• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 31
  • 22
  • 10
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 208
  • 208
  • 68
  • 42
  • 32
  • 32
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Pulmonary dendritic cells and CD8 T cells facilitate protection following influenza A virus vaccination and infection

Hemann, Emily Ann 01 December 2014 (has links)
The severe disease associated with seasonal epidemics of influenza A virus (IAV), as well as pandemic outbreaks, have highlighted the necessity for novel, broadly cross-reactive vaccination and therapeutic strategies against IAV. Our studies have focused on the contribution of IAV-specific CD8 T cells to mediating protection following IAV vaccination and infection as IAV-specific CD8 T cells are required for clearance of IAV. Further, IAV-specific CD8 T cells are typically cross-protective as they are generally directed at highly conserved areas of IAV. Recently, influenza virus-like particles (VLPs) have been developed from recombinant baculoviruses containing influenza proteins hemagglutinin (HA) and/or neuraminidase (NA) on the surface and matrix (M1) in the VLP core. Influenza VLPs induce potent antibody responses and have been shown to provide protection from morbidity and mortality during lethal homo- and hetero-subtypic IAV challenge. This suggests that conserved, VLP-induced CD8 T cell responses may also contribute to the overall protective ability of VLPs. However, whether influenza VLPs can induce influenza-specific CD8 T cell responses and if these T cells are protective during IAV challenge remains unknown. Here, I demonstrate that a single, intranasal vaccination with VLPs containing HA and M1 leads to a significant increase in HA533-specific CD8 T cells in the lungs and lung-draining lymph nodes. Our results also indicate that HA533-specific CD8 T cells primed by influenza VLP vaccination are significantly increased in the lungs following lethal IAV challenge. These VLP-induced memory CD8 T cells are critical in providing protection from lethality following subsequent challenge infections, as depletion of CD8 T cells leads to increased mortality, even when total, but not VLP-induced memory, CD8 T cell numbers have been allowed to recover prior to lethal dose IAV challenge. In addition, my studies also importantly demonstrate that these VLP-induced, HA533-specific CD8 T cells aid in protection from high-dose, heterosubtypic IAV infections where CD8 T cell epitopes are conserved, but the targets of neutralizing antibodies have been destroyed. This dissertation further elucidates the requirements for the regulation of the IAV-specific CD8 T cell response in the periphery (i.e. lung) by pDC and CD8α+ DC. Our studies have previously demonstrated that pDC or CD8α+ DC must present viral antigen in the context of MHC class I along with trans-presentation of IL-15 to effector, IAV-specific CD8 T cells in the lungs to protect the T cells from apoptosis and allow generation of the full magnitude CD8 T cell response needed to clear IAV infection. Herein, I demonstrate that in addition to antigen presentation and IL-15, costimulatory molecules on the surface of pDC and CD8α+ DC are also required. However, the specific costimulatory molecules required depends upon both the mouse strain utilized for IAV infection as well as DC subset. In addition to costimulatory molecules, I also demonstrate that the requirement for pDC and CD8α+ DC to be infected differs in order for them to participate in this pulmonary rescue of the IAV-specific CD8 T cell response. While CD8α+ DC are able to efficiently cross-present exogenous antigen, pDC must be directly infected and utilize the endogenous, direct antigen presentation pathway to present viral antigen to IAV-specific CD8 T cells in the lungs during IAV infection. These data suggest there are distinct differences between pDC and CD8α+ DC in their mechanism of regulating the pulmonary IAV-specific CD8 T cell response, which had not been previously appreciated. Together, the results presented herein further detail the mechanism of regulation of effector IAV-specific CD8 T cells by DC as well as the contribution of IAV-specific CD8 T cells to a novel, IAV VLP vaccination strategy. These findings highlight the importance of IAV-specific CD8 T cells in mediating protection following IAV vaccination and infection.
72

Envolvimento das miosinas na trans-infecção de HIV-1 por células dendríticas / Involvement of myosins in HIV-1 trans-infection by dendritic cells

Souza, Taís Aparecida Matozo de 31 January 2019 (has links)
A infecção por HIV-1 leva a uma séria imunodeficiência causada principalmente pela depleção de linfócitos T auxiliadores, a principal célula-alvo do vírus. Além dos linfócitos T CD4, o HIV-1 também pode interagir e infectar macrófagos e células dendríticas (DCs). As DCs são resistentes à infecção pelo HIV-1, mas podem internalizar vírions em compartimentos e transferi-los para linfócitos T CD4&#43, em um processo chamado trans-infecção. Para promover sua infecção, o HIV-1 subverte o citoesqueleto da actina da célula hospedeira em várias etapas de seu ciclo. Em DCs o citoesqueleto também é essencial para internalização do HIV-1 e formação dos compartimentos. Miosinas são proteínas motoras que interagem com filamentos de actina e estão envolvidas em diversos processos celulares, incluindo migração, transporte de moléculas, endocitose e reciclagem de componentes de lipid rafts. Apesar de existirem mais de 40 tipos de miosinas em humanos, apenas a miosina 2a foi estudada no contexto da trans-infecção. Por isso, nosso objetivo nesse trabalho foi estudar o papel das miosinas 1c e 1e na maturação de células dendríticas derivadas de monócitos (MDDCs) e na internalização de HIV-1 por estas células. Confirmamos por Real Time PCR a expressão de 10 miosinas em MDDCs de doadores saudáveis, depois verificamos que há regulação negativa da expressão do gene da miosina (myo1c) em MDDCs de pacientes HIV&#43. Analisamos a ativação das células em resposta ao lipopolissacarídeo (LPS) por meio da expressão de CD86 e HLA-DR em MDDCs silenciadas para myo1c e 1e. Não houve diferença na expressão dos marcadores de ativação em células silenciadas para miosina 1e (myo1e) em relação ao controle. No entanto, na maioria dos doadores testados, o silenciamento da myo1c interferiu com o aumento de expressão desses marcadores, indicando que a myo1c possa ter um papel na ativação celular por LPS. Ademais, a localização subcelular do HIV-1 em MDDCs silenciadas para myo1c e ativadas com LPS ficou mais próxima ao fenótipo de células imaturas. Contudo, não houve diferença na quantidade HIV-1 internalizado por MDDCs silenciadas para as miosinas 1c e 1e ou tratadas com um inibidor específico de miosinas do tipo 1. Estes resultados sugerem que a myo1c pode estar envolvida na ativação de células dendríticas e consequentemente alterar o mecanismo de internalização do HIV-1 por MDDCs. / Infection by human immunodeficiency virus (HIV) leads to severe immunodeficiency caused by depletion of T helper cells, the main targets of the virus. Besides T CD4&#43 cells, HIV-1 can infect and interact with other immune cells, including dendritic cells and macrophages. Dendritic cells are resistant to HIV infection, however, they can bind and internalize HIV in compartments and then transfer the virus to CD4&#43 T cells in a process called trans-infection. To promote infection, HIV-1 subverts actin cytoskeleton of host cell at several points of its cycle. In DCs, cytoskeleton is also essential to HIV-1 internalization and compartment assembly. Myosins are motor proteins that can interact with actin and take part in several cellular processes, including migration, molecular trafficking, endocytosis and lipid raft recycling. Even though there are about 40 myosin types, only myosin 2a has been investigated in trans-infection. Thus, our aim was to evaluate the role of myosins 1c and 1e in monocyte derived dendritic cell (MDDC) activation and HIV-1 internalization. We have validated the expression of 10 myosins in MDDCs by real-time PCR, and observed a down regulation of myosin 1c gene in HIV&#43 patients. We have evaluated cell activation in response to lipopolysaccharide (LPS) through CD86 and HLA-DR expression in myosin 1c and 1e knocked down MDDCs. There was no change in expression of activation markers in myosin 1e knocked down MDDCs compared with control cells. However, in most donors, myosin 1c knock down impaired the increase of activation markers following LPS treatment, suggesting that myosin 1c may play a role in cell activation by LPS. In addition, subcellular location of HIV-1 in MDDCs knocked down for myosin 1c and activated with LPS, was similar to immature cell phenotype. Nevertheless, we have not observed changes in the amount of HIV-1 internalized by myosin 1c or 1e knocked down MDDCs or in MDDCs treated with myosin I inhibitor. These data suggest that myosin 1c may play a role in MDDC activation and therefore alter the mechanism of HIV-1 internalization by MDDCs.
73

Dendritic cells and macrophages in the mammalian cornea : distribution, morphology, phenotype and their role in responding to microbial challenge

Chinnery, Holly Rose January 2008 (has links)
[Truncated abstract] The cornea plays a major role in the refraction of light and thus the maintenance of its transparency is critical for optimal vision. Infection or trauma can initiate a host inflammatory response, which can cause edema of the collagenous stroma. This tissue edema compromises vision by disrupting the regular arrangement of the corneal stromal lamellae, whose organization is critical to its refractive properties. Until recently, it was the accepted dogma that the cornea was an immune privileged tissue owing in part to its avascular nature and paucity of resident macrophages and dendritic cells (DCs) in the central region of the cornea. However, recent studies have identified heterogenous populations of macrophages and DCs in both the corneal stroma and epithelium. Despite the recognition of the existence of these cells in the cornea, very little is known about their biological role. The overall purpose of the experiments described in this thesis is to characterise corneal macrophages and DCs in homeostatic conditions and investigate their role in the initiation of inflammatory responses to bacterial ligands that induce corneal inflammation and contribute to the severity and resolution of bacterial keratitis. Experiments described in this thesis utilized a range of transgenic, knock-out and bone marrow (BM) chimeric mice to address the immunological function and characterization of BM-derived cells in the mouse cornea. Of particular importance was the use of Cx3cr1 transgenic mice, which contain an enhanced green fluorescent protein (eGFP) encoding cassette knocked into the Cx3cr1 gene that disrupts its expression but facilitates GFP expression under the control of the Cx3cr1 promoter. ... This highlights a novel functional role for corneal BM-derived cells in the recognition and initiation of inflammatory responses to LPS. Finally, a novel observation of a potential mechanism by which DC in the cornea communicate with neighbouring DCs via fine membrane extensions was identified in both chimeric and wild-type mice. These membrane nanotubes, found exclusively on MHC class II+ cells in the corneal stroma, significantly increased in density in the central cornea under inflammatory conditions, suggesting a role for these cell protrusions in the immune response. These data represent the first ever description of nanotubes in vivo, the only previous evidence of their presence being in vitro studies. In summary, the data presented in this thesis supports a role for Cx3cr1 in the homing of DCs to the normal corneal epithelium and also suggests that Cx3cr1-deficiency may influence the ability of corneal macrophages and DCs to respond to bacteria. In addition, the thesis supports a role for resident corneal macrophages and DCs in the initiation of immune responses following challenge with LPS, which is possibly supported by a newly discovered system of membrane nanotubes. A greater understanding of the biology of the resident corneal immune cells could lead to the development of potential therapies aimed at targeting macrophages and DCs as a means of regulating potentially harmful inflammatory responses in the cornea.
74

Study of the role of interstitial macrophages in airway allergy/Etude du rôle des macrophages interstitiels dans lallergie des voies respiratoires

Bedoret, Denis 30 September 2009 (has links)
SUMMARY Respiratory mucosal surfaces are constantly exposed to a broad range of non-pathogenic environmental antigens. In the absence of proinflammatory signals, inhalation of harmless antigens results in immunological tolerance. Indeed, lung dendritic cells stimulate the development of antigen-specific regulatory T cells. Nevertheless, epidemiological studies have shown that ambient air contains not only inert antigens but also immunostimulatory molecules of microbial origin. Of particular interest are endotoxins, a cell wall component of gram-negative bacteria that is ubiquitous in the environment. In spite of the fact that high levels of endotoxin exposure in early life protect against allergic sensitization, most evidence indicates that exposure to house-dust endotoxin is a significant risk factor for increased asthma prevalence and severity. When the respiratory tract is stimulated with airborne endotoxins, lung dendritic cells lose their tolerogenic properties and rather promote the development of an allergic response directed against concomitant aeroantigens. Although endotoxins are omnipresent in the environment and favour airway allergy, only a minority of people develops asthma. A unifying model reconciling these conflicting observations is still lacking. We report here that LPS-triggered airway allergy is tightly controlled by lung interstitial macrophages, a cell population that remains largely uncharacterized. Interstitial macrophages could be distinguished from alveolar macrophages by their unique capacity to inhibit lung dendritic cell maturation and migration upon LPS stimulation, thereby preventing sensitization to concomitant inhaled antigens. We furthermore demonstrated that functional paralysis of LPS-stimulated dendritic cells involves interleukin-10 production by interstitial macrophages. Finally, we demonstrate that specific in vivo elimination of interstitial macrophages leads to overt asthmatic reactions to innocuous airborne antigens inhaled along with low LPS doses. Our study thus reveals a crucial role for interstitial macrophages in maintaining immune homeostasis in the respiratory tract and provides an explanation for the paradox that airborne LPS has the ability to promote the induction of Th2 responses by lung dendritic cells but does not provoke airway allergy under normal conditions. In the presence of LPS, interstitial macrophages, but not alveolar macrophages, break the link between innate and adaptive immunity, allowing harmless inhaled antigens to escape from T cell-dependent responses. RÉSUMÉ Le système respiratoire est continuellement exposé à de nombreux antigènes environnementaux non pathogéniques. En labsence de signal proinflammatoire, linhalation dantigènes inoffensifs aboutit au développement dune tolérance immunologique. Dans ces conditions, les cellules dendritiques pulmonaires tolérogènes stimulent le développement de lymphocytes T régulateurs. Cependant, les études épidémiologiques montrent que lair ambiant ne contient pas que des antigènes inertes mais également des molécules immunostimulatrices dorigine microbienne dont les endotoxines (LPS, lipopolysaccharide). La présence dans lenvironnement de ce composant de la paroi des bactéries Gram négatives est ubiquiste. Malgré le fait que lexposition à de hauts niveaux de LPS durant lenfance semble protéger contre la sensibilisation allergique, la plupart des études montrent que les endotoxines contenues dans la poussière domestique constituent un facteur de risque significatif pour la prévalence et la sévérité de lasthme. Quand le système respiratoire est stimulé par le LPS aérogène, les cellules dendritiques perdent leurs propriétés tolérogènes et deviennent capables dinduire le développement dune réponse allergique. Bien que les endotoxines soient omniprésentes dans lenvironnement et favorisent lallergie des voies respiratoires, seulement une minorité de personnes est asthmatique. Ces observations contradictoires impliquent lexistence de mécanismes protecteurs non encore décrits capables de prévenir les réponses allergiques induites par les endotoxines. Nous montrons dans ce travail que lallergie des voies respiratoires induite par le LPS est étroitement contrôlée par les macrophages interstitiels, une sous-population de macrophages pulmonaires dont la fonction in vivo navait jamais été caractérisée. Les macrophages interstitiels peuvent être distingués des macrophages alvéolaires par leur capacité unique à inhiber la maturation et la migration des cellules dendritiques induites par lexposition du système respiratoire au LPS, prévenant ainsi la sensibilisation aux aéroantigènes inhalés concomitamment. De plus, nous démontrons que linhibition fonctionnelle des cellules dendritiques implique la sécrétion dIL-10 par les macrophages interstitiels. Finalement, nous montrons que lélimination spécifique des macrophages interstitiels in vivo aboutit au développement dune réponse asthmatique dirigée contre les aéroantigènes inoffensifs inhalés avec de faibles doses de LPS. Notre travail révèle un rôle crucial des macrophages interstitiels dans le maintien de lhoméostasie immunitaire du tractus respiratoire et fournit une explication au paradoxe que le LPS aérogène a la capacité de favoriser linduction de réponses Th2 par les cellules dendritiques mais ne provoque pas dallergie des voies respiratoires dans les conditions normales. En présence de LPS, les macrophages interstitiels, mais pas les macrophages alvéolaires, brisent le lien entre limmunité innée et limmunité adaptative, permettant aux antigènes inhalés déchapper aux réponses dépendantes des lymphocytes T.
75

A phagocyte-specific Irf8 gene enhancer establishes early conventional dendritic cell commitment

Schönheit, Jörg January 2011 (has links)
Haematopoietic development is a complex process that is strictly hierarchically organized. Here, the phagocyte lineages are a very heterogeneous cell compartment with specialized functions in innate immunity and induction of adaptive immune responses. Their generation from a common precursor must be tightly controlled. Interference within lineage formation programs for example by mutation or change in expression levels of transcription factors (TF) is causative to leukaemia. However, the molecular mechanisms driving specification into distinct phagocytes remain poorly understood. In the present study I identify the transcription factor Interferon Regulatory Factor 8 (IRF8) as the specification factor of dendritic cell (DC) commitment in early phagocyte precursors. Employing an IRF8 reporter mouse, I showed the distinct Irf8 expression in haematopoietic lineage diversification and isolated a novel bone marrow resident progenitor which selectively differentiates into CD8α+ conventional dendritic cells (cDCs) in vivo. This progenitor strictly depends on Irf8 expression to properly establish its transcriptional DC program while suppressing a lineage-inappropriate neutrophile program. Moreover, I demonstrated that Irf8 expression during this cDC commitment-step depends on a newly discovered myeloid-specific cis-enhancer which is controlled by the haematopoietic transcription factors PU.1 and RUNX1. Interference with their binding leads to abrogation of Irf8 expression, subsequently to disturbed cell fate decisions, demonstrating the importance of these factors for proper phagocyte cell development. Collectively, these data delineate a transcriptional program establishing cDC fate choice with IRF8 in its center. / Die Differenzierung von hämatopoietischen Zellen ist ein komplexer Prozess, der strikt hierarchisch organisiert ist. Dabei stellen die Phagozyten eine sehr heterogene Zellpopulation dar, mit hochspezialisierten Funktionen im angeborenen Immunsystem sowie während der Initialisierung der adaptiven Immunreaktion. Ihre Entwicklung, ausgehend von einer gemeinsamen Vorläuferzelle, unterliegt einer strikten Kontrolle. Die Beeinträchtigung dieser Linienentscheidungsprogramme, z.B. durch Mutationen oder Änderungen der Expressionslevel von Transkriptionsfaktoren kann Leukämie auslösen. Die molekularen Mechanismen, welche die linienspezifische Entwicklung steuern, sind allerdings noch nicht im Detail bekannt. In dieser Arbeit zeige ich den maßgeblichen Einfluss des Transkriptionsfaktors Interferon Regulierender Faktor 8 (IRF8) auf die Entwicklung von dendritischen Zellen (DC) innerhalb der Phagozyten. Mittels einer IRF8-Reporter Maus stellte ich die sehr differenziellen Expressionsmuster von Irf8 in der hämatopoietischen Entwicklung dar. Dabei konnte ich eine neue, im Knochenmark lokalisierte, Vorläuferpopulation isolieren, die in vivo spezifisch Differenzierung in CD8α+ konventionelle dendritische Zellen (cDC) steuert. Dieser Vorläufer ist dabei absolut von der Expression von Irf8 abhängig und etabliert auf transkriptioneller Ebene die dendritische Zellentwicklung, während gleichzeitig die Entwicklung neutrophiler Zellen unterdrückt wird. Darüber hinaus zeigte ich, dass Irf8 Expression während der cDC Entwicklung von einem neu charakterisierten cis-regulatorischen Enhancer abhängt, der spezifisch in myeloiden Zellen agiert. Ich konnte zeigen, dass die hämatopoietischen Transkriptionfaktoren PU.1 und RUNX1 mittels dieses Enhancers die Irf8 Expression steuern. Können diese beiden Faktoren nicht mit dem Enhancer interagieren, führt das zu stark verminderter Irf8 Expression, damit zu Veränderungen in den Differnzierungsprogrammen der Zellen, was die Bedeutung dieses regulatorischen Mechanismus unterstreicht. Zusammengefasst beschreiben diese Daten die Etablierung der frühen cDC Entwicklung, in der IRF8 die zentrale Rolle spielt.
76

Leishmania donovani Lipophosphoglycan : Modulation of Macrophage and Dendritic Cell Function

Tejle, Katarina January 2006 (has links)
Leishmania donovani is a blood-borne tropicial parasite, which infects humans through bites by Phlebotomus sandflies. The parasite survives and multiplies inside macrophages in inner organs, and causes the deadly disease visceral leishmaniasis (Kala-Azar). Macrophages and dendritic cells (DC) are professional antigen-presenting cells involved in the initiation of immune responses. Immature DC are present in all tissues where they internalise and process antigen, in response to which they migrate from tissue, into draining lymphoid organs, undergo maturation and present antigens to lymphocytes. Control measures for leishmaniasis include testing of new diagnostics and development of affordable and effective vaccines for humans. Lipophosphoglycan (LPG) is the major surface component of Leishmania donovani promastigotes. LPG comprises a membrane-anchoring lysophosphatidylinositol part and an extracellular chain of disaccharide phosphates. These repetitions are crucial for parasite survival inside macrophages following phagocytosis. LPG has several specific effects on the host cell including inhibition of protein kinase C (PKC) activity, and inhibition of phagosomal maturation, a process requiring depolymerization of periphagosomal F-actin. Confocal microscopy and image analysis were used to follow F-actin dynamics in single macrophages during phagocytosis of L. donovani promastigotes and LPG-coated particles. F-actin did not depolymerize, but instead progressively polymerized around phagosomes with LPG-containing prey. This correlated with reduced translocation of PKCα to the phagosome and blocked phagosomal maturation. LPG also inhibited cortical actin turnover, which could be the underlying cause of the reduced uptake of LPG-containing prey. Extracellular- and intracellular calcium was necessary for phagocytosis, periphagosomal F-actin breakdown and phagosomal maturation in macrophages interacting with unopsonized prey,and for the action of LPG. We also studied F-actin turnover in macrophages overexpressing dominant-negative (DN) PKCα. DN PKCα macrophages showed increased amounts of cortical F-actin, decreased phagocytic capacity, inhibition of periphagosomal F-actin breakdown and defective phagosomal maturation. When DN PKCα macrophages interacted with LPG-containing prey, phagocytosis was almost completely blocked. Moreover, we found that Leishmania promastigotes and particularly LPG inhibit DC maturation and detachment from distinct surfaces. Thus, LPG from Leishmania donovani could directly inhibit DC migration to lymphoid organs, antigen-presentation and development of immunity.
77

HER-2/neu-targeted immunoprevention of breast cancer

Sas, Sheena Emm 27 March 2007
Improvements in the use of traditional breast cancer therapies have improved the overall survival of women with early stage disease. Remarkable advances in research have created a unique opportunity for developing active vaccination strategies that engage the bodys own immune system in the fight against breast cancer. Human Epidermal Growth Factor Receptor 2 (HER-2/neu) is a breast tumor antigen (Ag) commonly overexpressed in 30% of breast cancer cases. HER-2/neu-targeted DNA-based and fiber-modified dendritic cell (DC)-based vaccines are both analyzed as potent elements in eliciting HER-2/neu specific antitumor immune responses. A HER-2/neu-expressing DNA plasmid (pcDNA/neu) coadministered with the appropriate adjuvant vector was the first study looking at improving vaccine efficacy and enhancing immune responses. Various protection and prevention studies, using FVB/N (wild-type) and FVB/neuN [transgenic (Tg)] mice and Tg1-1 tumor cells, derived from a spontaneous tumor from Tg mice, are used to help narrow down the large panel of adjuvant vectors. Results showed the adjuvant vector pcDNA/TNF-α, when coadministered with pcDNA/neu, induced more efficient protective tumor-specific immunity and significantly delayed breast cancer development in Tg mice.<p>Another study utilized an<i>in vivo</i> murine tumor model expressing the rat neu Ag to compare the immunization efficacy between DC transduced with replication-deficient fiber-modified adenovirus (AdV) containing neu (AdV(RGD)neu), to form DC(RGD)neu, and non-modified DCneu. DC(RGD)neu displayed an upregulation of immunologically important molecules and inflammatory cytokine expression through FACS Analysis, and more importantly increased expression of neu, when compared to DCneu. DC(RGD)neu stimulated a higher percentage of HER-2/neu-specific CD8+ T cells, a stronger neu-specific CTL response, and induced a much stronger Th1- and Th2-type immune response than DCneu. Furthermore, vaccination with DC(RGD)neu induced enhanced protective tumor-specific immunity compared to DCneu in wild-type and Tg mice.<p>Overall the construction of recombinant vectors containing two transgenes (HER-2/neu and TNF-α), can not overcome the induction of HER-2/neu-directed immune tolerance. The fiber-modified (RGD) DCneu vaccine induced enhanced anti-HER-2/neu immunity compared to non-modified DCneu in the prevention of breast cancers.
78

The Effect of Helicobacter pylori on Innate Immunity

Ang, Michelle 21 July 2010 (has links)
The innate immune system is important in both acute and chronic infection. In this thesis, I investigated the effect of H. pylori infection on 1) DCs, key orchestrators of the immune system, and 2) autophagy, recently identified as an important component of innate immunity. I determined that H. pylori activates the STAT3 pathway in DCs, increasing DC maturation and inducing production of IL-10, IL-12p40 and TNF-α, without IL-12p70. This cytokine profile may favour an immunoregulatory response, promoting persistent H. pylori infection. In addition I determined that H. pylori’s VacA toxin induced autophagy, ROS production and Parkin aggregation which has been implicated in mediating autophagy in response to mitochondrial damage. Thus H. pylori alters these key effectors of innate immunity which may play a role in promoting its chronic infection and disease.
79

The Effect of Helicobacter pylori on Innate Immunity

Ang, Michelle 21 July 2010 (has links)
The innate immune system is important in both acute and chronic infection. In this thesis, I investigated the effect of H. pylori infection on 1) DCs, key orchestrators of the immune system, and 2) autophagy, recently identified as an important component of innate immunity. I determined that H. pylori activates the STAT3 pathway in DCs, increasing DC maturation and inducing production of IL-10, IL-12p40 and TNF-α, without IL-12p70. This cytokine profile may favour an immunoregulatory response, promoting persistent H. pylori infection. In addition I determined that H. pylori’s VacA toxin induced autophagy, ROS production and Parkin aggregation which has been implicated in mediating autophagy in response to mitochondrial damage. Thus H. pylori alters these key effectors of innate immunity which may play a role in promoting its chronic infection and disease.
80

HER-2/neu-targeted immunoprevention of breast cancer

Sas, Sheena Emm 27 March 2007 (has links)
Improvements in the use of traditional breast cancer therapies have improved the overall survival of women with early stage disease. Remarkable advances in research have created a unique opportunity for developing active vaccination strategies that engage the bodys own immune system in the fight against breast cancer. Human Epidermal Growth Factor Receptor 2 (HER-2/neu) is a breast tumor antigen (Ag) commonly overexpressed in 30% of breast cancer cases. HER-2/neu-targeted DNA-based and fiber-modified dendritic cell (DC)-based vaccines are both analyzed as potent elements in eliciting HER-2/neu specific antitumor immune responses. A HER-2/neu-expressing DNA plasmid (pcDNA/neu) coadministered with the appropriate adjuvant vector was the first study looking at improving vaccine efficacy and enhancing immune responses. Various protection and prevention studies, using FVB/N (wild-type) and FVB/neuN [transgenic (Tg)] mice and Tg1-1 tumor cells, derived from a spontaneous tumor from Tg mice, are used to help narrow down the large panel of adjuvant vectors. Results showed the adjuvant vector pcDNA/TNF-α, when coadministered with pcDNA/neu, induced more efficient protective tumor-specific immunity and significantly delayed breast cancer development in Tg mice.<p>Another study utilized an<i>in vivo</i> murine tumor model expressing the rat neu Ag to compare the immunization efficacy between DC transduced with replication-deficient fiber-modified adenovirus (AdV) containing neu (AdV(RGD)neu), to form DC(RGD)neu, and non-modified DCneu. DC(RGD)neu displayed an upregulation of immunologically important molecules and inflammatory cytokine expression through FACS Analysis, and more importantly increased expression of neu, when compared to DCneu. DC(RGD)neu stimulated a higher percentage of HER-2/neu-specific CD8+ T cells, a stronger neu-specific CTL response, and induced a much stronger Th1- and Th2-type immune response than DCneu. Furthermore, vaccination with DC(RGD)neu induced enhanced protective tumor-specific immunity compared to DCneu in wild-type and Tg mice.<p>Overall the construction of recombinant vectors containing two transgenes (HER-2/neu and TNF-α), can not overcome the induction of HER-2/neu-directed immune tolerance. The fiber-modified (RGD) DCneu vaccine induced enhanced anti-HER-2/neu immunity compared to non-modified DCneu in the prevention of breast cancers.

Page generated in 0.0834 seconds