Spelling suggestions: "subject:"arriver assistance lemsystems"" "subject:"arriver assistance atemsystems""
61 |
Preparation for lane change manoeuvres: Behavioural indicators and underlying cognitive processesHenning, Matthias 10 February 2010 (has links)
Die vorliegende Arbeit widmet sich der Erforschung der Fahrer-Fahrzeug-Interaktion mit dem Ziel der Fahrerabsichtserkennung bei Spurwechselmanövern. Diese Fahrmanöver sind mit einer überproportionalen Unfallhäufigkeit verbunden, die sich in den Unfallstatistiken widerspiegelt. Laut Statistischem Bundesamt (2008) kamen im Jahr 2007 12,0% (1857) aller Unfälle mit schwerem Sachschaden auf Autobahnen in Deutschland aufgrund von Zusammenstößen mit seitlich in die gleiche Richtung fahrenden Fahrzeugen zustande (S. 65). Mit Hilfe der Information über einen intendierten Spurwechsel kann ein System an das zukünftige Fahrerverhalten angepasst werden, um so die Funktionalität und damit das Sicherheitspotential des Gesamtsystems zu erhöhen. Zusätzlich können mit dieser Information auch unerwünschte Systemeingriffe unterdrückt werden, die den Fahrer stören und so zu einer Minderung der Akzeptanz des jeweiligen Fahrerassistenz- und Informationssystems führen könnten. So kann einerseits ein Assistenzsystem eingeschaltet werden, das den Spurwechsel erleichtert (z.B. Side Blind Zone Alert, Kiefer & Hankey, 2008). Zum anderen kann ein Assistenzsystem abgeschaltet werden, das den Fahrer irrtümlich warnen würde, wie zum Beispiel ein Spurverlassenswarner im Falle eines beabsichtigten Überfahrens der Fahrspur (Henning, Beyreuther et al., 2007).
In diesem Zusammenhang bilden drei Untersuchungen das Herzstück der vorliegenden Arbeit. In einer Feldstudie untersuchten Henning, Georgeon, Dapzol und Krems (2009) Indikatoren, die auf die Vorbereitung eines Spurwechsels hindeuten und fanden dabei vor allem Blickverhalten in den linken Außenspiegel als einen geeigneten und sehr frühen Indikator. Dieser dient wahrscheinlich vor allem dem Aufbau einer mentalen Repräsentation des rückwärtigen Verkehrs. In einer anschließenden Fahrsimulatorstudie wurde experimentell erforscht, wie diese mentale Repräsentation beschaffen ist und in welchen Komponenten des Arbeitsgedächtnisses sie gespeichert wird (Henning, Beyreuther, & Krems, 2009). In einer dritten Studie, bestehend aus zwei Laborexperimenten, wurde nach einer Schwelle für den Übergang von einer statischen in eine dynamische mentale Repräsentation sich nähernder Fahrzeuge mit Hilfe des Paradigmas des Representational Momentum (Freyd & Finke, 1984) gesucht und ebenfalls deren Lokalisation im Arbeitsgedächtnis erforscht (Henning & Krems, 2009).
Die den drei Manuskripten vorangestellte Einleitung dient der allgemeinen Einführung in das Thema und der Einordnung der Befunde. Dabei wird zuerst der Spurwechselprozess dargestellt, gefolgt von einer Diskussion der zugrundeliegenden kognitiven Prozesse und einem Exkurs über die Möglichkeiten der Spurwechselabsichtserkennung und deren Verbesserung im Lichte der Befunde.
|
62 |
Local Dynamic Map als modulares Software Framework für Fahrerassistenzsysteme: Local Dynamic Map als modulares Software Framework fürFahrerassistenzsystemeReisdorf, P., Auerswald, A., Wanielik, G. 13 November 2015 (has links)
Moderne Fahrerassistenzsysteme basieren auf der Verarbeitung von Informationen, welche durch die Umfeldwahrnehmung mit unterschiedlicher Sensorik erfolgt. Neben den Informationen aus dem eigenen Fahrzeug ergeben sich durch unterschiedliche Kommunikationsmöglichkeiten (Car2Car, Car2X, ...) erweiterte Umfeldwahrnehmungen (siehe Abb. 1). Diese Daten gilt es aufbereitet und zielorientiert einer Anwendung zur Verfügung zu stellen, was mit Hilfe einer Local Dynamic Map (LDM) erfüllt werden kann. Die vorliegende Veröffentlichung beschreibt den Aufbau, Verwendungszweck und Eigenschaften einer entwickelten LDM und geht auf einige Applikationen ein, die mit Hilfe dieser realisiert wurden.
|
63 |
Deep Learning for Sensor FusionHoward, Shaun Michael 30 August 2017 (has links)
No description available.
|
64 |
Προηγμένα συστήματα υποβοήθησης οδηγού με μεθόδους υπολογιστικής όρασης / Advanced driver assistance systems with computer vision methodsΣιόγκας, Γιώργος 27 January 2014 (has links)
Τα αυτοκινητιστικά δυστυχήματα αποτελούν μια από τις κυριότερες αιτίες θανάτου παγκοσμίως. Ο αυξανόμενος αριθμός τους οδήγησε στην συνειδητοποίηση ότι η χρήση προηγμένης τεχνολογίας για την κατασκευή ασφαλέστερων οχημάτων είναι απαραίτητη για την μείωση των ατυχημάτων και κατά συνέπεια των θανάτων που οφείλονται σε αυτά. Από τη στιγμή που οι τεχνολογικές εξελίξεις επέτρεψαν την ενσωμάτωση φθηνών, χαμηλής κατανάλωσης συστημάτων με μεγάλη επεξεργαστική ταχύτητα σε οχήματα, κατέστη προφανές ότι περίπλοκες τεχνικές υπολογιστικής όρασης μπορούσαν πλέον να χρησιμοποιηθούν για την υποβοήθηση της οδήγησης. Σε αυτή την κατεύθυνση, η παρούσα διατριβή εστιάζει στην ανάπτυξη καινοτόμων λύσεων για διαφορετικά κομμάτια που εμπλέκονται στα προηγμένα συστήματα υποβοήθησης του οδηγού. Πιο συγκεκριμένα, σε αυτή την διατριβή προτείνονται καινοτόμα υποσυστήματα για την αναγνώριση σημάτων οδικής κυκλοφορίας, την αναγνώριση φωτεινών σηματοδοτών, τον εντοπισμό προπορευόμενου οχήματος και τον εντοπισμό δρόμου. Οι τεχνικές που χρησιμοποιήθηκαν για την ανάπτυξη των προτεινόμενων λύσεων βασίζονται στην χρωματική επεξεργασία εικόνας με έμφαση στην ανεξαρτησία από την φωτεινότητα της σκηνής, στην χρήση πληροφορίας συμμετρίας για τον εντοπισμό χαρακτηριστικών αντικειμένων (όπως σήματα οδικής κυκλοφορίας, φωτεινοί σηματοδότες και οχήματα), στην χώρο-χρονική παρακολούθηση των εντοπισμένων αντικειμένων και στην αυτόματη κατάτμηση εικόνας για τον εντοπισμό δρόμου. Τα προτεινόμενα συστήματα αναπτύχθηκαν με στόχο την ανθεκτικότητα σε αλλαγές της φωτεινότητας ή τις καιρικές συνθήκες, καθώς και στην οδήγηση σε απαιτητικά περιβάλλοντα. Επίσης, έχει δοθεί ιδιαίτερη έμφαση στην προοπτική υλοποίησης συστημάτων πραγματικού χρόνου. Τα αποτελέσματα που παρουσιάζονται σε αυτή την διατριβή αποδεικνύουν την ανωτερότητα των προτεινόμενων μεθόδων έναντι αντίστοιχων της σχετικής βιβλιογραφίας, ειδικά στις περιπτώσεις του εντοπισμού προπορευόμενου οχήματος και του εντοπισμού δρόμου. Ελπίζουμε ότι μέρη της έρευνας αυτής θα εμπνεύσουν νέες προσεγγίσεις για τις μελλοντικές υλοποιήσεις αντίστοιχων συστημάτων. / Traffic accidents are one of the main reasons for the loss of human lives worldwide. Their increasing number has led to the realization that the use of advanced technology for manufacturing safer vehicles is imperative for limiting casualties. Since technological breakthroughs allowed the incorporation of cheap, low consumption systems with high processing speeds in vehicles, it became apparent that complex computer vision techniques could be used to assist drivers in navigating their vehicles. In this direction, this thesis focuses on providing novel solutions for different tasks involved in advanced driver assistance systems. More specifically, this thesis proposes novel sub-systems for traffic sign recognition, traffic light recognition, preceding vehicle detection and road detection. The techniques used for developing the proposed solutions are based on color image processing with a focus on illumination invariance, using symmetry information for man-made objects (like traffic signs, traffic lights and vehicles) detection, spatiotemporal tracking of detected results and automated image segmentation for road detection. The proposed systems were implemented with a goal of robustness to changes of illumination and weather conditions, as well as to diverse driving environments. A special focus on the prospect for real-time implementation has also been given. The results presented in this thesis indicate the superiority of the proposed methods to their counterparts found in relevant literature in both normal and challenging conditions, especially in the cases of preceding vehicle detection and road detection. Hopefully, parts of this research will provide new insights for future developments in the field of intelligent transportation.
|
65 |
Adaptive EyesWege, Claudia 10 April 2015 (has links) (PDF)
Technology pervades our daily living, and is increasingly integrated into the vehicle – directly affecting driving. On the one hand technology such as cell phones provoke driver distraction and inattention, whereas, on the other hand, Advanced Driver Assistance Systems (ADAS) support the driver in the driving task. The question is, can a driver successfully adapt to the ever growing technological advancements?
Thus, this thesis aimed at improving safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioural change. Previous research on ADAS and human attention was reviewed in the context of driver behavioural adaptation. Empirical data from multiple data sources such as driving performance data, visual behaviour data, video footage, and subjective data were analyzed to evaluate two ADAS (a brake-capacity forward collision warning system, B-FCW, and a Visual Distraction Alert System, VDA-System).
Results from a field operational test (EuroFOT) showed that brake-capacity forward collision warnings lead to immediate attention allocation toward the roadway and drivers hit the brake, yet change their initial response later on by directing their eyes toward the warning source in the instrument cluster. A similar phenomenon of drivers changing initial behaviour was found in a driving simulator study assessing a Visual Distraction Alert System. Analysis showed that a Visual Distraction Alert System successfully assists drivers in redirecting attention to the relevant aspects of the driving task and significantly improves driving performance. The effects are discussed with regard to behavioural adaptation, calibration and system acceptance. Based on these findings a novel assessment for human-machine-interaction (HMI) of ADAS was introduced.
Based on the contribution of this thesis and previous best-practices, a holistic safety management model on accident prevention strategies (before, during and after driving) was developed. The DO-IT BEST Feedback Model is a comprehensive feedback strategy including driver feedback at various time scales and therefore is expected to provide an added benefit for distraction and inattention prevention. The central contributions of this work are to advance research in the field of traffic psychology in the context of attention allocation strategies, and to improve the ability to design future safety systems with the human factor in focus. The thesis consists of the introduction of the conducted research, six publications in full text and a comprehensive conclusion of the publications.
In brief this thesis intends to improve safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioral change, thereby resulting in more attention allocation to the forward roadway, and improved vehicle control. / Technologie durchdringt unser tägliches Leben und ist zunehmend integriert in Fahrzeuge – das Resultat sind veränderte Anforderungen an Fahrzeugführer. Einerseits besteht die Gefahr, dass er durch die Bedienung innovativer Technologien (z.B. Mobiltelefone) unachtsam wird und visuell abgelenkt ist, andererseits kann die Nutzung von Fahrerassistenzsystemen die den Fahrer bei der Fahraufgabe unterstützten einen wertvollen Beitrag zur Fahrsicherheit bieten. Die steigende Aktualität beider Problematiken wirft die Frage auf: "Kann der Fahrer sich erfolgreich dem ständig wachsenden technologischen Fortschritt anpassen?"
Das Ziel der vorliegenden Arbeit ist der Erkenntnisgewinn zur Verbesserung des Fahrverhaltens indem der Verhaltensänderungen zugrunde liegende psychologische Mechanismen untersucht werden. Eine Vielzahl an Literatur zu Fahrerassistenzsystemen und Aufmerksamkeitsverteilung wurde vor dem Hintergrund von Verhaltensanpassung der Fahrer recherchiert. Daten mehrerer empirischer Quellen, z. B. Fahrverhalten, Blickbewegungen, Videomitschnitte und subjektive Daten dienten zur Datenauswertung zweier Fahrerassistenzsysteme.
Im Rahmen einer Feldstudie zeigte sich, dass Bremskapazitäts-Kollisionswarnungen zur sofortigen visuellen Aufmerksamkeitsverteilung zur Fahrbahn und zum Bremsen führen, Fahrer allerdings ihre Reaktion anpassen indem sie zur Warnanzeige im Kombinationsinstrument schauen. Ein anderes Phänomen der Verhaltensanpassung wurde in einer Fahrsimulatorstudie zur Untersuchung eines Ablenkungswarnsystems, das dabei hilft die Blicke von Autofahrern stets auf die Straße zu lenken, gefunden. Diese Ergebnisse weisen nach, dass solch ein System unterstützt achtsamer zu sein und sicherer zu fahren.
Die vorliegenden Befunde wurden im Zusammenhang zu Vorbefunden zur Verhaltensanpassung zu Fahrerassistenzsystemen, Fahrerkalibrierung und Akzeptanz von Technik diskutiert. Basierend auf den gewonnenen Erkenntnissen wurde ein neues Vorgehen zur Untersuchung von Mensch- Maschine-Interaktion eingeführt. Aufbauend auf den Resultaten der vorliegenden Arbeit wurde ein ganzheitliches Modell zur Fahrsicherheit und -management, das DO-IT BEST Feedback Modell, entwickelt. Das Modell bezieht sich auf multitemporale Fahrer-Feedbackstrategien und soll somit einen entscheidenen Beitrag zur Verkehrssicherheit und dem Umgang mit Fahrerunaufmerksamkeit leisten. Die zentralen Beiträge dieser Arbeit sind die Gewinnung neuer Erkenntnisse in den Bereichen der Angewandten Psychologie und der Verkehrspsychologie in den Kontexten der Aufmerksamkeitsverteilung und der Verbesserung der Gestaltung von Fahrerassistenzsystemen fokusierend auf den Bediener. Die Dissertation besteht aus einem Einleitungsteil, drei empirischen Beiträgen sowie drei Buchkapiteln und einer abschliessenden Zusammenfassung.
|
66 |
Driver attention and behaviour monitoring with the Microsoft Kinect sensorSolomon, Cleshain Theodore 11 1900 (has links)
Modern vehicles are designed to protect occupants in the event of a crash with some vehicles better at this than others. However, passenger protection during an accident has shown to be not enough in many high impact crashes. Statistics have shown that the human error is the number one contributor to road accidents. This research study explores how driver error can be reduced through technology which observes driver behaviour and reacts when certain unwanted patterns in behaviour have been detected. Finally a system that detects driver fatigue and driver distraction has been developed using non-invasive machine vision concepts to monitor observable driver behaviour. / Electrical Engineering / M. Tech. (Electrical Engineering)
|
67 |
Jointly Ego Motion and Road Geometry Estimation for Advanced Driver Assistance SystemsAsghar, Jawaria January 2021 (has links)
For several years, there has been a remarkable increase in efforts to develop an autonomous car. Autonomous car systems combine various techniques of recognizing the environment with the help of the sensors and could drastically bring down the number of accidents on road by removing human conduct errors related to driver inattention and poor driving choices. In this research thesis, an algorithm for jointly ego-vehicle motion and road geometry estimation for Advanced Driver Assistance Systems (ADAS) is developed. The measurements are obtained from the inertial sensors, wheel speed sensors, steering wheel angle sensors, and camera. An Unscented Kalman Filter (UKF) is used for estimating the states of the non-linear system because UKF estimates the state in a simplified way without using complex computations. The proposed algorithm has been tested on a winding and straight road. The robustness and functioning of our algorithm have been demonstrated by conducting experiments involving the addition of noise to the measurements, reducing the process noise covariance matrix, and increasing the measurement noise covariance matrix and through these tests, we gained more trust in the working of our tracker. For evaluation, each estimated parameter has been compared with the reference signal which shows that the estimated signal matches the reference signal very well in both scenarios. We also compared our joint algorithm with individual ego-vehicle and road geometry algorithms. The results clearly show that better estimates are obtained from our algorithm when estimated jointly instead of estimating separately.
|
68 |
Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante FahrerassistenzsystemeSchneider, Jörg Henning 01 June 2010 (has links)
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert.
Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen. / The present work describes a generic method for the probabilistic identification of driving situations and driving manoeuvres for safety relevant driver assistance systems. Driving situations and driving manoeuvres underlie a certain uncertainty based on the different situation perception and manoeuvre execution of the driver. This uncertainty component is considered in the approach for the situation and manoeuvre identification. An additional uncertainty aspect is based on the inaccurate environment information, the identification of driving situations and manoeuvres depend on. Both uncertainty aspects are completely independent and are considered and modelled separately for this reason.
For modelling both of these uncertainty aspects the present approach is using the fuzzy theory, probabilistic networks, as well as methods for error propagation and sensitivity analysis. After introducing these techniques theoretically, the application and the interaction of the single methods to identify the driving situations and manoeuvres is described in detail. The practicability of the introduced proceeding is shown exemplarily on the emergency brake situation. The emergency brake situation consists of several situation and manoeuvre components. The identification of the single situations and manoeuvres as well as the combination to the higher emergency brake situation is realised with the introduced proceeding. Measuring data gathered on road traffic and close to reality data measured on a test track were used to evaluate the identification quality.
|
69 |
Adaptive Eyes: Driver Distraction and Inattention PreventionThrough Advanced Driver Assistance Systems and Behaviour-Based SafetyWege, Claudia 30 January 2014 (has links)
Technology pervades our daily living, and is increasingly integrated into the vehicle – directly affecting driving. On the one hand technology such as cell phones provoke driver distraction and inattention, whereas, on the other hand, Advanced Driver Assistance Systems (ADAS) support the driver in the driving task. The question is, can a driver successfully adapt to the ever growing technological advancements?
Thus, this thesis aimed at improving safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioural change. Previous research on ADAS and human attention was reviewed in the context of driver behavioural adaptation. Empirical data from multiple data sources such as driving performance data, visual behaviour data, video footage, and subjective data were analyzed to evaluate two ADAS (a brake-capacity forward collision warning system, B-FCW, and a Visual Distraction Alert System, VDA-System).
Results from a field operational test (EuroFOT) showed that brake-capacity forward collision warnings lead to immediate attention allocation toward the roadway and drivers hit the brake, yet change their initial response later on by directing their eyes toward the warning source in the instrument cluster. A similar phenomenon of drivers changing initial behaviour was found in a driving simulator study assessing a Visual Distraction Alert System. Analysis showed that a Visual Distraction Alert System successfully assists drivers in redirecting attention to the relevant aspects of the driving task and significantly improves driving performance. The effects are discussed with regard to behavioural adaptation, calibration and system acceptance. Based on these findings a novel assessment for human-machine-interaction (HMI) of ADAS was introduced.
Based on the contribution of this thesis and previous best-practices, a holistic safety management model on accident prevention strategies (before, during and after driving) was developed. The DO-IT BEST Feedback Model is a comprehensive feedback strategy including driver feedback at various time scales and therefore is expected to provide an added benefit for distraction and inattention prevention. The central contributions of this work are to advance research in the field of traffic psychology in the context of attention allocation strategies, and to improve the ability to design future safety systems with the human factor in focus. The thesis consists of the introduction of the conducted research, six publications in full text and a comprehensive conclusion of the publications.
In brief this thesis intends to improve safe driver behaviour by understanding the underlying psychological mechanisms that influence behavioral change, thereby resulting in more attention allocation to the forward roadway, and improved vehicle control.:Abstract i
Zusammenfassung iii
List of included publications v
Acknowledgements vii
Previously published work ix
Table of contents xi
Preface xii
1 Chapter 1 Introduction 1
1.1 Outline 1
1.2 Objectives 2
1.3 Background 8
1.3.1 Behavioural adaption to ADAS 8
1.3.2 Driver distraction and inattention 9
2 Chapter 2 Paper I 23
3 Chapter 3 Paper II 47
4 Chapter 4 Paper III 61
5 Chapter 5 Paper IV 91
6 Chapter 6 Paper V 117
7 Chapter 7 Paper VI 143
8 Chapter 8 Conclusions and discussion 161
8.1. Contributions 161
8.2. Implications 171
8.3. Limitations and research needs 173
9 References 177
Curriculum Vitae 199
Eidesstattliche Erklärung 201 / Technologie durchdringt unser tägliches Leben und ist zunehmend integriert in Fahrzeuge – das Resultat sind veränderte Anforderungen an Fahrzeugführer. Einerseits besteht die Gefahr, dass er durch die Bedienung innovativer Technologien (z.B. Mobiltelefone) unachtsam wird und visuell abgelenkt ist, andererseits kann die Nutzung von Fahrerassistenzsystemen die den Fahrer bei der Fahraufgabe unterstützten einen wertvollen Beitrag zur Fahrsicherheit bieten. Die steigende Aktualität beider Problematiken wirft die Frage auf: "Kann der Fahrer sich erfolgreich dem ständig wachsenden technologischen Fortschritt anpassen?"
Das Ziel der vorliegenden Arbeit ist der Erkenntnisgewinn zur Verbesserung des Fahrverhaltens indem der Verhaltensänderungen zugrunde liegende psychologische Mechanismen untersucht werden. Eine Vielzahl an Literatur zu Fahrerassistenzsystemen und Aufmerksamkeitsverteilung wurde vor dem Hintergrund von Verhaltensanpassung der Fahrer recherchiert. Daten mehrerer empirischer Quellen, z. B. Fahrverhalten, Blickbewegungen, Videomitschnitte und subjektive Daten dienten zur Datenauswertung zweier Fahrerassistenzsysteme.
Im Rahmen einer Feldstudie zeigte sich, dass Bremskapazitäts-Kollisionswarnungen zur sofortigen visuellen Aufmerksamkeitsverteilung zur Fahrbahn und zum Bremsen führen, Fahrer allerdings ihre Reaktion anpassen indem sie zur Warnanzeige im Kombinationsinstrument schauen. Ein anderes Phänomen der Verhaltensanpassung wurde in einer Fahrsimulatorstudie zur Untersuchung eines Ablenkungswarnsystems, das dabei hilft die Blicke von Autofahrern stets auf die Straße zu lenken, gefunden. Diese Ergebnisse weisen nach, dass solch ein System unterstützt achtsamer zu sein und sicherer zu fahren.
Die vorliegenden Befunde wurden im Zusammenhang zu Vorbefunden zur Verhaltensanpassung zu Fahrerassistenzsystemen, Fahrerkalibrierung und Akzeptanz von Technik diskutiert. Basierend auf den gewonnenen Erkenntnissen wurde ein neues Vorgehen zur Untersuchung von Mensch- Maschine-Interaktion eingeführt. Aufbauend auf den Resultaten der vorliegenden Arbeit wurde ein ganzheitliches Modell zur Fahrsicherheit und -management, das DO-IT BEST Feedback Modell, entwickelt. Das Modell bezieht sich auf multitemporale Fahrer-Feedbackstrategien und soll somit einen entscheidenen Beitrag zur Verkehrssicherheit und dem Umgang mit Fahrerunaufmerksamkeit leisten. Die zentralen Beiträge dieser Arbeit sind die Gewinnung neuer Erkenntnisse in den Bereichen der Angewandten Psychologie und der Verkehrspsychologie in den Kontexten der Aufmerksamkeitsverteilung und der Verbesserung der Gestaltung von Fahrerassistenzsystemen fokusierend auf den Bediener. Die Dissertation besteht aus einem Einleitungsteil, drei empirischen Beiträgen sowie drei Buchkapiteln und einer abschliessenden Zusammenfassung.:Abstract i
Zusammenfassung iii
List of included publications v
Acknowledgements vii
Previously published work ix
Table of contents xi
Preface xii
1 Chapter 1 Introduction 1
1.1 Outline 1
1.2 Objectives 2
1.3 Background 8
1.3.1 Behavioural adaption to ADAS 8
1.3.2 Driver distraction and inattention 9
2 Chapter 2 Paper I 23
3 Chapter 3 Paper II 47
4 Chapter 4 Paper III 61
5 Chapter 5 Paper IV 91
6 Chapter 6 Paper V 117
7 Chapter 7 Paper VI 143
8 Chapter 8 Conclusions and discussion 161
8.1. Contributions 161
8.2. Implications 171
8.3. Limitations and research needs 173
9 References 177
Curriculum Vitae 199
Eidesstattliche Erklärung 201
|
70 |
Situation Assessment at Intersections for Driver Assistance and Automated Vehicle ControlStreubel, Thomas 20 January 2016 (has links)
The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies.
This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished.
The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment.:Contents
List of Figures
Acronyms
1 Introduction
1.1 Motivation
1.2 Outline
2 Fundamentals
2.1 Traffic Intersections
2.2 Situation Assessment
2.3 Prediction of Driver Intention
2.3.1 Methods Overview
2.3.2 Hidden Markov Models
2.4 Localization
3 Driving Behavior
3.1 Data Analysis
3.1.1 Data selection and processing
3.1.2 Results
3.1.3 Conclusion
3.2 Naturalistic Driving Study
3.2.1 Background
3.2.2 Methods
3.2.3 Results
3.2.4 Discussion and Conclusion
4 Prediction Algorithm
4.1 Framework
4.2 Input data
4.3 Evaluation
4.4 Validation
4.5 Conclusion
5 System Approach
5.1 Sensing
5.2 Situation analysis
5.3 Prediction
5.3.1 Implementation
5.3.2 Graphical User Interface (GUI)
5.3.3 Testing and Outlook
6 Conclusion and Outlook
Bibliography / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien.
Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt.
Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.:Contents
List of Figures
Acronyms
1 Introduction
1.1 Motivation
1.2 Outline
2 Fundamentals
2.1 Traffic Intersections
2.2 Situation Assessment
2.3 Prediction of Driver Intention
2.3.1 Methods Overview
2.3.2 Hidden Markov Models
2.4 Localization
3 Driving Behavior
3.1 Data Analysis
3.1.1 Data selection and processing
3.1.2 Results
3.1.3 Conclusion
3.2 Naturalistic Driving Study
3.2.1 Background
3.2.2 Methods
3.2.3 Results
3.2.4 Discussion and Conclusion
4 Prediction Algorithm
4.1 Framework
4.2 Input data
4.3 Evaluation
4.4 Validation
4.5 Conclusion
5 System Approach
5.1 Sensing
5.2 Situation analysis
5.3 Prediction
5.3.1 Implementation
5.3.2 Graphical User Interface (GUI)
5.3.3 Testing and Outlook
6 Conclusion and Outlook
Bibliography
|
Page generated in 0.0678 seconds