• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 63
  • 58
  • 41
  • 30
  • 29
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 529
  • 359
  • 249
  • 135
  • 127
  • 114
  • 112
  • 103
  • 94
  • 88
  • 75
  • 73
  • 60
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

High-Efficiency and High-Power Density DC-DC Power Conversion Using Wide Bandgap Devices for Modular Photovoltaic Applications

Zhao, Xiaonan 17 April 2019 (has links)
With the development of solar energy, power conversion systems responsible for energy delivering from photovoltaic (PV) modules to ac or dc grid attract wide attentions and have significantly increased installations worldwide. Modular power conversion system has the highest efficiency of maximum power point tacking (MPPT), which can transfer more solar power to electricity. However, this system suffers the drawbacks of low power conversion efficiency and high cost due to a large number of power electronics converters. High-power density can provide potentials to reduce cost through the reduction of components and potting materials. Nowadays, the power electronics converters with the conventional silicon (Si) based power semiconductor devices are developed maturely and have limited improvements regarding in power conversion efficiency and power density. With the availability of wide bandgap devices, the power electronics converters have extended opportunities to achieve higher efficiency and higher power density due to the desirable features of wide bandgap devices, such as low on-state resistance, small junction capacitance and high switching speed. This dissertation focuses on the application of wide bandgap devices to the dc-dc power conversion for the modular PV applications in an effort to improve the power conversion efficiency and power density. Firstly, the structure of gallium-nitride (GaN) device is studied theoretically and characteristics of GaN device are evaluated under testing with both hard-switching and soft-switching conditions. The device performance during steady-state and transitions are explored under different power level conditions and compared with Si based devices. Secondly, an isolated high-efficiency GaN-based dc-dc converter with capability of wide range regulation is proposed for modular PV applications. The circuit configuration of secondary side is a proposed active-boost-rectifier, which merges a Boost circuit and a voltage-doubler rectifier. With implementation of the proposed double-pulse duty cycle modulation method, the active-boost-rectifier can not only serve for synchronous rectification but also achieve the voltage boost function. The proposed converter can achieve zero-voltage-switching (ZVS) of primary side switches and zero-current-switching (ZCS) of secondary side switches regardless of the input voltages or output power levels. Therefore, the proposed converter not only keeps the benefits of highly-efficient series resonant converter (SRC) but also achieves a higher voltage gain than SRC and a wide range regulation ability without adding additional switches while operating under the fixed-frequency condition. GaN devices are utilized in both primary and secondary sides. A 300-W hardware prototype is built to achieve a peak efficiency of 98.9% and a California Energy Commission (CEC) weighted efficiency of 98.7% under nominal input voltage condition. Finally, the proposed converter is designed and optimized at 1-MHz switching frequency to pursue the feature of high-power density. Considering the ac effects under high frequency, the magnetic components and PCB structure are optimized with finite element method (FEM) simulations. Compared with 140-kHz design, the volume of 1-MHz design can reduce more than 70%, while the CEC efficiency only drops 0.8% at nominal input voltage condition. There are also key findings on circuit design techniques to reduce parasitic effects. The parasitic inductances induced from PCB layout of primary side circuit can cause the unbalanced resonant current between positive and negative half cycles if the power loops of two half cycles have asymmetrical parasitic inductances. Moreover, these parasitic inductances reflecting to secondary side should be considered into the design of resonant inductance. The parasitic capacitances of secondary side could affect ZVS transitions and increase the required magnetizing current. Because of large parasitic capacitances, the dead-time period occupies a large percentage of entire switching period in MHz operations, which should be taken into consideration when designing the resonant frequency of resonant network. / Doctor of Philosophy / Solar energy is one of the most promising renewable energies to replace the conventional fossils. Power electronics converters are necessary to transfer power from solar panels to dc or ac grid. Since the output of solar panel is low voltage with a wide range and the grid side is high voltage, this power converter should meet the basic requirements of high step up and wide range regulation. Additionally, high power conversion efficiency is an important design purpose in order to save energy. The existing solutions have limitations of narrow regulating range, low efficiency or complicated circuit structure. Recently, the third-generation power semiconductors attract more and more attentions who can help to reduce the power loss. They are named as wide band gap devices. This dissertation proposed a wide band gap devices based power converter with ability of wide regulating range, high power conversion efficiency and simple circuit structure. Moreover, this proposed converter is further designed for high power density, which reduces more than 70% of volume. In this way, small power converter can merge into the junction box of solar panel, which can reduce cost and be convenient for installations.
462

Investigation of High Performance AC/DC Front-End Converter with Digital Control for Server Applications

luo, zheng 03 March 2009 (has links)
With the development of information technology, the market for power management of telecom and computing equipment keeps increasing. Distributed power systems are widely adopted in the telecom and computing applications for the reason of high performance and high reliability. Recently industry brought out aggressively high efficiency requirements for a wide load range for power management in telecom and computing equipment. High efficiency over a wide load range is now a requirement. On the other hand, power density is still a big challenge for front-end AC/DC converters. For DPS systems, front-end AC/DC converters are under the pressure of continuous increasing power density requirement. Although increasing switching frequency can dramatically reduce the passive component size, its effectiveness is limited by the converter efficiency and thermal management. Technologies to further increase the power density without compromising the efficiency need to be studied. The industry today is also at the beginning of transferring their design from analog control to full digital control strategy. Although issues are still exist, reducing components count, reducing the development cycle time, increasing the reliability, enhancing the circuit noise immunity and reducing the cost, all of these benefits indicate a great potential of the digital control. This thesis is focusing on how to improve the efficiency and power density by taking the advantages of the digital control. A novel Ï /2 phase shift two Channel interleaving PFC is developed to shrink the EMI filter size while maintain a good efficiency. A sophisticated power management strategy that associates with phase shedding and adaptive phase angle control is also discussed to increase the efficient for the entire load range without compromising the EMI filter size. The method of current sampling is proposed for Ï /2 phase shift two Channel interleaving PFC and multi-channel adaptive phase angle shift PFC is proposed to accurately extract the average total current information. A noise free current sampling strategy is also proposed that adjusting the sampling edge according to duty cycle information. An isolated ZVS dual boost converter is proposed to be the DC/DC stage of the front-end converter. This PWM converter has similar performance as the LLC resonant converter. It has hold up time extension capability without compromising the normal operation efficiency. It can achieve ZVS for all the switches. The current limit and SR implementation is much easier than LLC. State plane method, which potentially can be extent to other complex topologies, is used to fully study this circuit. All the operation modes are understood through the state plane method. The best operation mode is discovered for the front end applications. Light load efficiency is improved by the proposed pulse skipping method to guarantee the ZVS operation meanwhile reduce the switching frequency. Current limit operation is also proposed to restrict a best operation mode by fully taking the advantage of digital control that precisely control the circuit under the over current condition. High efficiency high power density is achieved by new topology, innovative interleaving, and the sophisticated digital control method. / Master of Science
463

Control de puentes activos duales (DABs) en sistemas bidireccionales de alimentación con alta densidad de potencia

Guacaneme Moreno, Javier Antonio 10 March 2016 (has links)
[EN] The bidirectional DC-DC converters are being used more frequently in electric power systems. Bidirectional converters allows the incorporation of alternative and renewable energy sources at different voltage levels, by means of new power systems architectures now distributed not only centralized. The converters control is defined by function within the system, especially when there are large differences in voltage levels. It is desirable that the converter provide galvanic isolation, control current and / or voltage at one or both buses, and in some cases provide multi-port bidirectional conversion. One of the topologies with high power density is the single phase Dual Active Bridge (DAB). This thesis presents a study of a single phase DAB phase shifting controlled to meet the requirements of a bidirectional DC-DC converter for storage, parallel operation capability, high power density and fast dynamic response. The modularity of the DAB and the parallel operation arises from the conception of a control loop of Average Current Control (ACC), a double loop that controls the voltage and current of the high voltage side or controls the current and voltage at low voltage side. The dynamic response of a DAB to load steps are improved by means of a feedforward technique based on load current, an additional load-current feedforward control loop. An analytical study of the load-current feed-forward on DAB is presented and validated by means of both simulations and experimental results. The DAB topology exhibits a high input and output AC current ripple, especially at low voltage side. This thesis studies parallel connection by interleaving an average current control, based on two or more modules DAB operated synchronously but shifted in phase, in order to reduce the AC current and the capacitors size. The design has been validated by means of the implementation and testing on a 1 kW DAB converter at a switching frequency of 100 kHz. / [ES] Los convertidores DC-DC bidireccionales se están utilizando con mayor frecuencia en los sistemas de potencia eléctrica. Sus características permiten la incorporación de fuentes de energías alternativas y renovables de diferentes niveles de tensión, así como la propuesta de nuevas arquitecturas ahora distribuidas y no sólo centralizadas en los sistemas de potencia. El control de estos convertidores se realiza según su función dentro del sistema, en especial cuando hay grandes diferencias en los niveles de tensión. Es deseable que el convertidor ofrezca aislamiento galvánico, pueda tener funciones de control de corriente y/o de tensión en uno o en ambos puertos de conexión, y otros incluso tener más de dos puertos de intercambio de potencia eléctrica. Una de las topologías que ofrece la mejor densidad de potencia es la versión monofásica del puente activo dual DAB, de sus siglas del inglés "Dual Active Bridge". Se estudia en esta tesis doctoral un DAB monofásico con control por desplazamiento de fase para satisfacer los requerimientos de un convertidor DC-DC bidireccional con fines de almacenamiento, capacidad de operación en paralelo, alta densidad de potencia y rápida respuesta dinámica. La modularidad del DAB para operación en paralelo se plantea desde la concepción de un lazo de control de la corriente promedio ACC (Average Current Control), un lazo doble que controla la tensión y la corriente del lado de alta tensión ó controla la corriente y la tensión del lado de baja tensión. Para mejorar la dinámica del DAB se incluyó el análisis de una técnica de prealimentación basada en la inyección de la corriente de carga, load current feedforward. Esta mejora brinda una respuesta rápida ante variaciones de la carga. Un inconveniente que presenta el DAB por desplazamiento de fase es el alto rizado en las corrientes en los puertos de entrada y salida, especialmente en el lado de baja tensión. Se estudia para reducir este rizado el interleaving (entrelazado) con control de corriente media, basado en la conexión de dos o más módulos DAB en paralelo con disparos desfasados, logrando reducir el tamaño de los filtros. El diseño se ha validado mediante la construcción y experimentación en dos prototipos de potencia nominal de 1 kW con una frecuencia de conmutación de 100 kHz. / [CA] Els convertidors DC/DC bidireccionals s'estan emprant amb major freqüència en els sistemes de potencia elèctrica. Les seues característiques permeten la incorporació de fonts d'energia alternatives i renovables de diferents nivells de tensió. També es permet la implementació en els sistemes de potència de les noves arquitectures distribuïdes i no només arquitectures centralitzades. El control d'aquests convertidors es realitza segons la seua funció dins del sistema, especialment quan hi ha grans diferències en els nivells de tensió. Es desitjable que el convertidor oferisca aïllament galvànic. A més pot tindre funcions de control de corrent i/o de tensió en un o ambdós ports de connexió. Altres convertidors poden tindre més de dos ports d'intercanvi de potència. Una de les topologies que proporciona la millor densitat de potència es la versió monofàsica del pont actiu dual DAB, de les seues sigles en anglès Dual Active Bridge. S'estudia en esta tesi doctoral un DAB monofàsic amb control per desplaçament de la fase per satisfer els requeriments d'un convertidor DC-DC bidireccional amb fins de emmagatzemament, capacitat d'operació en paral·lel, alta densitat de potència i ràpida resposta dinàmica. La modularitat del DAB per l'operació en paral·lel es planteja des de la concepció d'un llaç de control de la corrent mitjana ACC (Average Current Control), un llaç doble que controla la tensió i la corrent del costat d'alta tensió o controla la corrent i la tensió del costat de baixa tensió. Per millorar la dinàmica del DAB es va incloure l'anàlisi dúna tècnicade prealimentació basada en la injecció de la corrent de càrrega, LCFF (Load Current FeedForward). Esta millora brinda una resposta ràpida davant de variacions de la càrrega. Un inconvenient que presenta el DAB amb control per desplaçament de fase es l'alt arrissat de les corrents en els ports déntrada i eixida, especialment al costat de baixa tensió S'estudia per a reduir este arrissat l'entrellaçat (interleaving) de les corrents d'eixida amb la connexió dos o més modules DAB en paral·lel, aconseguint reduir la mida dels filtres. El disseny s'ha validat mitjançant la construcció i l'experimentació en dos prototips de potència nominal de 1 kW amb una freqüència de commutació de 100 kHz. / Guacaneme Moreno, JA. (2016). Control de puentes activos duales (DABs) en sistemas bidireccionales de alimentación con alta densidad de potencia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61627
464

Architectures d'alimentation et de commande des actionneurs haute-vitesse connectés aux réseaux avioniques à tension variable / Electronic power supply and control architectures of a high speed actuator connected to variable voltage aircraft networks

Cuenot, Jérémy 25 October 2017 (has links)
La révolution technologique majeure des nouveaux aéronefs repose sur une électrification intensive de nombreux constituants de l'appareil et le fait que la vitesse des génératrices électriques n'est plus fixe mais variable. Cette nouvelle manière de générer la puissance électrique engendre des variations de tension sur les réseaux DC. De plus, pour accroître la compacité des Machines Synchrones à Aimants Permanents (MSAP) à puissance donnée, on augmente autant que possible leur vitesse d'entrainement, en les associant pour certaines applications à des réducteurs mécaniques. La variation du niveau de tension du bus DC alimentant une MSAP haute vitesse implique son dimensionnement afin d'assurer sa contrôlabilité sur toute la plage de vitesse reportant d'importantes contraintes sur l'onduleur de tension. Pour pallier ce problème, une solution consiste à intercaler un convertisseur DC/DC entre le filtre d'entrée et l'onduleur de tension pour maintenir la tension DC d'entrée de l'onduleur à une valeur adaptée au fonctionnement de la MSAP et optimiser son dimensionnement. Cependant, cette solution augmente l'ordre du système, ce qui accroît la complexité de son contrôle, accentuée par les contraintes liées à la nature haute-fréquence des MSAP considérées.Les travaux menés dans cette thèse concernent l'étude, l'optimisation et le contrôle des structures d'alimentation des actionneurs haute vitesse connectés aux réseaux DC avioniques à tension variable. Il en résulte que pour les applications avioniques considérées, ces architectures d'alimentation intégrant un convertisseur DC/DC supplémentaire permettent de réduire sa masse et son volume sans dégrader le rendement global de la chaîne de conversion notamment avec les convertisseurs à source impédante qui permettent de supprimer structurellement les ondulations de courant en entrée du convertisseur. De plus, des stratégies de commande Pulse Amplitude Modulation employées avec des architectures de contrôle non-linéaires (platitude, passivité) permettent d'assurer le contrôle de ces MSAP haute-vitesse tout en assurant leur stabilité sur toute la plage de fonctionnement / The main technological revolution of the new aircrafts is based on intensive electrification of many components of the aircraft. Moreover, the speed of electrical generators is no longer fixed but variable. This new way of generating electrical power generates voltage variations on DC networks. Besides, to increase the compactness of the Permanent Magnet Synchronous Machines (PMSM) at a given power, their mechanical speed is increased as much as possible by combining them with mechanical reducers for certain applications. The variation of the voltage level of the DC bus supplying a high-speed PMSM implies its sizing in order to ensure its controllability over the entire speed range which carries significant stresses on the Voltage Source Inverter (VSI). To solve this problem, one solution consists in adding an extra DC / DC converter between the input filter and the VSI to maintain the inverter input voltage at a value adapted to the operating point of the PMSM and to optimize its dimensioning. However, this solution increases the order of the system, which increases the complexity of its control, accentuated by the constraints related to the high-frequency nature of the PMSMs considered. The work carried out in this thesis concerns the study, the optimization and the control of the power supply architecture of the high-speed actuators connected to variable-voltage avionic DC networks. As a result, for the avionics applications considered, these power supply architectures integrating an additional DC / DC converter make it possible to reduce the mass and the volume of the power supply structure without degrading the overall efficiency of the conversion chain, in particular by using the impedance-source converters which allow to cancel the DC input current ripples. In addition, Pulse Amplitude Modulation (PAM) control strategies used with non-linear control architectures (flatness, passivity) make it possible to control these high-speed PMSMs while ensuring their stability over the entire operating range
465

Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors

Katic, Janko January 2017 (has links)
Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces. Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency. The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. / Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt. Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten. Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. / <p>QC 20170508</p> / Mi-SoC
466

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles

Moshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved. Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
467

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles

Moshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved. Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
468

Convertisseurs continu-continu non isolés à haut rapport de conversion pour piles à combustible et électrolyseurs : apport des composants GaN / Non-isolated high voltage ratio DC-DC converter for fuel cell and electrolyzer : GaN transistors

Videau, Nicolas 05 May 2014 (has links)
Face aux enjeux énergétiques d’aujourd’hui et de demain, le développement des énergies renouvelables semble inéluctable. Cependant, la production électrique de sources renouvelables prometteuses comme le photovoltaïque ou l’éolien est intermittente et difficilement prévisible du fait de la dépendance de ces sources aux conditions météorologiques. Afin de s’affranchir du caractère discontinu de la production d’électricité et de l’inadéquation de la production avec la consommation, un moyen de stockage de l’énergie électrique est nécessaire. Dans ce contexte, la batterie hydrogène est une des solutions envisagées. Lors de périodes de surproduction d’énergie renouvelable, un électrolyseur produit de l’hydrogène par électrolyse de l’eau. Lorsque cela est nécessaire, une pile à combustible fournit de l’électricité à partir du gaz stocké. Couplé avec des sources d’énergie renouvelable, la batterie hydrogène produit de l’énergie électrique non carbonée, c’est-à-dire non émettrice de gaz à effet de serre. L’intérêt majeur de cette technologie est le découplage entre l’énergie et la puissance du système. Tant que la pile à combustible est alimentée en gaz, elle fournit de l’électricité, l’énergie dépend des réservoirs de gaz. La puissance, quant à elle, dépend des caractéristiques des composants électrochimiques et du dimensionnement des chaînes de conversions de puissance. Les chaînes de conversion de puissance relient les composants électrochimiques au réseau électrique. Dans le cas de la chaîne de conversion sans transformateur qui est ici envisagée, la présence d’un convertisseur DC-DC à haut rendement à fort ratio de conversion est rendue nécessaire de par la caractéristique basse tension fort courant des composants électrochimiques. Avec pour but principal l’optimisation du rendement, deux axes de recherche sont développés. Le premier axe développe un convertisseur multicellulaire innovant à haut rendement à fort ratio de conversion. Les résultats expérimentaux du convertisseur appelé « miroir » obtenus dans deux expérimentations ont démontré la supériorité de cette topologie en terme d’efficacité énergétique par rapport aux convertisseurs conventionnels. Le deuxième axe porte sur de nouveaux composants de puissance en nitrure de gallium (GaN) annoncés comme une rupture technologique. Un convertisseur buck multi-phases illustre les défis technologiques et scientifiques de cette technologie et montre le fort potentiel de ces composants. / Development of renewable energy seems inevitable to face the energy challenge of today and tomorrow. However, the power generation of promising renewable sources such as solar or wind power is intermittent and unpredictable due to the dependence of the these sources to the weather. In order to overcome the discontinuous nature of the electricity production and the mismatch between production and consumption, electrical energy storage is needed. In this context, hydrogen battery is one of the solutions. During periods of overproduction of renewable energy, an electrolyzer produces hydrogen gas by the electrolysis of water. When necessary, a fuel cell provides electricity from the stored gas. Coupled with renewable energy sources, the hydrogen battery produces carbon-free electricity, i.e. without any greenhouse gas emission. The major advantage of this technology is the decoupling between energy and power system. As long as the fuel cell is supplied with gas, it supplies electricity. Like so, the energy depends on the gas tanks and the system power depends on the characteristics of electrochemical components and the design of the power conversion chain. Power converters connect electrochemical components to the grid. In the case of the transformerless conversion system introduce here, a high efficiency high voltage gain DC-DC converter is required given the high-current low-voltage characteristic of electrochemical components. Since the main goal is to optimize the efficiency, two research approaches are developed. The first develops an innovating multicell converter with high efficiency at high voltage conversion ratio. The experimental results of the “mirror” converter obtained in two experiments have demonstrated the superiority of this topology in terms of energy efficiency compared to conventional converters. The second line of research focuses on new gallium nitride (GaN) transistors heralded as a disruptive technology. A multiphase buck converter illustrates the technological and scientific challenges of this technology and shows the potential of these transistors.
469

Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique / Design and development of an isolated multicell DC/DC power converter for aeronautical applications

Brandelero, Julio Cezar 28 May 2015 (has links)
L’électricité prend une place de plus en plus importante dans les systèmes énergétiques embarqués. L’électricité est une forme d’énergie très malléable, facile à transporter et réglable ou transformable avec un très faible taux de pertes. L’énergie électrique, associée à des convertisseurs statiques, est plus facile à maîtriser que, par exemple, l’énergie hydraulique et/ou pneumatique, permettant un réglage plus fin et une réduction des coûts de maintenance. L’évolution de la puissance dans les modèles avioniques est marquante. Avec le nombre croissant de charges électroniques, un avion plus électrique avec un réseau à courant alternatif inclurait un grand nombre de redresseurs AC/DC qui devront respecter les normes de qualité secteur. Une solution pour la réduction de la masse serait de préférer un réseau HVDC (High Voltage DC Bus). Sur les futurs modèles avioniques plus électriques, les concepteurs envisageront des conversions HVDC/DC à partir de l’unité appelée BBCU (Buck Boost Converter Unit). Dans ce cas d’étude, un réseau de distribution en tension continue (±270Vdc) est connecté à un réseau de sécurité basse tension (28Vdc) avec un échange bidirectionnel de puissance pouvant atteindre 10kW. Le convertisseur statique assurant cette liaison représente de nouveaux défis pour l’électronique de puissance en termes de fiabilité, sûreté, détection de panne, rendement et réduction de masse et de coût. Le dimensionnement du convertisseur doit prendre en compte une conception optimale, en aéronautique ce critère est la masse. Dans le processus de dimensionnement et d’optimisation du convertisseur, il est donc impératif de prendre en compte trois facteurs principaux : 1) l’évolution des topologies de conversion, 2) l’évolution des composants actifs et passifs et 3) l’intégration de puissance. La réunion de ces trois facteurs permettra ainsi la miniaturisation des convertisseurs statiques. Dans un premier temps, nous préciserons la démarche adoptée pour le dimensionnement d’un convertisseur en prenant en compte : les topologies actives, les filtres différentiels et le système de refroidissement. Les différents éléments qui composent le convertisseur sont décrits dans un langage informatique orienté objet. Des facteurs de performances seront également introduits afin de faciliter le choix des semi-conducteurs, des condensateurs et du dissipateur pour un convertisseur statique. Dans un deuxième temps, nous présenterons le fonctionnement d’une topologie multicellulaire DC/DC, isolée pour l’application proposée. Nous présenterons les avantages du couplage de différentes phases de ce convertisseur. Nous introduirons les différentes associations des cellules et leurs avantages, possibles grâce à l’isolement, comme la mise en série et en parallèle. Puisque la caractérisation des pertes des semi-conducteurs est essentielle pour le dimensionnement du convertisseur statique, nous proposerons deux approches : un modèle de simulation relativement simple et paramétré à l’aide de seules notices constructeurs ; et une méthode de mesure des pertes dans les semi-conducteurs qui est à la fois précise et compatible avec les composants les plus rapides. En ce qui concerne les composants magnétiques, une surface de réponse des matériaux ferrites sera présentée. Nous allons décrire, par le biais analytique et de simulation, des modèles pour la détermination du champ magnétique à l’intérieur du noyau et des ondulations de courant engendrés. Finalement, en profitant des modèles et des résultats obtenus dans les sections précédentes, nous montrerons le dimensionnement et la réalisation de chaque partie du convertisseur BBCU 100kHz / 10kW. Une perspective d’un design idéal est également présentée. / The electricity is taking a more important place in the embedded systems. The electricity is a very moldable form of energy, easy to transport and adjustable or transformed with a very low losses. The electrical energy, associated with power converters, is easier to control than hydraulic and/or pneumatic energies for example, allowing a finer regulation and a cost cutting of maintenance. The installed power in the avionic models is growing fast. With the increasing number of electronic loads, a more electrical aircraft with an AC network would include a large number of rectifiers AC/DC which will have to respect the quality standards. A solution for the reduction of the mass would be to prefer a HVDC network (High Voltage DC BUS). On the future more electrical aircrafts, the designers will be facing a HVDC/DC power conversion. This is the role of the unit called BBCU (Buck Boost Converter Unit). In our case of study, a distribution network in DC voltage (± 270Vdc) is connected to a security low-voltage network (28Vdc) which includes a bidirectional power exchanges achieving 10kW. The power converter for this connection gives new challenges for the power electronics in terms of reliability, safety, failure detection, efficiency and reduction of mass and cost. The design of the power converter needs to take into account for an optimal design. It is thus imperative to take into account three main factors: 1) the evolution of the power topologies 2) the evolution of the active and passive devices and 3) the power integration. The meeting of these three factors will allow the miniaturization of the power converters. At first, the adopted approach for designing power converters, taking into account the power topology, the differential filters and the cooling system are presented. The various elements which compose the power converter are described in an Object-Oriented Programming. The performance factors will be introduced to facilitate the choice of semiconductors, capacitors and heat-sinks. Secondly, the operation phases of a multicellular isolated DC/DC topology for the proposed application are presented. A discussion of the advantages of the magnetic coupling is also introduced. Thanks to the isolation, different associations of switching cells, series or/and parallel connection, are possible. Knowing the losses of power semiconductors is an essential step to design a power converter, thus two approaches are proposed: 1) a simulation model using a relatively simple model with the datasheets information; and 2) a losses measurement method which is precise and compatible with the fastest devices. As regards the magnetic components, a response surface of ferrite materials will be presented. Some models for the determination of the magnetic field inside the core and the current ripple are also described. Finally, by taking advantage of models and results obtained in the previous sections, the design and the realization of each party of the BBCU power converter 100kHz / 10kW is showed. A perspective of an ideal design is also presented.
470

Akumulátorový svařovací zdroj / Battery-powered welding inverter

Starec, Stanislav January 2019 (has links)
This master thesis is focused on proposition and following implementation of DC arc welder. This paper is based on semester’s paper, where the first version was realized. The welder is powered by a battery pack with LiFePO4 type cells. Battery cells are protected by BMS circuits. The driving electronics controls the duty cycle step-down (buck) converter in a closed current or power regulation loop. The power regulator has been designed and validated by simulations. Switching power transistors, low side and high side, are implemented by optically isolated gate drivers. Charging the battery is solved by a switching flyback converter. For the charger and the welder is sheet metal construction made of aluminum sheet.

Page generated in 0.0262 seconds