• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 50
  • 20
  • 17
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 2
  • Tagged with
  • 549
  • 549
  • 314
  • 180
  • 115
  • 86
  • 70
  • 62
  • 61
  • 57
  • 57
  • 55
  • 54
  • 53
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Aspects Of The Chemistry Of Oxovanadiulm(IV) Complexes Showing Photo-Induced Cytotoxicity And DNA Cleavage Activity

Sasmal, Pijus Kumar 04 1900 (has links) (PDF)
The present thesis deals with different aspects of the chemistry of oxovanadium(IV) complexes, their interaction with DNA and protein and photo-induced DNA and protein cleavage activity and photocytotoxicity. Chapter I presents a general introduction on various modes of interactions of organic compounds and transition metal complexes capable of targeting DNA leading to DNA strand scission, emphasizing particularly the photo-induced DNA cleavage activities for their potential application in PDT. The mechanistic pathways associated with the DNA cleavage are discussed. A comparison has been made on the advantages of photoactive metal complexes over organic conjugates. Objective of the present investigation is also dealt in this Chapter. Chapter II of the thesis deals with the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes of N-salicylidene-S-methyldithiocarbazate (salmdtc) and phenanthroline bases to explore the photo-induced DNA cleavage activity in UV-A light of 365 nm. Chapter III presents the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes containing N-salicylidene-L-methionate (salmet) and N-salicylidene-L-tryptophanate (saltrp) Schiff bases and phenanthroline bases. The objective of this work is to investigate the photo-induced DNA cleavage activity in near-IR light and to see the effect of pendant thiomethyl and indole moieties in the DNA cleavage reactions. Chapter IV deals with the synthesis, characterization, DNA binding, red-light induced DNA cleavage activity and photocytotoxicity of ternary oxovanadium(IV) complexes having N-salicylidene-L-arginine (sal-argH) and N-salicylidene-L-lysine (sal-lysH) Schiff bases and phenanthroline bases. The important results include the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes in human cervical HeLa cancer cells. Chapter V describes the synthesis, characterization, DNA binding and photo-induced DNA and protein cleavage activity and photocytotoxicity of oxovanadium(IV) complexes containing bis(2-benzimidazolylmethyl)amine and phenanthroline bases. The significant results include DNA cleavage activity in near-IR light and photocytotoxicity of the dppz complex in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells in visible light. Further, we have studied the protein cleavage activity of the complexes in UV-A light of 365 nm by using bovine serum albumin (BSA) and lysozyme. Finally, Chapter VI presents the binary oxovanadium(IV) complexes of phenanthroline bases. We have studied their synthesis, characterization, DNA binding and photo-induced DNA and protein cleavage activity and photocytotoxicity. Photocytotoxicity of dppz complex has been studied in human cervical HeLa cancer cells in visible light. Photo-induced protein cleavage activity of the complexes has been studied in UV-A light of 365 nm by using BSA and lysozyme. The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any omission that might have happened due to oversight or mistake is regretted.
512

Photocytotoxicity And DNA Cleavage Activity Of Metal Scorpionates And Terpyridine Complexes

Roy, Sovan 08 1900 (has links) (PDF)
Scorpionate and terpyridine ligands are of importance in inorganic chemistry for their metal-binding properties. Tris-pyrazolylborate (Scorpionate) ligands that show facial binding mode and steric protection have been extensively used to synthesize complexes modeling the active site structure and biological function of various metalloproteins and as catalysts in C-H and NO activation and carbine transfer reactions. Terpyridine and modified terpyridine ligands showing meridional binding mode have been used in bioinorganic chemistry where Pt-terpyridine complexes are known to inhibit the activity of thiordoxin reductase (TrxR) besides showing interaction with G-quadruplex. The thesis work stems from our interest to use these ligand systems to design and prepare new 3-d metal-based photodynamic therapeutic (PDT) agents to explore their visible light-induced DNA cleavage activity and photocytotoxicity. Efforts have been made in this thesis work to design and synthesize Co(II) and Cu(II) complexes having scorpionate (Tpph) abd terpyridine (tpy) ligands. Ternary 3d-metal complexes having Tpph and planar phenanthroline bases have been synthesized and structurally characterized. The steric encumbrance of Tpph has led to the reduction in chemical nuclease activity along with enhanced photo-induced DNA cleavage activity, particularly of the Cu(II) and Co(II) complexes. The Co(II), Cu(II) and Zn(II) complexes of Tpph and a pyridyl ligand having a photoactive naphthalilmide moiety show molecular light-switch effect on binding to calf thymus DNA or BSA protein. The complexes do not show any chemical nuclease activity. The Cu(II) complex shows significant DNA cleavage activity in red light. The Co(II) complex displays significant photocytotoxicity in UV-A light. Ternary Cu(II) complexes of ph-tpy and heterocycylic bases are prepared and their DNA binding and cleavage activity studied. The complexes are avid binders to CT-DNA. The dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) complexes are photocleavers of DNA in visible light. A significant enhancement in cytotoxicity in HeLa cancer cells is observed on exposure of the dppz complex to light. The binary Cu(II) complexes are also prepared to reduce the dark toxicity using phenyl and pyrenyl substituted terpyridine ligands. The pyrenyl substituted complex shows DNA cleavage activity in the visible light, low dark toxicity and unprecedented photocytotoxicity in visible light. The copper(II) complexes generally show dark cellular toxicity due to the presence of reducing thiols. The present terpyridine copper(II) complex having pendant pyrenyl moiety shows significant PDT effect that is similar to that of the PDT drug Photofrin. Binary Co(II) complexes show efficient DNA cleavage activity in visible light, significant photocytotoxicity in visible light and cytosolic uptake behaviour. Considering the bio-essential nature of the cobalt and copper ions, the present study opens up new strategies for designing and developing 3d-metal-based photosensitizers for their potential applications in PDT.
513

Uracil DNA Glycosylase From Mycobacteria And Escherichia coli : Mechanism Of Uracil Excision From Synthetic Substrates And Differential Interaction With Uracil DNA Glycosylase Inhibitor (Ugi) And Single Stranded DNA Binding Proteins (SSBs)

Padmakar, Purnapatre Kedar. 03 1900 (has links) (PDF)
No description available.
514

Studies On Lanthanide Complexes Showing Photo-activated DNA Cleavage And Anticancer Activity

Hussain, Akhtar 12 1900 (has links) (PDF)
This thesis work deals with different aspects of the chemistry of La(III) and Gd(III) complexes, their interaction with DNA and proteins, photo-induced cleavage of double-stranded DNA, photocytotoxic effect on cancer cells, cell death mechanism and cellular localization behaviour. Chapter I gives an introduction to the metal-based anticancer agents with special emphasis on clinically used drugs and the growing field of lanthanide therapeutics. An overview of the current strategies of cancer treatment, especially photodynamic therapy (PDT), is presented. Mode of small molecule-DNA interactions and the mechanistic aspects associated with DNA photodamage reactions and PDT effect are discussed with selected examples of compounds that are known to photocleave DNA on exposure to light of different wavelengths. A brief discussion on the various therapeutic applications of the lanthanide compounds is also made. Chapter II presents the synthesis, characterization, DNA binding, BSA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases to explore the UV-A light-induced DNA cleavage activity and photocytotoxicity of the complexes. Chapter III describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases with an aim to improve the design of the complexes to achieve better solution stability and DNA binding of the complexes. Chapter IV presents the synthesis, characterization, DNA binding, and UV-A light-induced DNA photocleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of pyridyl phenanthroline bases with an objective to improve the photoactivity of the complexes by introducing an additional pyridyl group. Cell death mechanism and confocal microscopic studies are also carried out to gain more insight into the PDT effect caused by light in the presence of the complex. Chapter V describes the synthesis and characterization of La(III) and Gd(III) complexes of terpyridine bases and acetylacetonate to study the complexes as a new class of photosensitizers to explore their DNA photocleavage activity and photocytotoxicity in HeLa cells. Effect of attaching a glucose moiety to the acetyl acetone (Hacac) ligand has been studied. The cellular uptake behaviour of the La(III) pyrenyl-terpyridine complexes has also been investigated. Finally, Chapter VI presents the synthesis and characterization of curcumin and glycosylated curcumin La(III) and Gd(III) complexes having terpyridine base with an objective to study the photoactivated anticancer activity of the complexes in visible light. This chapter describes the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes by exploiting curcumin and glycosylated curcumin as the photosensitizer ligands. Study on the cellular uptake behavior of curcumin La(III) complexes having pyrenyl terpyridine ligand is also presented. The references have been assembled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes which are characterized structurally by single crystal X-ray crystallography are provided in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is sincerely regretted.
515

Les protéines MBD2 et ZBTB4 répriment la transcription de nombreux gènes méthylés. MBD2 est redistribuée sur l’ADN méthylé dans des modèles de transformation oncogénique / MBD2 and ZBTB4 proteins repress the transcription of numerous methylated genes. MBD2 is redistributed on methylated DNA in models of oncogenic transformation

Devailly, Guillaume 19 December 2014 (has links)
La méthylation de l'ADN est une marque épigénétique répressive impliquée dans de nombreux processus physiologiques et pathologiques. Des hyperméthylations de promoteurs sont ainsi responsables de répressions transcriptionnelles de gènes suppresseurs de tumeurs dans les cancers. La méthylation de l'ADN serait capable d'induire une répression transcriptionnelle par la combinaison de deux mécanismes principaux : l'éloignement de facteurs de transcription activateurs, et le recrutement de protéines répressives liant spécifiquement l'ADN méthylé. MBD2 est une protéine de liaison à l'ADN méthylé capable de recruter les complexes répresseurs NuRD et SIN3A. ZBTB4 est capable de se lier à l'ADN méthylé in vitro et induit une répression de la transcription de plasmides méthylés lorsqu'elle est surexprimée. Son rôle de répresseur transcriptionnel dépendant de la méthylation de l'ADN reste toutefois peu documenté. Nous avons identifiés par RNAseq les modifications du transcriptome induites par une déplétion de MBD2 ou de ZBTB4. Les gènes surexprimés après déplétion de MBD2 ou ZBTB4 sont méthylés sur leur promoteur, et sont aussi surexprimés après traitement avec des agents déméthylants. Des résultats d'immuno-précipitations de chromatine réalisées contre les deux protéines endogènes montrent que la quasi-totalité des sites de fixation de MBD2 et qu'une partie des sites de fixations de ZBTB4 correspondent à des régions méthylés. Ces résultats confirment à l'échelle du génome que MBD2 endogène est bien un interprète majeur de la méthylation de l'ADN, et que ZBTB4 réprime bien la transcription de gènes méthylés. Nous avons aussi observé une redistribution importante de MBD2 sur le génome dans des modèles de progression tumorale. Nos résultats montrent que les gènes réprimés pendant la transformation oncogénique le sont en partie par MBD2. L'expression de certains de ces gènes peut être induite dans les lignées transformées par déplétion de MBD2 par siRNA / DNA methylation is an epigenetic mark that plays a role in many physiological and pathological processes. Indeed, silencing of tumor suppressor genes in cancer is frequently caused by promoter hypermethylations. Transcriptional repression induced by DNA methylation is likely caused by the combination of two mechanisms: the repulsion of activator transcription factors, and the recruitment of repressor proteins able to specifically recognize methylated DNA. MBD2 is a methyl DNA binding protein that cans recruits NuRD or SIN3A repressor complexes. ZBTB4 is able to bind methylated DNA in vitro, and can repress the transcription of methylated plasmids when overexpressed. Its methylationdependent transcriptional repressor function remains poorly documented. By RNAseq, we have identified transcriptomic modifications induced by the depletion of either MBD2 or ZBTB4. Genes up regulated after MBD2 or ZBTB4 depletion were methylated on their promoter, and were also up regulated after treatment with demethylating agents. Chromatin immunoprecipitations experiments against endogenous proteins showed that almost all MBD2 binding sites, and that a part of ZBTB4 binding sites, correspond to methylated DNA regions. These results confirmed at genome wide scale that endogenous MBD2 is a major reader of DNA methylation and that ZBTB4 does repress the transcription of methylated genes. We observed an important redistribution of MBD2 on the genome in models of tumor progression. Our results showed that MBD2 plays role in gene repressions occurring during oncogenic transformation. Some of those repressed genes can be re-expressed in transformed cell lines after depletion of MBD2 by siRNA
516

Imbalance of SMC1 and SMC3 Cohesins Causes Specific and Distinct Effects

Laugsch, Magdalena, Seebach, Jochen, Schnittler, Hans, Jessberger, Rolf 22 January 2014 (has links)
SMC1 and SMC3 form a high-affinity heterodimer, which provides an open backbone of the cohesin ring, to be closed by a kleisin protein. RNAi mediated knock-down of either one heterodimer partner, SMC1 or SMC3, is expected to cause very similar if not identical phenotypes. However, we observed highly distinct, protein-specific phenotypes. Upon knock-down of human SMC1, much of SMC3 remains stable, accumulates in the cytoplasm and does not associate with other cohesin proteins. Most of the excess nuclear SMC3 is highly mobile and not or only weakly chromosome-associated. In contrast, human SMC3 knock-down rendered SMC1 instable without cytoplasmic accumulation. As observed by differential protein extraction and in FRAP experiments the remaining SMC1 or SMC3 proteins in the respective SMC1 or SMC3 knock-down experiments constituted a cohesin pool, which is associated with chromatin with highest affinity, likely the least expendable. Expression of bovine EGFP-SMC1 or mouse EGFP-SMC3 in human cells under conditions of human SMC1 or SMC3 knock-down rescued the respective phenotypes, but in untreated cells over-expressed exogenous SMC proteins mis-localized. Paucity of either one of the SMC proteins causes RAD21 degradation. These results argue for great caution in interpreting SMC1 and SMC3 RNAi or over-expression experiments. Under challenged conditions these two proteins unexpectedly behave differently, which may have biological consequences for regulation of cohesin-associated functions and for human cohesin pathologies.
517

Rekombinantní příprava DNA vazebné domény transkripčního faktoru TEAD4 / Recombinant preparation of DNA binding domain of transcription factor TEAD4

Zákopčaník, Marek January 2020 (has links)
6 Abstract Transcription factors play a key role in the management of cell growth and differ- entiation and their deregulation is associated with many cancers. TEAD proteins utilise highly conserved DNA binding domain to recognise specific DNA sequences. This domain could facilitate new drug design and development. The goal of this master thesis includes recombinant preparation of DNA binding domain of transcriptional factor TEAD4 extended by a part of an unstruc- tured variable sequence, which connects this domain with transactivation domain. Purification steps include affinity chromatography followed by size exclusion chro- matography. The characterization of produced protein was performed by mass spectrometry and finally, native gel electrophoresis was used to prove the ability of the produced protein to bind DNA. During purification steps, a fragmentation from C-terminus was observed. Based on analysis of the mass spectra, three most represented forms of produced protein were described all of which were fragmented. The most abundant form (55%) consisted of amino acids 30-131 from TEAD4 protein. Second most abun- dant form (18%) consisted of amino acids 30-144 and the third form consisted of amino acids 30-81. Native gel electrophoresis verified the ability to bind DNA, the efficiency was however lower...
518

Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands

Tanh Jeazet, Harold Brice 16 July 2010 (has links)
Self-assembly processes were used to construct supramolecular architectures based on metal-ligand interactions. The structures formed strongly depend on the used metal ion, the ligand type, the chosen counter ion and solvent as well as on the experimental conditions. The focus of the studies was the design of multifunctional N-donor ligands and the characterization of their complexing and structural properties. This work was divided into three distinct main parts: The bis(2-pyridylimine), the bis(2-hydroxyaryl) imine and the tripodal imine / amine ligand approach. In the first part a series of bis(2-pyridylimine) derivatives having different linking elements were employed as building blocks for novel supramolecular architectures. Reaction of individual d-block metal salts with these ligands has led to the isolation of coordination polymers, a metallamacrocycle, double-stranded helicates, triple-stranded helicates as well as of circular meso-helicates. The nature of the spacer in the Schiff base ligands, the noncovalent weak interactions, such as hydrogen bond, face-to-face π-π and edge-to-face CH-π interactions, are all important factors influencing the architecture of the final products. Topological control of the assembly process of the hexanuclear meso-helicates is clearly associated with the bidentate coordination of the sulfate anion which directs the formation of a double- rather than a triple-stranded helicate around the octahedrally coordinated Cu(II). Surprisingly, the variation of the linker function in the ligands, which significantly changes the linking angle of the pyridylimine strands, has only a little influence of the resulting structure. Also the use of a mixture of ligands does not influence the meso-helicate topology; the result is the symmetrically mixed meso-helicate. The new iron(II) triple helicate [Fe2(L5)3](PF6)4 14 {L5 = bis[4-(2-pyridylmethyleneimino)phenyl]-1,1-cyclohexane} in its chloride form binds strongly to DNA as confirmed by induced circular dichroism signals in both the metal-to-ligand charge transfer (MLCT) and in-ligand bands of the helicate. The induced CD spectrum gives some evidence that [Fe2(L5)3]4+ interacts with the DNA in a single binding mode, which is consistent with major groove binding. The cytotoxicity of the new iron(II) triple helicate 14 was evaluated on human lung cancer A549 cells and compared with that of cisplatin and that of the previously reported iron(II) triple helicate [Fe2(L1)3]4+{L1 = bis[4-(2-pyridylmethyleneimino)phenyl]methane}. The first results show some distinguishing features for 14 obviously caused by the existing structural differences of the complexes. In the second part of the thesis, novel uranyl complexes of the bis(2-hydroxyaryl) imine ligands have been synthesized and characterized. 1D coordination polymers and mononuclear structures were formed. In all complexes a distorted hexagonal bipyramidal coordination geometry around the uranyl centre is observed. The imine nitrogen atoms of the ligands do not bind to the metal centre but interact strongly with the hydroxy group via H-bonding. DFT calculations made with L8 ( α,α’-Bis(salicylimino)-m-xylene) are in good agreement with the X-ray crystal structure data. Liquid-liquid extraction studies involving selected ligands and Eu(III) or U(VI) indicate remarkably high selectivity for U(VI) over Eu(III) at weak acidic pH conditions. We believe that the study made opens up new possibilities for uranyl ion extraction which could be interesting in view of the treatment of nuclear waste. In the third part of the thesis, a series of multifunctional tripodal ligands with different N-donor centres were used for U(VI) and lanthanide, Nd(III), Eu(III) and Yb(III), binding and extraction. Reaction of these metal ions with selected tripodal ligands afforded complexes which were characterized by ESI mass spectroscopy. The complex composition was found to be 1:1 in all cases. The extraction behaviour of the tripodal ligands towards Eu(III) and U(VI) was studied both in the absence and presence of octanoic acid as co-ligand using the extraction system Eu(NO3)3 or UO2(NO3)2–buffer–H2O/ ligand–CHCl3. These separation systems show a remarkably high selectivity for U(VI) over Eu(III). It is interesting to note that the addition of the octanoic acid to the extraction system leads to high synergistic effects. A series of Eu(III) extraction experiments were done to clarify the composition of the extracted complexes. The results clearly point to the formation of various species with changing composition.
519

Intestine Homeostasis and the Role of Tumor Suppressor Gene 101 in Drosophila Melanogaster: A Dissertation

Chatterjee, Madhurima 21 December 2011 (has links)
Tissue homeostasis in the adult Drosophila melanogaster intestine is maintained by controlling the proper balance of stem cell self-renewal and differentiation. In the adult fly midgut, intestinal stem cells (ISCs) are the only dividing cells and their identity maintenance is crucial to the proper functioning of the fly gut. Various pathways such as Notch, JAK-STAT and Wingless are known to regulate ISC division and differentiation. Here I used a pathogen feeding model to study conditions that accelerate ISC division and guide intestinal cell differentiation favoring enterocyte development. I also examined the role of Tumor Suppressor Gene 101 (TSG101) in ISC maintenance and function. TSG101, a part of the ESCRT1 complex. It is known to stimulate the Notch pathway and to play a role in endocytic trafficking. TSG101 loss-of-function mutants show developmental defects in various fly and mammalian tissues. The protein also plays a role in virus abscission from host cells. In my experiments I have observed that TSG101 is required for ISC maintenance. TSG101 knockdown and loss of function mutant clones have defects in ISC proliferation that hinder the normal intestinal responses to oral pathogen ingestion. Based on these results I conclude that TSG101 is needed in the adult fly intestine for proper ISC maintenance and function, thereby being an important player in intestinal homeostasis.
520

FUS/TLS in Stress Response - Implications for Amyotrophic Lateral Sclerosis: A Dissertation

Sama, Reddy Ranjith Kumar 28 March 2014 (has links)
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease is a fatal neurodegenerative disease. ALS is typically adult onset and is characterized by rapidly progressive loss of both upper and lower motor neurons that leads to death usually within 3-5 years. About 90% of all the cases are sporadic with no family history while the remaining 10% are familial cases with mutations in several genes including SOD1, FUS/TLS, TDP43 and C9ORF72. FUS/TLS (Fused in Sarcoma/Translocated in Liposarcoma or FUS) is an RNA/DNA binding protein that is involved in multiple cellular functions including DNA damage repair, transcription, mRNA splicing, RNA transport and stress response. More than 40 mutations have now been identified in FUS that account for about 5% of all the familial cases of ALS. However, the exact mechanism by which FUS causes ALS is unknown. While significant progress has been made in understanding the disease mechanism and identifying therapeutic strategies, several questions still remain largely unknown. The work presented here aims at understanding the normal functions of FUS as well as the pathogenic mechanisms by which it leads to disease. Several studies showed the association of mutant-FUS with structures made up of RNA and proteins, called stress granules that form under various stress conditions. However, little is known about the role of endogenous FUS under stress conditions. I have shown that under hyperosmolar conditions, the predominantly nuclear FUS translocates into the cytoplasm and incorporates into stress granules. The response is specific to hyperosmolar stress because FUS remains nuclear under other stress conditions tested, such as oxidative stress, ER stress and heat shock. The response of FUS is rapid, and cells with reduced FUS levels are susceptible to the hyperosmolar stress, indicating a pro-survival role for FUS. In addition to investigating the functions of endogenous wild-type (WT) FUS, the work presented also focuses on identifying the pathogenic mechanism(s) of FUS variants. Using various biochemical techniques, I have shown that ALS-causing FUS variants are misfolded compared to the WT protein. Furthermore, in a squid axoplasm based vesicle motility assay, the FUS variants inhibit fast axonal transport (FAT) in a p38 MAPK dependent manner, indicating a role for the kinase in mutant-FUS mediated disease pathogenesis. Analysis of human ALS patient samples indicates higher levels of total and phospho p38, supporting the notion that aberrant regulation of p38 MAPK is involved in ALS. The results presented in this dissertation 1) support a novel prosurvival role for FUS under hyperosmolar stress conditions and, 2) demonstrate that protein misfolding and aberrant kinase activation contribute to ALS pathogenesis by FUS variants.

Page generated in 0.0761 seconds