• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 91
  • 37
  • 18
  • 14
  • 10
  • 9
  • 8
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 364
  • 58
  • 55
  • 52
  • 50
  • 43
  • 41
  • 39
  • 34
  • 31
  • 29
  • 28
  • 28
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Correlating Melt Dynamics with Glass Topological Phases in Especially Homogenized Equimolar GexAsxS100-2x Glasses using Raman Scattering, Modulated- Differential Scanning Calorimetry and Volumetric Experiments

Almutairi, Badriah Saad 27 September 2020 (has links)
No description available.
162

Energy monitoring of the Cortex-M4 core, embedded in the Atmel SAM G55 microcontroller

Bekli, Zeid, Ouda, William January 2017 (has links)
The technology in cellular phones, portable computing systems, intelligent- andconnected- devices are evolving in a high pace and in many cases these devices arerequired to operate in a low-power environment. The problem that continues toemerge, is the power consumption in microcontrollers and DSP devices. This issue hasover time become important to solve in order to maximize battery life. To ease thechoice of power efficient microcontrollers, controlled experiments were thereforeperformed with the Cortex-M4, this microcontroller was chosen because of theupgraded hardware, which has led to an appreciable change in both power- and speedefficiency compared to its predecessors.The conclusion presents important points, along with advantages and difficulties toconsider when implementing a DSP application. By comparing different optimizationswith the Floating Point Unit(FPU), Fixed-point and software Floating-point, the resultsshow that there are major differences in power consumption between these threeoptions. Depending on which option and optimization used then the powerconsumption can exceed over 70% more compared to the other options available.
163

Assessment of residual composite properties as influenced by thermal mechanical aging

Plunkett, Richard 07 November 2008 (has links)
In this study, two quasi-isotropic carbon fiber-reinforced polyimide material systems, IM7/K3B and IM7/PETI-5, were thermally aged at 163°C for up to 3000 hours under a static compressive load. The future goal of this study is to determine the effect of 10,000 hours (currently underway) and possibly seven years of aging on these materials. The compressive load was applied using steel fixtures supplied by The Boeing Company. Back-to-back gages on the aging panels monitored compressive strain as well as bending strain. Following aging at 1500 and 3000 hours, ambient residual compression properties were assessed using the IITRI compression test method. Unexposed specimens were also tested to obtain baseline properties for comparison. These results showed that 3000 hours of stressed isothermal aging did not significantly affect the compressive properties of the two composite systems. A slight increase in scatter of the residual strength numbers was observed. Statistical evaluation of the results was used to compute design allowables and quantify changes in scatter. Differential scanning calorimetry (DSC) was used to monitor any changes in glass transition temperature as a result of the aging. Only small changes were observed in the DSC scans. Dynamic thermogravimetric analysis (TGA) tests were used to compare weight loss rate versus temperature results for the different age materials. Results show different rates of degradation occurring in the different K3B polymer aging histories. In addition to establishing the effect of isothermal aging under load on the compressive moduli and strength of two polymer-matrix composites, this experiment links increasing scatter in residual strength measurements to changing thermogravimetric results. / Master of Science
164

Characterization of PF Resol/Isocyanate Hybrid Adhesives

Riedlinger, Darren Andrew 25 March 2008 (has links)
Water-based resol phenol formaldehyde, PF, and organic polymeric methylenebis(phenylisocyanate), pMDI, are the two primary choices for the manufacture of exterior grade wood-based composites. This work addresses simple physical blends of pMDI dispersed in PF as a possible hybrid wood adhesive. Part one of this study examined the morphology of hybrid blends prepared using commercially available PF and pMDI. It was found that the blend components rapidly reacted such that the dispersed pMDI droplets became encased in a polymeric membrane. The phase separation created during liquid/liquid blending appeared to have been preserved in the cured, solid-state. However, substantial interdiffusion and copolymerization between blend components also appeared to have occurred according to measured cure rates, dynamic mechanical analysis, and atomic force microscopy. In the second part of this study a series of PF resins was synthesized employing the so-called "split-cook" method, and by using a range of formaldehyde/phenol and NaOH/phenol mole ratios. These neat PF resins were subjected to the following analyses: 1) steady-state flow viscometry, 2) free formaldehyde titration, 3) non-volatile solids determination, 4) size exclusion chromatography, 5) quantitative solution-state ¹³C nuclear magnetic resonance, NMR, 6) differential scanning calorimetry, 7) parallel-plate oscillatory cure rheology, and 8) dielectric spectroscopy. The neat PF analytical results were unremarkable with one exception; NMR revealed that the formaldehyde/phenol mole ratio in one resin substantially differed from the target mole ratio. The neat PF resins were subsequently used to prepare of series of PF/pMDI blends in a ratio of 75 parts PF solids to 25 parts pMDI solids. The resulting PF/pMDI blends were subjected to the following analyses: 1) differential scanning calorimetry, 2) parallel-plate oscillatory cure rheology, and 3) dielectric spectroscopy. Similar to what was inferred in part one of this study, both differential scanning calorimetry (DSC) and oscillation cure rheology demonstrated that cure of the PF continuous phase was substantially altered and accelerated by pMDI. However within actual wood bondlines, dielectric analysis detected little variation in cure speed between any of the formulations, both hybrid and neat PF. Furthermore, the modulated DSC curing experiments detected some latent reactivity in the hybrid system, both during initial isothermal curing and subsequent thermal scanning. The latent reactivity may suggest that a significant diffusion barrier existed between blend components, preventing complete reaction of hybrid blends even after thermal scanning up to 200 °C. Part three of this work examined the bonded wood mode-I fracture performance of hybrid resins as a function of the resol formaldehyde/phenol ratio and also the alkali content. A moderate increase in unweathered fracture toughness was observed for hybrid formulations relative to neat PF. Following accelerated weathering, the durability of the hybrid blends was promising: weathered hybrid toughness was equivalent to that of weathered neat PF. While the resol F/P ratio and alkali content both influenced hybrid fracture toughness, statistical modeling revealed interaction between these variables that complicated result interpretation: the influence of hybrid alkali content depended heavily on each formulation's specific F/P ratio, and vice versa. / Master of Science
165

Synthesis and Photopolymerization of Novel Dimethacrylates

Gunduz, Nazan 14 October 1998 (has links)
Four potential new monomers were prepared, all of which were structural analogues of BisGMA (2,2-bis(4-(2-hydroxy-3-methacryloxyprop-1-oxy) phenyl)propane). The synthesis of these tetrafunctional dimethacrylate monomers was based on structural modifications of Bis-GMA in the core and the side chain and required a two-step reaction. The first step was propoxylation or ethoxylation of the bisphenols and the second step was the methacrylation of the resulting products. The core structures are designated by Bis-A for isopropylidene and 6F for hexafluoropropyl. The side chain structures were designated on the basis of the pendant side chains in the glycidyl moiety as -OH, -H, and -CH3 from the epichlorohydrin, ethyleneoxide, and propyleneoxide reaction products with the bisphenols, respectively. Bis-GMA was commercially obtained and used as a standard for comparison of the experimental monomers. All the monomers were prepared by the following general procedure of propoxylation or ethoxylation of the biphenols followed by methacrylation. They were characterized by NMR, FTIR, DSC and Cone and Plate Viscometry. All the experimental monomers exhibited lower viscosities and glass transition temperatures than the control, which was attributed to the elimination of the hydrogen bonding. The monomers were photopolymerized in a differential scanning calorimetry modified with an optics assembly (DPA 7; Double Beam Photocalorimetric Accessory) to study the photo-induced crosslinking reactions. The influence of monomer structure, temperature, light intensity, and initiator concentration on the photopolymerization kinetics of ethoxylated and propoxylated dimethacrylates was investigated by isothermal DSC. The DSC curves showed a rapid increase in rate due to the Trommsdorff effect, and then a decline due to the decrease of monomer concentration and the autodeceleration effect. The monomers with lower viscosities and glass transition temperatures exhibited higher conversions of the double bonds. The final extent of conversion increased with curing temperature, light intensity and initiator concentration. The radiation intensity exponent varied from 0.68 (BisGMA) to 0.74 for the ethoxylated 6F system. The initiator exponent were varied from 0.34 (for BisGMA) to 0.44 for the propoxylated BisA system. The ratio of the reaction rate constant (kt/kp) was calculated for PropBisAdm from both steady-state and non steady-state conditions. The effect of dilution on photopolymerization kinetics of BisGMA/triethyleneglycoldimethacrylate (TEGDMA) mixtures was also studied by isothermal photo-DSC. Dilution with TEGDMA significantly reduced the viscosity and glass transition temperatures of the mixtures due to the increase in the flexibility. The extent of polymerization increased with increasing TEGDMA and curing temperature. The calculation of ratio of rate constants (kt/kp) was also determined and the significance was discussed herein. / Master of Science
166

Comparative study of different methods for the prediction of drug-polymer solubility

Knopp, M.M., Tajber, L., Tian, Y., Olesen, N.E., Jones, D.S., Kozyra, A., Lobmann, K., Paluch, Krzysztof J., Brennan, C.M., Holm, R., Healy, A.M., Andrews, G.P., Rades, T. 27 July 2015 (has links)
Yes / In this study, a comparison of different methods to predict drug−polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug−polymer solubility at 25 °C was predicted using the Flory−Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine−PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug−polymer solubility. / The Irish Research Council and Eli Lilly S.A. through an Irish Research Council Enterprise Partnership Scholarship for C.M.B., in part by The Royal Society in the form of Industrial Fellowship awarded to G.A., and in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2275 (for A.M.H., L.T., K.P., and A.K.).
167

Ternary organic–inorganic nanostructured hybrid materials by simultaneous twin polymerization

Weißhuhn, J., Mark, T., Martin, M., Müller, P., Seifert, A., Spange, S. 06 March 2017 (has links) (PDF)
The acid and base catalyzed simultaneous twin polymerization (STP) of various 2,2′-disubstituted 4H-1,3,2-benzodioxasiline derivatives 2a–d with 2,2′-spirobi[4H-1,3,2-benzodioxasiline] (1) are presented in this paper. The products are nanostructured ternary organic–inorganic hybrid materials consisting of a cross-linked organic polymer, silica and a disubstituted polysiloxane. It can be demonstrated whether and in which extent the copolymerization of the two inorganic fragments of 1 and 2 takes place among the STP and how the molar ratio of the two components determines the structure formation of the resulting hybrid material. Steric and electronic effects of the substituents at the silicon center of 2 on the molecular structure formation and the morphology of the resulting hybrid material were investigated by means of solid state CP MAS 29Si and 13C NMR spectroscopy as well as high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mechanical properties (hardness and Young's modulus) of the hybrid materials were analyzed by means of nanoindentation measurements. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
168

TADDOLs and derivatives : synthesis and applications in enantioselective processes / TADDOLs et dérivés : synthèse et applications en processus enantioselectifs

Gherase, Dragos 16 December 2011 (has links)
Dans cette thèse les résultats dans le domaine de la synthèse des dérivée des TADDOL et leur capacité d’induction chirale sont présentés. Une librairie des TADDOLs a été synthétisée et une analyse conformationnelle par VCD a été faite. Ces composés enantiopurs ont été testés dans la réaction de cyanosilylation enantioselective en donnant des résultats moyens. En partant de TADDOL nous avons synthétisé des dérivée phosphorés, des amines et des (thio)urées. Les dérivés de P(III) ont été utilisés comme ligands pour le palladium dans l’alkylation allylique asymétrique et les amines dans le réarrangement des époxydes meso. Les (thio)urées ont été testées pour leur capacité de complexation des anions carboxylates. / In this thesis are presented the results in the field of synthesis of TADDOL derivatives and their chiral induction capacity. A family of TADDOLs was synthesized and a conformational analysis was performed by VCD. These enantipure compounds were tested in enantioselective cyanosilylation reactions obtaining moderate results. Starting from TADDOL we obtained phosphorus derivatives, amines and (thio)ureas. The P(III) derivatives were tested as ligands for palladium in asymmetric allylic alkylation and the amines in the rearrangement of meso-epoxides. The (thio)ureas were screened for complexation capacity for carboxylate anions.
169

Contribution des nanostructures dans les agrégats protéiques et d’émulsions stabilisées par des protéines en vue de la protection de vitamine / Contribution of nanostructures in protein aggregates and protein-stabilized lipid nanoparticles for vitamin protection

Shukat, Rizwan 24 May 2012 (has links)
Nous avons cherché à évaluer l'impact de conditions opératoires pour la préparation d'agrégats protéiques et d'émulsions stabilisées par des protéines en vue de la protection de l'α-tocopherol, servant de modèle de molécules d'intérêt, hydrophobes et sensibles. Les matrices protéiques ont été formées à partir d'un concentrat de protéines de lactosérum (6 wt% de WPC, pH 6.5 et 65 à 75°C), en présence ou absence de 4% α-tocopherol. Le mélange (65°C -15 min) des protéines en solution sans ou avec α-tocopherol a donné lieu à la formation de particules avec modification de charge (de -42 à -51 mV) et de taille (de 183 à 397 nm). Ces paramètres ont diminué davantage sous l'effet d'homogénéisation sous haute pression à 1200 bar que à 300 bar, alors qu'une meilleure protection de l'α-tocopherol a été observée après 8 semaines conservation. Les mécanismes impliqués dans la formation des matrices protéiques correspondantes ont été décrits sur la base de procédés de dénaturation-agrégation de protéines sériques, à partir de résultats obtenus par calorimétrie différentielle à balayage (DSC), spectrofluorescence, diffusion multiple de la lumière et électrophorèse SDS-PAGE. Les matrices lipidiques ont été préparées à partir de phases aqueuses contenant (6 wt% or 3 wt% de WPC) et lipidiques (20 %) en présence ou absence de lécithines (1.5%) avec ou sans α-tocopherol (4%), et par application d'une première étape de dispersion (65°C - 15 min) suivie d'une homogénéisation sous pression à 300 ou 1200 bar. Les nanoparticles lipidiques formées à plus haute pression étaient de taille et concentration protéique de surface plus faibles et de degré d'encapsulation de l'α-tocopherol plus faible (près de 15 %). L'analyse par DSC en modes balayage et isothermes des particules lipidiques a montré que plus leur taille est faible, plus le sur-refroidissement est important, l'apparition des cristaux de matière grasse plus retardée, et leur développement à 4°C moins important. Ces effets sont accentués dans les gouttelettes contenant l'α-tocopherol. La diffraction aux grands et petits angles de rayons X (synchrotron Soleil), couplée à la DSC, a montré la co-existence des polymorphes 2Lα, 2Lβ' et 2Lβ dans toutes les émulsions, mais à des proportions différentes. Les cristaux 2Lβ étaient plus développés dans les gouttelettes de plus petite taille et contenant du tocopherol en présence de lécithins, celles qui présentaient la plus forte dégradation chimique d'α-tocopherol pendant une conservation à long-terme. / We investigated effects of processing conditions for the preparation of protein aggregates and protein-stabilized lipid droplets, as matrix carriers of sensitive lipophilic bioactive compounds, with α-tocopherol as a model. Protein-based matrices were formed from whey protein concentrate (6 wt% WPC, pH 6.5 and 65 to 75°C), in presence or absence of 4% α-tocopherol. Mixing the protein solutions without or with α-tocopherol (65°C for 15 min) led to changes in particle surface charges (from -42 to -51 mV) and sizes (from 183 to 397 nm). These parameters decreased more under further high pressure homogenisation at 1200 bar than 300 bar, in parallel with increased vitamin protection over 8 week's storage. Molecular mechanisms involved in formation of corresponding α-tocopherol-loaded protein matrix were described on the basis of heat- and high-pressure-induced whey protein denaturation and aggregation, as evidenced by differential scanning calorimetry (DSC), spectrofluorescence, multi-light scattering and SDS-PAGE electrophoretic patterns. Lipid-based matrices were developed from aqueous phases (80 wt%) containing WPC (6 wt% or 3 wt%) and lipid phases (20 wt%) in presence or absence of lecithins and/or 4% α-tocopherol, and by using a first dispersion step (65°C for 15 min) followed with HPH at 300 or 1200 bar. Our results showed that increasing HPH was accompanied by formation of lipid nanoparticles with decreasing size and protein surface concentration with an increase in α-tocopherol degradation (up to 15 wt% for 1200 bar). DSC in scanning and isothermal modes showed that reduction in lipid droplet size was accompanied by retardation in crystalline fat development under storage at 4°C, with further reduction in crystalline fat development along with further increase in supercooling for lipid droplets containing α-tocopherol. Fat polymorphism observed using time-resolved synchrotron X-ray scattering at wide and small angles (WAXS and SAXS) coupled with DSC, showed co-existence of 2Lα, 2Lβ' and 2Lβ polymorphs in all the emulsions, but at different proportions. It was observed that 2Lβ polymorphs were more prominent in lipid droplets with lower size and containing α-tocopherol in presence of lecithins that were shown to present the lowest long-term stability of α-tocopherol against chemical degradation.
170

Caracterização termoanalítica e estudo de cura de compósito de resina epóxi e mica com propriedades elétricas isolantes aplicado em máquinas hidrogeradoras / Thermoanalytical Charactherization and Cure Study of an Epoxy resin and Mica Composite with Insulating Electrical Properties applied in Hydrogenerators Machines

Koreeda, Tamy 11 March 2011 (has links)
Atualmente, a participação da energia elétrica na matriz energética mundial é um assunto em evidência. O estudo do compósito isolante da barra estatórica, um dos componentes principais da máquina hidrogeradora, permite a obtenção de informações físico-químicas relevantes ao aperfeiçoamento do sistema, e também de estudos de comportamento térmico quando este é exposto à alta temperatura, por diferentes intervalos de tempo submetidos a estresses mecânicos, elétricos e/ou químicos. O sistema em estudo é o MICALASTIC®, desenvolvido pela empresa Siemens em 1960. Neste trabalho, as propriedades térmicas do compósito isolante, formado por uma fita de mica, resina epóxi (DGEBA), endurecedor (MHHPA) e acelerador naftenato de zinco (N-Zn) foram estudadas. Utilizando-se as técnicas termoanalíticas Calorimetria Exploratória Diferencial (DSC) e Termogravimetria e Termogravimetria Derivada (TG/DTG), o comportamento térmico de cada um dos materiais foi avaliado. As curvas DSC e TG/DTG também evidenciaram as possíveis interações químicas entre os componentes. Os estudos referentes à cura do material e da degradação térmica do compósito curado foram realizados. Observou-se claramente a influência da quantidade de acelerador na polimerização do sistema. A partir das curvas DSC, observou-se dois mecanismos de cura diferentes coexistentes, um com menor quantidade de N-Zn e outro com concentração maior, resultando em eventos de cura com início em temperaturas diferentes. Esse fato ainda não havia sido estudado desde a origem do sistema. Além disso, a perda de massa referente à evaporação do endurecedor no início do processo de cura foi confirmada a partir da caracterização do compósito por espectroscopia de absorção na região do infravermelho, comparando-se os espectros antes e após o fenômeno. Na prática, dois perfis de impregnação, o Homogêneo e o Heterogêneo, de barras condutoras são utilizados, e uma diferença significativa entre eles foi observada. Os estudos desenvolvidos devem ser associados a testes elétricos específicos para o melhor entendimento da relação entre a aplicação do material e suas propriedades teóricas termoanalíticas. Além disso, foi realizado o estudo cinético da decomposição térmica do compósito curado por métodos termogravimétricos, isotérmico e dinâmico. / Currently, the electric energy participation in the world energy matrix is a significant issue. The insulating composite in stator bars, which are one of the most important components in hydrogenerator machines, allows the attainment of relevant physical and chemical information to system optimization, in addition to study thermal behavior when the material is exposed to high temperatures, for different time intervals and mechanical, chemical and/or electrical stress. The studied system is MICALASTIC®, developed by Siemens Company in 1960. In this work, thermal properties of this insulating composite, composed by mica tape, epoxy resin (DGEBA), hardener (MHHPA) and zinc naphtenate (N-Zn) as accelerator, were studied. Using thermoananalytical techniques as Differential Scanning Calorimetry (DSC) and Thermogravimetry and Derivative Thermogravimetry (TG/DTG), thermal behavior of each material was evaluated. DSC and TG/DTG curves evidenced chemical interactions between components. The study relative to material curing and cured composite thermal degradation were described. It was clearly observed the N-Zn amount influence in the cure of system, and through DSC curves, it was possible to observe two distinct polymerization coexisting mechanisms, one with lower quantity of N-Zn and another one with bigger concentration, resulting in cure events starting in different temperatures. This fact has not been studied yet since the system has been originated. Besides that, the weight loss related to hardener evaporation starting with curing process was confirmed by composite characterization by FTIR spectra, before and after phenomenon. In practice, two impregnation patterns (Homogeneous and Heterogeneous) of conductive bars are used and a significant difference between them was observed. The developed studies have to be associated to electrical tests to a best understanding about material application and theoretical thermoanalytical properties. In addition, it was performed thermal decomposition of cured composite kinetic study by isothermic and dynamic thermogravimetric methods

Page generated in 0.0339 seconds