahe, dass die zunächst strukturarme Bindungstasche durch die Aufnahme des Liganden einen G-Quadruplex ausbildet, was ebenfalls durch NMR-spektroskopische Daten bestätigt wird. Als Beispiel für mögliche Anwendungen wurde das Chili-Aptamer eingesetzt, um die Spaltung eines RNA-Substrats durch ein 10-23 DNA-Enzym zu beobachten, wobei FRET zwischen dem Aptamer und einem Fluoreszenzmarker am Substrat als Reporter ausgenutzt wurde. Neben makromolekularen Aptamer-Komplexen können fluoreszierende Nukleobasenanaloga als isomorphe Einheiten in RNA integriert werden, um deren Faltungszustand zu untersuchen. In dieser Arbeit wurde das fluoreszierende Nukleobasenanalogon 4-Cyanodinol (4CI) in das entsprechende Ribonukleosid (r4CI) umgewandelt und daraus ein neuer Phosphoramiditbaustein zum Einbau des fluoreszierenden von 4CI in RNA synthetisiert. Anhand thermischer Denaturierungs¬experimente wurde gezeigt, dass es sich bei 4CI um eine universelle Base handelt, die ungeachtet des Hybridisierungskontexts toleriert wird. Die photophysikalische Charakterisierung von r4CI zeigte, dass das fluoreszierendes Ribonukleosid-Analogon seine nützlichen Eigenschaften nach dem Einbau in Oligonukleotide beibehält, sodass es zur Strukturanalyse des Chili-Aptamers verwendet werden konnte. Mithilfe 4CI-modifizierter Chili–HBI-Komplexe wurden erstmals intramolekulare FRET-Paare dieser Art erzeugt und zur Bestimmung kombinierter Abstands- und Orientierungsparameter genutzt. Über ihre Verwendung für Struktur- und Bindungsstudien hinaus stellen supramolekulare FRET-Paare aus fluoreszierenden Nukleobasen-Analoga als Donoren und intrinsisch fluorogenen Akzeptoren eine Möglichkeit dar, neue schaltbare Aptamer-basierte Sensoren zu entwickeln, welche auf die Erkennung ihrer Zielspezies mit einem Wechsel der Fluoreszenzemissionswellenlänge reagieren.

Page generated in 0.0855 seconds