481 |
Native mass spectrometry and complementary techniques to characterize biological macromolecular assembliesNorris, Andrew S. January 2021 (has links)
No description available.
|
482 |
Death-Associated Protein Kinase Regulates Vascular Smooth Muscle Cell Signaling and MigrationBlue, Emily Keller 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cardiovascular disease is the number one cause of death for Americans. New treatments are needed for serious conditions like atherosclerosis, as it can lead to stroke and heart attack. Many types of cells contribute to the progression of cardiovascular disease, including smooth muscle cells that comprise the middle layers of arteries. Inappropriate growth and migration of smooth muscle cells into the lumen of arteries has been implicated in vascular diseases. Death associated protein kinase (DAPK) is a protein that has been found to regulate the survival and migration of cancer cells, but has not been well characterized in vascular cells. The objective of this work was to determine the signaling pathways that DAPK regulates in smooth muscle cells. These studies have focused on smooth muscle cells isolated from human coronary arteries (HCASM cells). We have determined that HCASM cells depleted of DAPK exhibit more rapid migration, showing that DAPK negatively regulates migration of vascular cells. Results from a focused RT-PCR array identified matrix metalloproteinase 9 (MMP9) as a gene that is increased in cells depleted of DAPK. MMP9 is an important enzyme that degrades collagen, a component of the extracellular matrix through which smooth muscle cells migrate during atherosclerosis. We found that DAPK regulates phosphorylation of the NF-kappa B transcription factor p65 at serine 536, a modification previously found to correlate with increased nuclear levels and activity of p65. In DAPK-depleted HCASM cells, there was more phosphorylation of p65, which causes increased MMP9 promoter activity. Additional experiments were conducted using transgenic mice in which the DAPK gene has been deleted. By studying these mice, we have determined that under some circumstances DAPK augments maximal MMP9 levels in mouse carotid arteries which have been injured by ligation surgery via other signaling pathways. MMP9 has been previously implicated as a protein that promotes vascular diseases such as atherosclerosis. Our research in identifying DAPK as a regulator of MMP9 expression identifies a new target for treatment of vascular diseases like atherosclerosis.
|
483 |
Macromolecular Structure: from peptides to polyvalent proteinsStachowski, Kye January 2021 (has links)
No description available.
|
484 |
Systematic Analysis of Posterior HOXA/HOXD Function in Mesenchymal CellsJerković, Ivana 11 October 2018 (has links)
HOX-Gene sind essentielle Transkriptionsfaktoren (TFs), die den Körperplan, die Struktur und die Organbildung während der Entwicklung bestimmen. Diese komplexen Prozesse werden präzise von in verschachtelter Weise exprimierten HOX-Genen reguliert. In vitro Experimente zeigten
jedoch, dass die HOX-DNA-Bindungsdomäne stark konserviert ist und oft ähnliche DNA-Sequenzen bindet. Die niedrige biochemische Bindungsspezifität und die hochspezifischen Funktionen stehen oft im Widerspruch und bilden das Schlussthema des so genannten Hox-Paradoxons. Das Paradox besteht aufgrund der folgenden Hindernisse: hohe Proteinhomologie, unspezifischen Antikörper sowie die verschachtelte HOX-Expressionsmuster. Das Ziel dieser Arbeit war, diese Probleme zu
überwinden, die HOX-DNA-Bindung in kontrollierten und physiologischen Umstände zu untersuchen und die Bindung von neun Gliedmaßen-spezifischen posterioren HOXA und -D-TFs zu vergleichen. Zu diesem Zweck wurden neun Hühner-HOX-Gene (HOXA- und HOXD9-13) mit dem FLAG markiert und mittels Viren in Gliedmaßen-mesenchymalen Zellen exprimiert. Somit wurde der Vergleich unter identischen und kontrollierten Bedingungen ermöglicht. Im Einklang mit in vivo Funktionsdaten zeigten die HOX-Bindungsprofile, dass zwei direkte Paraloge (z. B. HOXA10 und D10) häufiger dieselben Regionen binden als zwei Nicht-Paraloge (z. B. HOXA9 und A13). Außerdem, die hier beschriebene HOX-DNA-Bindung unterscheidet sich von in vitro Bindung, was darauf hinweist, dass Kofaktoren für deren biologische Funktion wichtig sind. Zusätzlich ergab sich aus dem Bindungsvergleich, dass es zuvor unbekannte Unterschiede zwischen Bindungsweise von HOX-TFs gibt, die zumindest teilweise auf der Häufigkeit von direkter Bindung und Ko-Bindung mit anderen TFs beruhen. Schließlich wurde mit der Kombination von Genetik, Genomik und Biochemie einen neuen HOX-Kofaktor entdeckt, CTCF, der auf ein mögliches Wechselspiel zwischen der HOX-Zielregulation und der Chromatinarchitektur hindeutet. / HOX genes are essential developmental transcription factors (TFs) that pattern the animal body plan, their structures and organs. To precisely control these very diverse processes HOX genes are expressed in a nested fashion and regulate their targets in a context specific way. However, in vitro experiments indicated that HOX DNA binding domain (Homeodomain) is remarkably rigid and often binds very similar DNA sequences. This discrepancy between high functional specificity and low in vitro biochemical specificity is at the core of a problem termed Hox paradox. This paradox persists due to several biological and technical obstacles; namely high HOX protein homology and lack of sufficiently specific antibodies as well as nested HOX expression pattern. The aim of this study was to address these problems, study HOX-DNA binding in a controlled, Hox-native environment and to compare HOX-DNA binding of nine posterior vertebrate HOXA and HOXD TFs. To do this, nine chicken HOX genes (HOXA9-13 and HOXD9-13) were FLAG-tagged and virally expressed in chicken mesenchymal limb-derived cells enabling comparison of their binding in an identical setup and controlled conditions. HOX binding profiles uncovered two direct paralogues (i.e. HOXA10 and D10) bind more often same regions than two non-paralogues (i.e. HOXA9 and A13) reminiscent of in vivo functional data. Moreover, the here described in vivo HOX-DNA binding differs from in vitro binding, indicating the importance of cofactors and biological context for HOX binding and functional outcome. Additionally, binding comparison uncovered previously unknown differences between binding modes of HOX-TFs that at least partially rely on the abundance of direct binding and co-binding with other TFs. Finally, with combination of genetics, genomics and biochemistry a novel HOX cofactor, CCCTC binding factor (CTCF), was discovered suggesting potential interplay between HOX target regulation and chromatin architecture.
|
485 |
THE DISCOVERY AND CHARACTERIZATION OF NOVEL POTENT 5-SUBSTITUTED 3, 3’, 4’, 7-TETRAMETHOXYFLAVONOID DNA TRIPLEX SPECIFIC BINDING LIGANDSRangel, Vanessa Marie 01 January 2023 (has links)
Chemotherapy works by killing fast dividing cells. Unfortunately, these drugs are not specific to cancer tissue and can damage normal cells. Chemotherapy is like taking poison and hoping it kills the cancer cells before it kills you. As an alternative, many researchers have investigated the use of antigene therapy to selectively target cancer causing genes to avoid off target effects. Although promising, the theory is limited by the stability of the triplex structure. Here, we report the discovery of potent triplex binding ligands derived from the natural product quercetin. Chemical derivatives of 5-substituted 3, 3’, 4’, 7-tetramethoxyquercetin derivatives were characterized using several biophysical methods: thermal denaturation monitored by UV, circular dichroism, viscometry, differential scanning calorimetry, and isothermal titration calorimetry. The data revealed that these derivatives specifically stabilize triplex DNA and do not influence the stability of duplex DNA, triple RNA, or duplex RNA. Structurally, the amino containing side chains at the 5-position and the linker length are critical for the observed binding affinity and specificity. Two derivatives, 5 and 7, are comparable (if not better) to the triplex groove binder Neomycin. Our data confirm the binding mode as enthalpically driven intercalation. Piperidine or pyrrolidine 5-substituted 3, 3’, 4’, 7-tetramethoxyquercetin derivatives with a three-carbon linker are the lead compounds for development as a potential antigene enhancer.
|
486 |
Ferrocyanide: An Inappropriate Reagent for ds-DNA Binding Mode DeterminationBurya, Scott J. 11 September 2009 (has links)
No description available.
|
487 |
Structural and Biophysical Studies of Single-Stranded DNA Binding Proteins and dnaB Helicases, Proteins Involved in DNA Replication and RepairJohnson, Vinu January 2007 (has links)
No description available.
|
488 |
Elucidating the molecular functions of ImuA and ImuB in bacterial translesion DNA synthesisLichimo, Kristi January 2024 (has links)
Bacterial DNA replication can stall at DNA lesions, leading to cell death if the damage fails to be repaired. To circumvent this, bacteria possess a mechanism called translesion DNA synthesis (TLS) to allow DNA damage bypass. The ImuABC TLS mutasome comprises the RecA domain-containing protein ImuA, the inactive polymerase ImuB, and the error-prone polymerase ImuC. ImuA and ImuB are necessary for the mutational function of ImuC that can lead to antimicrobial resistance (AMR) as seen in high-priority pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis. Understanding how ImuA and ImuB contribute to this function can lead to new targets for antimicrobial development.
This research aims to discover the molecular functions of ImuA and ImuB homologs from Myxococcus xanthus through structural modelling and biochemical analyses. ImuA was discovered to be an ATPase whose activity is enhanced by DNA. Based on predicted structural models of the ATPase active site, I identified the critical residues needed for ATP hydrolysis, and found that the ImuA C-terminus regulates ATPase activity. Further, ImuA and ImuBNΔ34 (a soluble truncation of ImuB) display a preference for longer single-stranded DNA and overhang DNA substrates, and their affinity for DNA was quantified in vitro. To better understand how ImuA and ImuB assemble in the TLS mutasome, bacterial two-hybrid assays determined that ImuA and ImuB can self-interact and bind one another. Mass photometry revealed that ImuA is a monomer and ImuBNΔ34 is a trimer in vitro. ImuA and ImuBNΔ34 binding affinity was quantified in vitro at 1.69 μM ± 0.21 by microscale thermophoresis, and removal of the ImuA C-terminus weakens this interaction. Lastly, ImuA and ImuBNΔ34 secondary structures were quantified using circular dichroism spectroscopy, and ImuA was modified to enable crystallization for future structural studies. Together, this research provides a better understanding of ImuABC-mediated TLS, potentially leading to novel antibiotics to reduce the clinical burden of AMR. / Thesis / Master of Science (MSc) / The antimicrobial resistance (AMR) crisis is fueled by the emergence of multi-drug resistant microbes, posing a major threat to global health and disease treatment. Bacteria can develop resistance to antibiotics through mutations in the genome. When the genome becomes damaged, bacteria can acquire these mutations by an error-prone replication mechanism called translesion DNA synthesis (TLS). In some bacteria, TLS involves a specialized enzyme complex, consisting of proteins ImuA, ImuB and ImuC, allowing replication past bulky DNA damage and lesions. The goal of this thesis is to investigate how the ImuA and ImuB proteins contribute to the functioning of this mistake-making machinery. I used biochemical and biophysical methods to identify ImuA and ImuB interactions with each other and themselves. I discovered that ImuA is an enzyme that uses energy to enhance its binding to DNA, and determined the specific amino acids involved in this function.
|
489 |
Recherche de partenaires potentiels de la protéine Damaged-DNA Binding 2 dans la régulation de l’expression génique : le cas des heterogeneous ribonucleoprotein K et J dans la régulation du gène NFKBIA / Search for potential partners of Damaged-DNA Binding 2 protein in the regulation of gene expression : the case of heterogeneous ribonucleoprotein K and J in the regulation of NFKBIA geneDrouot, Guillaume 16 November 2018 (has links)
Le laboratoire a identifié récemment la protéine DDB2 comme ayant une activité dans la régulation de l’expression de gènes cibles tels que SOD2, BCL2 et NFKBIA, conférant ainsi à cette protéine un rôle dans le contrôle de la progression métastatique et dans la réponse thérapeutique des cellules tumorales mammaires. Cependant, l’activité réelle de DDB2 dans la transcription génique reste à définir, car sa structure ne permet pas d’expliquer son influence sur l’expression de ses gènes cibles. Cette activité peut être soit inhibitrice comme pour SOD2 et BCL2, soit activatrice comme NFKBIA qui code la protéine IκBα, suggérant que DDB2 doit s’associer avec des inhibiteurs ou des activateurs de la transcription génique, ou en favoriser le recrutement. Afin d’identifier ces partenaires potentiels, susceptibles de participer à son activité transcriptionnelle, nous avons développé une approche de « DNA pull-down », couplée à une analyse protéomique globale par spectrométrie de masse à partir des cellules tumorales mammaires MCF-7 surexprimant naturellement DDB2. Nous avons révélé la présence du complexe UV-DDB (DDB2, DDB1 et Cul4A) sur le promoteur des gènes SOD2 et NFKBIA. Nous avons également mis en évidence que ce complexe, connu pour participer aux premières étapes de la réparation de l’ADN lésé par des rayonnements UV, favorise le recrutement de l’histone acétyl transférase p300 sur le promoteur du gène NFKBIA, expliquant en partie le rôle activateur de DDB2 sur ce gène cible. Notre analyse protéomique à révéler, avec un score élevé, la présence des protéines hnRNP K et J sur le promoteur du gène NFKBIA et d’une manière indépendante de toute interaction physique avec DDB2. La forme J, très peu décrite, présente une affinité plus grande pour le promoteur du gène NFKBIA que la forme K. De plus, nous l’avons observée strictement nucléaire et liée à la chromatine. De manière intéressante, nous montrons que la forme J est surexprimée dans le noyau des cellules tumorales MDA-MB231 métastatiques, comparativement aux cellules T47D non métastatiques. Par la suite, nous avons évalué l’importance des hnRNP K et J dans la transcription du gène NFKBIA par rapport à DDB2 et un régulateur bien décrit tel que le facteur de transcription Sp1. Nos résultats indiquent que les protéines hnRNP K et J, lorsqu’elles sont surexprimées, jouent un rôle de répresseur du gène NFKBIA et ce même en présence des activateurs DDB2 et Sp1. L’ensemble de ce travail a contribué à montrer la présence de protéines, pouvant participer à l’activité transcriptionnelle de DDB2, telles que le complexe UV-DDB et p300. En dehors de tout partenariat avec DDB2, il a été mis en évidence une relation entre les hnRNP K et J et l’activité constitutive de NF-κB, en particulier avec la forme J, qui, par son expression corrélée à l’agressivité des cellules tumorales mammaires, présente un intérêt clinique potentiel en tant que marqueur prédictif de la progression métastatique, tout comme DDB2 / The laboratory has recently identified the DDB2 (Damaged-DNA Binding 2) protein as a regulator of target gene expression like SOD2, BCL2 and NFKBIA, thus conferring to this protein a role in control of metastatic progression and therapeutic response of breast cancer cells. However, the real activity of DDB2 in gene transcription remains to be defined because its structure cannot entirely explain its influence on target gene expression. This protein can act either as an inhibitor like for the SOD2 and BCL2 genes or as an enhancer like for the NFKBIA gene, encoding IκBα protein. This suggests that DDB2 must associate with, or promote recruitment, of inhibitors or activators of gene transcription. In order to search and identify potential partners that could participate in its transcriptional activity, we developed a “DNA pull-down” approach associated with a global proteomic analysis by mass spectrometry from MCF-7 breast cancer cells overexpressing naturally DDB2. With this approach, we reveal the presence of the UV-DDB complex composed by DDB2, DDB1 and Cullin 4A proteins on the SOD2 and NFKBIA gene promoters. We also highlighted that this complex, known for its role in first steps of UV-induced DNA lesion repair, promotes the recruitment of the p300 histone acetyl transferase on the NFKBIA gene promoter, which may explain, in part, the enhancer activity of DDB2 on this target gene. The proteomic analysis from the “DNA pull-down” also reveals, with originality, the presence of heterogeneous ribonucleoproteins K and J (hnRNP K and J) on the NFKBIA gene promoter with a high recovery score among many other proteins and independently of any physical interaction with DDB2. The J form, very poorly described, shows a higher affinity for NFKBIA gene promoter than the K form. Furthermore, we observed that the J form is strictly nuclear and mostly bound to chromatin, while the K form is also found in cytoplasm. Interestingly, we show that the J form is overexpressed in nucleus of metastatic breast cancer MDA-MB231 cells by comparison with non-metastatic breast cancer T47D cells. Then, we evaluated the importance of hnRNP K and J proteins in NFKBIA gene transcription compared with DDB2 and with a well-known regulator, the Sp1 transcription factor. Our results show that hnRNP K and J proteins, when they are overexpressed, play a repressor role on NFKBIA gene expression by binding on its promoter even in presence of DDB2 and Sp1 activators. Taken together, these data show that some proteins could participate in DDB2 transcriptional activity, like the UV-DDB complex and the p300 protein. Outside of any interaction with DDB2, this work highlights a relationship between the hnRNP K and J proteins, and NF-κB constitutive activity, especially with the J form. This latter has an expression correlated with aggressiveness of breast cancer cells and a potential clinical interest as a predictive marker of metastatic progression, like DDB2
|
490 |
THE PROGNOSTIC POTENTIAL OF THE EPIDERMAL GROWTH FACTOR RECEPTOR AND NUCLEAR FACTOR KAPPA B PATHWAYS AND ASSOCIATED THERAPEUTIC STRATEGIES IN PATIENTS WITH SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECKWirth, Pamela 01 January 2010 (has links)
Little is known about the signaling pathways that contribute to treatment response in advanced stage head and neck tumors. Increased expression of epidermal growth factor receptor (EGFR) and downstream pathways such as nuclear factor kappa B (NFκB) are implicated in aggressive tumor phenotypes and limited response to therapy. This study explored the rationale for combining the proteasome inhibitor bortezomib with the EGFR inhibitor gefitinib in a subset of head and neck squamous cell carcinomas with high EGFR gene amplification. Drug responses of gefitinib and bortezomib as single agents and in combination within head and neck squamous cell carcinoma cell lines were analyzed using MTS assays. The effects of gefitinib on the activation of EGFR and itsthree major downstream pathways, Akt, STAT3 and MAPK were determined by western blotting. The activation status of NFκB and the effects of bortezomib on the canonical pathway were assessed by DNA binding assays. Resistance to lower doses of gefitinib was associated with elevated EGFR and activated Akt expression. Gefitinib was able to effectively inhibit activation of STAT3, Akt and MAPK in HNSCC to varying degrees depending on EGFR expression status. Bortezomib treatment inhibited TNFα –induced nuclear NFκB/RelA expression but demonstrated variability in levels of baseline nuclear NFκB/RelA expression between sensitive and resistant cell lines. Bortezomib effectively suppresses NFκB/RelA nuclear activation but demonstrates additional modes of cellular toxicity beyond the NFκB pathway in sensitive cell lines. Further understanding of tumor response to the targeted inhibitors gefitinib and bortezomib may provide novel approaches in managing HNSCCs.
|
Page generated in 0.0622 seconds