61 |
Schéma de transport de l'interface d'un écoulement diphasique visqueux non miscible par la méthode des caractéristiques / Interface transport scheme of a viscous immiscible two-phase flow by the method of characteristicsEl-Haddad, Mireille 18 November 2016 (has links)
Dans cette thèse, on utilise des outils mathématiques et numériques pour modéliser les écoulements tridimensionnels incompressibles à surface libre instationnaires. L'application industrielle visée est l'étude de la phase de remplissage des moules dans une fonderie. On développe un algorithme pour le transport de l'interface par la vitesse du fluide pour un fluide diphasique incompressible visqueux non-miscible de rapport de densité important en utilisant la méthode de caractéristiques pour traiter le problème de convection. Il y a des défis majeurs dans le contexte de la modélisation des fluides diphasiques. Tout d'abord, on doit prendre en considération l'évolution de l'interface et de ses changements topologiques. Deuxièmement, on doit traiter la non-linéarité convective de l'interface et de l'écoulement. Troisièmement, les équations de Navier-Stokes et du transport doivent être munies des conditions aux bords appropriées. En outre, il faut traiter soigneusement les singularités géométriques et topologiques à travers l'interface en particulier dans le cas de rapport de densité et viscosité important. On doit également maintenir la résolution d'une interface d'épaisseur nulle durant les cas du pliage, la rupture et la fusion de l'interface. Quatrièmement, on doit respecter les propriétés physiques telles que la conservation de la masse pour tout écoulement d'un fluide incompressible. Cinquièmement, il faut toujours penser aux limitations du temps de calcul et de mémoire pour résoudre ce genre de problème dans les cas pratiques. Notre but est de trouver un schéma fiable capable de modéliser le remplissage des moules tridimensionnelles industrielles. La première partie de cette thèse est dédiée à la description mathématique du schéma de transport de l'interface par la vitesse du fluide. Le mouvement des fluides est décrit par les équations de Navier-Stokes. L'interface est capturée par la fonction Level-Set. Le problème est discrétisée en espace par la méthode des éléments finis et en temps par la méthode de caractéristiques.Des conditions aux bords appropriées pour le problème du remplissage d'un moule sont introduites et un algorithme de calcul de la solution est présentée. Finalement,des résultats numériques montrent et valident l'efficacité duschéma proposé. Dans la deuxième partie de cette thèse, on introduit une méthode de décomposition de domaine qui correspond à la discrétisation par la méthode des caractéristiques dans le but d'améliorer la performance de l'algorithme proposé lors de la modélisation du remplissage des moules industrielles à moyennes séries. Des résultats numériques de comparaison valident la précision du code parallèle. / In this thesis, we use mathematical and numerical tools to model three dimensional incompressible laminar flows with free surface. The described industrial application is the study of the mould filling phase in a foundry. We develop an algorithm for the transport of the interface by the fluid velocity for a viscous incompressible immiscible fluids of high density ratio in two-phase flow using the method of characteristics for the convection problem.There are, however, major challenges in the context of two-phase flow modeling.First, we have to take into account the evolution of the interface and its topological changes. Second, we have to deal with the non-linearity for the convection of the flow and the interface. Third, we must assign appropriate boundary conditions to the flow and transport equations.In addition, care must be taken in treating the geometrical and topological singularities across the interface.We also have to maintain a sharp interface resolution, including the cases of interface folding, breaking and merging.Furthermore, we should respect the physical properties such as the mass conservation for any incompressible fluid flows.Finally, we have to keep in mind the limitations in the time of computation and memory to solve this kind of problem in practical cases. Our purpose is to find a reliable scheme able to model the filling of three dimensional industrial moulds.The first part of the thesis is devoted to the mathematical description of the interface transport scheme by the fluid velocity. The fluids motion is described by the Navier-Stokes equations. The interface is captured by the Level-Set function. The problem isdiscretized by the characteristics method in time and finiteelements method in space. The interface is captured by the Level-Setfunction. Appropriate boundary conditions for the problem ofmould filling are investigated, a new natural boundary conditionunder pressure effect for the transport equation is proposed andan algorithm for computing the solution is presented. Finally,numerical experiments show and validate the effectiveness of theproposed scheme.In the second part of the thesis, we introduce a domain decomposition method that suits the discretization by the method of characteristics in order to improve the performance of the proposed algorithm to model the filling phase for moulds of medium series. Numerical results of comparison validate the precision of the parallel code.
|
62 |
Développement d'une méthode numérique multi-échelle et multi-approche appliquée à l'atomisation / Development of a multi-approach and multi-scale numerical method applied to atomizationDabonneville, Felix 20 June 2018 (has links)
L’objet de cette thèse a été de développer une méthode numérique multi-approche et multiéchelle appliquée à la simulation d’écoulements diphasiques de fluides non miscibles, incompressibles et isothermiques et plus particulièrement à l’atomisation primaire. Cette méthode repose sur une approche couplée entre un maillage local raffiné et un maillage global plus large. Le couplage est explicite avec raffinement en temps, c’est-à-dire que chaque domaine évolue selon son propre pas de temps. Afin de prendre en compte les différentes échelles en temps et en espace dans le processus d’atomisation, cette méthode numérique couple deux méthodes numériques diphasiques différentes : une méthode de capture de l’interface dans le domaine local raffiné près de l’injecteur et une méthode de sous-maille dans le domaine global grossier et la région du spray dispersé. Le code développé et parallélisé dans le logiciel OpenFOAMR s’avère capable de réduire de manière significative le temps de calcul d’une simulation aux grandes échelles de l’atomisation dans un injecteur coaxial, tout en prédisant de manière fiable les données expérimentales. / The purpose of this work has been to develop a multi-approach and multi-scale numerical method applied to the simulation of two-phase flows involving non miscible, incompressible and isothermal fluids, and more specifically primary atomization. This method is based on a coupled approach between a refined local mesh and a coarser global mesh. The coupling is explicit with refinement in time, i.e. each domain evolves following its own time-step. In order to account for the different scales in space and time of the atomization process, this numerical method couples two different two-phase numerical methods: an interface capturing method in the refined local domain near the injector and a sub-grid method in the coarser global domain in the dispersed spray region. The code has been developed and parallelized in the OpenFOAMR software. It is able to reduce significantly the computational cost of a large eddy simulation of a coaxial atomization, while predicting with accuracy the experimental data.
|
63 |
Modélisation multi-échelle de la combustion d'un nuage de particules / Multiscale modeling of the combustion of a cloud of particlesBelerrajoul, Mohamed 06 February 2019 (has links)
La présence de fines particules de matières oxydables est rencontrée dans de nombreuses situations industrielles. Le risque d'explosion de poussières présente une menace constante pour les industries de transformation qui fabriquent, utilisent ou manipulent des poudres ou despoussières de matières combustibles. Dans le secteur nucléaire, les scénarios envisagés traitent,en particulier, le risque d'explosion de poussières de graphite liées aux opérations dedémantèlement des réacteurs Uranium Naturel Graphite Gaz. La problématique considérée, dans le cadre de ce travail de thèse, est celle de la combustion d'un mélange dilué gaz-particules.L'objectif de cette thèse est de développer un modèle Euler-Lagrange macroscopique permettantde prédire la vitesse laminaire de flamme qui est une des données essentielles pour les modèlesde vitesse de flamme turbulente utilisés dans l'évaluation des risques d'explosion de poussières.Dans un premier temps, les équations macroscopiques de transferts massique et thermique sont dérivées à partir de la méthode de prise de moyenne volumique. L'intérêt de l'approche utilisée ici est de proposer des problèmes de fermeture permettant d'estimer les coefficients de transfertseffectifs, tels que les coefficients d'échanges thermiques et le coefficient effectif de la réactionhétérogène. Dans un deuxième temps, des simulations Euler-Lagrange sont utilisées pourdéterminer la vitesse de flamme laminaire diphasique plane en fonction des caractéristiques du mélange gazeux et des poussières de graphite. Le modèle proposé dans ce travail est comparé au modèle Euler-Lagrange classique basé sur la résolution du problème de couche limite pourune particule isolée en milieu infini. Cette étude montre que les effets du taux de dilution et deséchanges indirects entre les particules ne sont pas systématiquement négligeables dans leséchanges macroscopiques entre les deux phases. D'autre part, la présente étude laisse entrevoir la potentialité de l'approche proposée pour les simulations détaillées de l'écoulement diphasique / The presence of fine particles of oxidizable materials is encountered in many industrial situations.The risk of dust explosion presents a constant threat in transformation industries that manufacture,use or manipulate powders or combustible materials dusts. In nuclear safety analysis, one of themain scenarios is the risk of graphite dust explosion that may occur during decommissioningoperations of Uranium Natural Graphite Gas reactors. The issue considered in this thesis isrelated to combustion of a dilute gas-particle mixture. This work aims at developing a macroscopicEuler-Lagrange model for predicting laminar flame velocity, which is one of the essential data forturbulent flame velocity models used to evaluate the risk of dust explosion. First, the macroscopicheat and mass transfer equations are derived using the volume averaging method. The majorinterest of the proposed approach is to provide closure problems that allow to estimate theeffective transport coefficients, such as heat exchange coefficients and the effective coefficient ofthe heterogeneous reaction. Second, Euler-Lagrange simulations are used to determine the planetwo-phase laminar flame velocity as a function of gas mixture and graphite dust characteristics.The proposed model is compared to the classical Euler-Lagrange model based on the resolutionof the boundary layer problem in the vicinity of an isolated particle in infinite medium. Results showthat the dilution rate and the indirect particle-particle exchanges are not systematically negligible inthe macroscopic exchanges between the two-phases. On the other hand, this study suggests thepotentiality of the proposed approach for detailed simulations of two-phase flow
|
64 |
Instabilités thermoacoustiques dans les moteurs à propergol solide / Thermo-acoustic instabilities in solid rocket motorsGenot, Aurélien 21 June 2019 (has links)
Dans un moteur à propergol solide, des instabilités thermoacoustiques auto-entretenues, induites par le couplage de la dynamique de la combustion des gouttes d’aluminium, libérées par la combustion du propergol, avec le champ acoustique peuvent induire des oscillations de pression.L’analyse menée tout au long de ce manuscrit repose sur un ensemble d’hypothèses simplificatrices: (i) la réponse de la combustion de gouttes d’aluminium aux perturbations acoustiques est contrôlée par l’écoulement local autour de la goutte, (ii) le processus de combustion peut être supposé quasi stationnaire pour la gamme de fréquences et les amplitudes acoustiques étudiées et (iii) la combustion de l’aluminium est brusquement arrêtée lorsque le diamètre de la goutte d’aluminium diminue en dessous d’un diamètre résiduel.L’instabilité thermoacoustique est étudiée au moyen de simulations numériques de l’écoulement dans un moteur générique et d’analyses théoriques. Le diamètre résiduel des gouttes d’aluminium après la combustion, l’amplitude de la perturbation acoustique et la durée de la combustion des gouttes d’aluminium figurent parmi les principaux paramètres modifiant l’instabilité. En outre, trois comportements de réponse de la combustion à l’acoustique sont identifiés : un comportement linéaire pour les faibles niveaux de pression acoustique puis un comportement quadratique (faiblement non-linéaire) et enfin un comportement fortement non-linéaire quand l’amplitude des oscillations augmente.Ensuite, deux aspects importants de la réponse des gouttes d’aluminium sont identifiés. Ils sont associés aux oscillations de la durée du temps de combustion des gouttes, identifiables à la frontière du nuage de gouttes, et aux fluctuations du taux d’évaporation contrôlées par la convection de l’écoulement gazeux autour de chaque goutte. Tenant compte de ces dynamiques,des expressions analytiques sont obtenues permettant de reproduire avec précision les résultats numériques des simulations de l’écoulement. Quatre nombres sans dimension qui régissent la dynamique de ces instabilités sont également identifiés. Inspiré de l’analyse théorique précédente, un modèle numérique d’ordre réduit faiblement non linéaire est finalement développé pour prédire des cycles limites. / In a solid rocket motor, self-sustained thermo-acoustic instabilities, induced by the coupling of the combustion dynamics of aluminum droplets released by the burning propellant with the acoustic field can induce pressure oscillations.The analysis conducted throughout this manuscript relies thus on a set of simplifying hypothesis by assuming (i) that the response of the combustion of aluminum droplets to acoustic perturbations is controlled by the oscillating drag exerted by the local flow around the droplet, (ii) that this unsteady combustion process can be assumed quasi-steady for the range of frequencies and acoustic amplitudes studied and (iii) that aluminum combustion is abruptly quenched when the aluminum droplet diameter falls below a residual diameter.The thermo-acoustic instability is studied first by numerical flow simulations in a generic solid rocket motor and theoretical analyses. The post-combustion residual diameter of the aluminum particles, the amplitude of acoustic perturbation and the lifetime of the burning aluminum droplets are among the main parameters altering the instability. Also, three combustion response behaviors to acoustics are identified : a linear behavior for small acoustic pressure levels followed by a quadratic behavior then a highly non-linear behavior when the pressure amplitude increases in the motor chamber. Moreover, two important features of the response of aluminum droplets are identified. They are associated to oscillations of the droplet lifetime at the boundary of the droplet cloud and to fluctuations of the droplet evaporation rate, controlled by convection. The dynamics of the droplets highly depends on gas and droplet velocity fields and on droplet diameter. Taking these features into account, yields analytical expressions that allow to reproduce with accuracy the numerical results from the flow simulations. Four dimension less numbers are then identified. They govern the dynamics of these instabilities. Inspired from the previous theoretical analysis, a weakly nonlinear low-order numerical model is finally developed to predict limit cycles.
|
65 |
Large eddy simulation of evaporating sprays in complex geometries using Eulerian and Lagrangian methods / Large Eddy Simulation von verdampfenden Sprays in komplexen Geometrien mit Euler und Lagrange MethodenJaegle, Félix 14 December 2009 (has links)
Dû aux efforts apportés à la réduction des émissions de NOx dans des chambres de combustion aéronautiques il y a une tendance récente vers des systèmes à combustion pauvre. Cela résulte dans l'apparition de nouveaux types d'injecteur qui sont caractérisés par une complexité géométrique accrue et par des nouvelles stratégies pour l'injection du carburant liquide, comme des systèmes multi-point. Les deux éléments créent des exigences supplémentaires pour des outils de simulation numériques. La simulation à grandes échelles (SGE ou LES en anglais) est aujourd’hui considérée comme la méthode la plus prometteuse pour capturer les phénomènes d'écoulement complexes qui apparaissent dans une telle application. Dans le présent travail, deux sujets principaux sont abordés : Le premier est le traitement de la paroi ce qui nécessite une modélisation qui reste délicate en SGE, en particulier dans des géométries complexes. Une nouvelle méthode d'implementation pour des lois de paroi est proposée. Une étude dans une géométrie réaliste démontre que la nouvelle formulation donne de meilleurs résultats comparé à l’implémentation classique. Ensuite, la capacité d'une approche SGE typique (utilisant des lois de paroi) de prédire la perte de charge dans une géométrie représentative est analysée et des sources d'erreur sont identifiés. Le deuxième sujet est la simulation du carburant liquide dans une chambre de combustion. Avec des méthodes Eulériennes et Lagrangiennes, deux approches sont disponibles pour cette tâche. La méthode Eulérienne considère un spray de gouttelettes comme un milieu continu pour lequel on peut écrire des équations de transport. Dans la formulation Lagrangienne, des gouttes individuelles sont suivies ce qui mène à des équations simples. D’autre part, sur le plan numérique, le grand nombre de gouttes à traiter peut s’avérer délicat. La comparaison des deux méthodes sous conditions identiques (solveur gazeux, modèles physiques) est un aspect central du présent travail. Les phénomènes les plus importants dans ce contexte sont l'évaporation ainsi que le problème d'injection d'un jet liquide dans un écoulement gazeux transverse ce qui correspond à une version simplifiée d’un système multi-point. Le cas d'application final est la configuration d’un seul injecteur aéronautique, monté dans un banc d'essai expérimental. Ceci permet d'appliquer de manière simultanée tous les développements préliminaires de ce travail. L'écoulement considéré est non-réactif mais à part cela il correspond au régime ralenti d'un moteur d'avion. Dû aux conditions préchauffées, le spray issu du système d'injection multi-point s'évapore dans la chambre. Cet écoulement est simulé utilisant les approches Eulériennes et Lagrangiennes et les résultats sont comparés aux données expérimentales. / Due to efforts to reduce NOx emissions of aeronautical combustors, there is a recent trend towards lean combustion technologies. This results in novel injector designs, which are characterized by increased geometrical complexity and new injection strategies for the liquid fuel, such as multipoint systems. Both elements create additional challenges for numerical simulation tools. Large-Eddy simulation (LES) is regarded as the most promising method to capture complex flow phenomena in such an application. In the present work, two main areas of interest are considered: The first is wall modeling, which remains a challenging field in LES, in particular for complex geometries. A new implementation method for wall functions that uses a no-slip condition at the wall is proposed. It is shown that in a realistic burner geometry the new formulation yields improved results compared to a classical implementation. Furthermore, the capability of a typical LES with wall models to predict the pressure drop in a representative geometry is assessed and sources of error are identified. The second topic is the simulation of liquid fuel in a combustor. With Eulerian and Lagrangian methods, two different approaches are available for this task. The Eulerian approach considers a droplet spray as a continuum for which transport equations can be formulated. In the Lagrangian formulation, individual droplets are tracked, which leads to a simple formulation but can be challenging in terms of numerics due to the large number of particles to be treated. The comparison of these methods under identical conditions (gaseous flow solver, physical models) is a central aspect of the present work. The most important phenomena that are studied in view of the final application are evaporation and the problem of transverse liquid jets in a gaseous crossflow as a simplified representation of a multipoint system. The final application case is the configuration of a single aeronautical injector mounted in an experimental test bench. It allows to simultaneously apply all preliminary developments. The flow considered is non-reactive but otherwise corresponds to a partial load regime in an aeroengine Due to the pre-heated conditions, the spray issued by the multi-point injection undergoes evaporation. This flow is simulated using Eulerian and Lagrangian methods and the results are compared to experimental data.
|
66 |
Développement de techniques optiques pour la caractérisation de brouillards de gouttes dans les foyers aéronautiques / Development of optical techniques to characterize droplet sprays in aeronautical combustion chambersBrettar, Jonathan 17 December 2015 (has links)
L’optimisation des chambres de combustion est généralement réalisée à l'aide d’outils desimulation numérique. Lorsque le carburant est injecté sous forme liquide, la qualité des simulationsdépend en partie de la définition des conditions aux limites imposées pour cette phase à proximité del'injecteur (diamètre, vitesse et flux volumique des gouttes, vitesse de glissement entre phases). Cesconditions aux limites sont généralement définies à partir d'une analyse expérimentale dans desconditions réalistes d’injection, qui fait appel, dans le meilleur des cas, à l’utilisation del’Anémogranulomètre Phase Doppler (PDA). Cependant, cette technique ponctuelle est coûteuse entemps pour une caractérisation globale de l’injecteur et fournit une mesure des flux volumiques avecdes limitations. Il est également difficile d’accéder à des grandeurs telles que la vitesse de la phasegazeuse en présence des gouttes. Pour répondre à cette problématique, il paraît judicieux de mettre enœuvre des techniques de diagnostic optique spatialement résolues. Cette étude consiste à développer des techniques optiques de champ couplant des approches basées sur la diffusion de Mie, sur l'émission fluorescente des gouttes ou de traceurs et utilisant des algorithmes de type PIV, pour caractériser de manière simultanée et quantitative la granulométrie, la vitesse et le flux volumique de la phase dispersée, ainsi que la vitesse de la phase continue dans les brouillards de gouttes au sein d’une configuration réaliste de foyer aéronautique. Une attentionparticulière est portée à l'étude de la précision de la mesure. Ainsi, des comparaisons sont effectuéesavec des bases de données complètes obtenues à l’aide du PDA. L'analyse de ces résultats estconfrontée aux modèles de l'optique physique régissant les phénomènes de fluorescence et dediffusion de la lumière par des particules à l’aide de simulations. Cette démarche nous permetd'interpréter efficacement les résultats obtenus par imagerie directe et de définir les paramètresd'acquisition et de traitement assurant une précision optimale des mesures. / The optimization of combustion chambers is generally carried out using numerical simulation tools.When fuel is injected in liquid form, the simulation quality depends on the boundary conditionsimposed to this phase close to the injector (diameter, velocity and volume flux of the droplets, slipvelocity between phases). These boundary conditions are usually set from an experimental analysisunder realistic conditions of injection, which in the best case uses Phase Doppler Anemo-granulometry(PDA). However, this point measurement technique is time consuming for an overall injectorcharacterization and provides a measurement of the volume flux with some limitations. It is alsodifficult to access variables such as the velocity of the gas phase in the presence of droplets. Toaddress this problem, it seems appropriate to implement spatially resolved optical diagnostictechniques. This study consists in the development of optical field techniques which combine approaches based onMie scattering, fluorescent emission from droplets or tracers and use PIV algorithms to characterizesimultaneously and quantitatively size, velocity and volume flux of the dispersed phase, and velocityof the continuous phase in droplet sprays in a realistic configuration of aeronautical injector. Aparticular attention is given to the study of the measurement accuracy. Thus, comparisons are carriedout with complete databases obtained with the PDA. The analysis of these results is faced withphysical optics models governing phenomena of fluorescence and light scattering by particles usingsimulations. This approach allows us to effectively interpret the results obtained by direct imaging anddefine acquisition and processing parameters ensuring optimum accuracy.
|
67 |
Etude dynamique d’un palier compliant lubrifié à l’aide de fluide réfrigérant / Dynamic study of compliant bearing lubricated with refrigerant flowBouchehit, Bachir 12 March 2017 (has links)
Depuis plusieurs années à nos jours, les paliers à gaz sont utilisés avec succès sur une large gamme de turbo-machines. Certains de ces systèmes sont utilisés dans des environnements de contrôle de l’environnement par gaz réfrigérant. Dans ce travail, nous présentons un modèle théorique et numérique qui tient compte de la transition du lubrifiant vapeur / liquide, la transition de l’écoulement laminaire / turbulent et les variations 3D de la viscosité et de la température dans le fluide et les solides pour les deux situations statiques et dynamiques. Ce modèle comporte : la résolution de l'équation de Reynolds généralisée pour les fluides compressibles à viscosité variable en 3D, la description des effets de la turbulence en utilisant l'approche phénoménologique de Elrod, en utilisant un champ de viscosité turbulente 3D, la résolution de l’équation d’état non linéaire du lubrifiant, capable de décrire la transition vapeur / liquide et une approche thermique local afin d'obtenir une estimation 3D de la température du fluide, grâce à l'équation d'énergie pour film mince. La prise en compte également des effets thermiques dans les solides. Dans cette étude, nous avons montré l'importance d'une description précise des paramètres du film fluide, dont les variations influencent largement le comportement du palier. Parmi les principales théories, il y a: lubrifiant compressible, avec un comportement non-linéaire près de la transition vapeur / liquide, la transition vapeur / liquide et le calcul des paramètres équivalents du mélange, un écoulement turbulent du fluide pour le palier GFB à grande vitesse en utilisant un modèle 3D de la viscosité turbulente, un comportement 3D pour la viscosité, en particulier les variations inter-films (dépendant de la température), et un comportement 3D pour la température, en particulier dans le sens transversal du film afin d'être compatible avec la viscosité, mais également dans la direction axiale afin de tenir en compte du gradient de température potentiel qui modifie considérablement le profil 3D de la température du palier. Ces deux comportements statiques et dynamiques du palier compliant GFB sont analysés. / For years now, gas bearings are successfully used over a large panel of turbo-machineries. Some of these systems are bound to be run in controlled environments such as refrigerating gas. In this work we present a theoretical and numerical model which takes into account the vapor/liquid lubricant transition, the laminar/turbulent flow transition and both temperature and viscosity 3D variations in the fluid and the solids for both static and dynamic situations. This model involves: the resolution of the generalized Reynolds equation for compressible fluids with 3D variable viscosity, the description of the turbulence effects by the phenomenological approach of Elrod, using a 3D eddy viscosity field, the resolution of a non-linear equation of state for the lubricant, able to describe the vapor/liquid transition and a local thermal approach to obtain a 3D estimation of the fluid temperature, thanks to the thin-film energy equation. The thermal effects in solids are also taken into account. In this study, we showed the importance of an accurate description of the film parameters, which variations largely influence the bearing behaviour. Among the principal theories, there are: compressible lubricant, with an appropriate non-linear behaviour when close to the vapor/liquid transition, vapor/liquid transition and calculation of the mixture equivalent parameters, turbulent flow for high-speed GFBs with a 3D eddy viscosity mode, a 3D behaviour for viscosity, particularly the cross-film variations, (temperature dependent)and a 3D behaviour for temperature, particularly in cross-film direction in order to be consistent with viscosity, but also in the axial direction in order to account for potential temperature gradient which considerably modifies the bearing 3D temperature profile. Both static and dynamic behaviours of GFBs are analysed.
|
68 |
Modelling of windage and churning losses in high speed rolling element bearings / Modélisation de la dérive et des pertes de barattage dans les paliers d'éléments roulants à grande vitesseGao, Wenjun 27 June 2018 (has links)
Dans un système de machines rotatives comme un moteur à turbine, les paliers d'éléments roulants à grande vitesse jouent un rôle important dans le support de l'arbre ou du rotor rotatif, et ont besoin d'une lubrification pour assurer leur fonction. Sauf qu'une petite quantité d'huile est nécessaire pour former le film lubrifiant élastohydrodynamique dans la zone de contact, la plus grande partie du lubrifiant reste en suspension dans l'air, formant un mélange huile/air. Ce phénomène entraîne des pertes hydrauliques parasitaires excessives lorsque les éléments roulants se translatent et tournent dans l'environnement fluide, ce qui peut constituer une partie relativement importante de la perte de puissance totale du roulement, appelée traînée d'enroulement et pertes de barattage. Pour une vitesse de rotation jusqu'à 3× 106 Ndm, la contribution de la traînée/dérive au total peut atteindre 50%. Cependant, jusqu'à présent, il existe peu d'approches utilisées directement pour l'estimation des pertes par traînage, qui ne pouvait fournir qu'une approximation plutôt grossière. Dans cette thèse, la méthode CFD est utilisée pour analyser d'abord l'écoulement autour d'un cylindre circulaire de longueur finie avec deux extrémités libres dans un espace ouvert. Ensuite, le modèle est remplacé par plusieurs cylindres circulaires en ligne pris en sandwich par deux parois plates, ce qui représente une approche simplifiée. Le fluide est ici considéré comme incompressible, représentant un fluide monophasé équivalent pour l'écoulement diphasique huile/air à l'intérieur de la cavité de palier avec des propriétés de fluide spécifiées. Les résultats indiquent que l'écoulement autour de l'élément de rouleau de longueur finie est perturbé par ses deux extrémités libres, les anneaux environnants, la cage et d'autres éléments roulants. Il est proposé une relation entre le coefficient de traînée et le nombre de Reynolds approprié pour un cylindre circulaire dans les roulements à rouleaux (1<L/D<6), ainsi qu'une formulation pour la prévision des pertes de barattage. L'écoulement diphasique huile/air à l'intérieur de la cavité de palier avec lubrification sous la course est également étudié dans ce travail. Le volume couplé de niveau de fluide (CLS-VOF) est utilisé pour démontrer la distribution du lubrifiant le long de la circonférence du palier. L'effet de divers facteurs est étudié, par ex. la vitesse d'injection d'huile, le diamètre de la buse, les propriétés de l'huile et l'angle d'injection de l'huile. La vitesse de rotation de tous les composants du palier est étudiée en particulier pour quantifier leur influence sur la fraction du volume d'huile à l'intérieur de la cavité du palier. Les résultats démontrent que non seulement la vitesse de rotation relative de l'anneau interne, mais la vitesse de la cage elle-même pourrait changer la distribution d'huile. / In a rotating machinery system like turbine engine, high speed rolling element bearings play an important role in supporting the rotating shaft or rotor, and need lubrication to insure their function. Except a small quantity of oil is needed to form the elastohydrodynamic lubricant film in the contact zone, most of lubricant remains in suspension in air, forming an oil/air mixture. This phenomenon leads to excessive parasitic hydraulic losses when rolling elements translate and rotate into the fluid environment, which may constitute a relatively large portion of the bearing's total power loss, named windage drag and churning losses. For high speed applications, i.e. for rotational speed up to 3× 10^6 Ndm, the contribution of drag/windage loss to the total one may reach up to 50%. However, so far there are few approaches used directly for drag and churning losses estimation, which could only provide a rather gross approximation. In this thesis, the Computational Fluid Dynamics (CFD) method is employed to analyze first the flow around one finite-length circular cylinder with two free ends in an open space. Then the model is changed to several in-line circular cylinders sandwiched by two flat walls, which represents a simplified approach. The fluid here is regarded as incompressible, representing an equivalent one-phase fluid for the oil/air two-phase flow inside the bearing cavity with specified fluid properties. The results indicate that the flow around the finite length roller element is perturbed by its two free ends, the surrounding rings, the cage and other rolling elements. A relationship between the drag coefficient and the Reynolds number suitable for circular cylinder in roller bearings (1<L/D<6) is proposed, as well as a formulation for churning losses prediction. The oil/air two phase flow inside the bearing cavity with under-race lubrication is also studied in this work. The coupled level-set volume of fluid (CLS-VOF) method is employed to demonstrate the lubricant distribution along the bearing circumference. The effect of various factors is studied, e.g. the oil injection velocity, the nozzle diameter, the oil properties, and the oil injecting angle. Rotational speed of all the bearing components are studied particularly to quantify their influence to the oil volume fraction inside the bearing cavity. The results demonstrate that not only the inner-ring relative rotational speed, but the cage speed itself could change the oil distribution. The results can be used for the precise lubrication design to optimate the oil distribution inside the bearing.
|
69 |
Modélisation dynamique basée sur l'approche bond graph d'une boucle fluide diphasique à pompage mécanique avec validation expérimentale / Bond graph based modeling and experimental validation of a two-phase fluid loop mechanically pumpedKebdani, Mohamed 20 September 2016 (has links)
Cette thèse s’inscrit dans le cadre du projet FUI THERMOFLUIDE-RT impliquant des Grands Groupes (Zodiac DS, Safran Hispano, MBDA), des PME (Atmostat, ADR, ControlSys) et cinq laboratoires (CRIStAL, LML Arts et Métiers Paris Tech, LEGI Grenoble, LMT ENS Cachan, CEA-Liten Grenoble). Le but est d’étudier un nouveau système de refroidissement de l’électronique. La technologie retenue est celle d’une boucle fluide diphasique à pompage mécanique (BFDPM). La thèse traite la modélisation dynamique et la validation expérimentale des composants de la boucle. Ceci permet de prévoir l’efficacité du système à partir de ses paramètres d’entrée, d’analyser les problèmes de régimes transitoires, et de proposer un outil de dimensionnement. La méthodologie bond graph est retenue à cause du caractère multi-physique des composants. D’abord, la problématique de base et le contexte sont présentés. Ceci permet d’introduire la solution retenue, celle des BFDPM. Les objectifs de la thèse sont décrits. Ensuite, une description du banc expérimental développé au cours de cette thèse est proposée. Les trois chapitres suivant sont consacrés à l’étude théorique et expérimentale des équipements de la boucle. Chacun de ces chapitres commence par l’état de l’art sur les travaux de modélisation et les corrélations des coefficients d’échange et des pertes de charge. Une seconde partie décrit les phénomènes et les équations. Une troisième partie est réservée à la validation des modèles. Un dernier chapitre récapitule les travaux de couplage des modèles dynamiques validés séparément. En conclusion, un récapitulatif des contributions est effectué. Des perspectives à court et moyen terme sont proposées / This thesis is part of the collaborative project FUI THERMOFLUIDE-RT involving major groups (Zodiac DS, Safran Hispano, and MBDA), SMEs (Atmostat Alcen, ADR, AER, ControlSys) and five laboratories (CRIStAL Ecole Centrale de Lille, LML Arts et Métiers Paris Tech, LEGI Grenoble, LMT ENS Cachan, CEA-Liten Grenoble). The main purpose is to study a new electronic cooling system. The technology chosen consists of a two-phase fluid loop mechanically pumped (TPLMP). The thesis deals with the dynamic modeling and experimental validation of the cooling components. The developed dynamic model allows to predict the efficiency of the cooling loop, to conduct the study of transitional regimes, and provides an original tool dedicated to design the loop components. The bond graph methodology is adopted because of the multi physics character of the studied components. First, the basic issues and the industrial context are presented. This allows to introduce the chosen solution (TPLMP). The objectives of the thesis are described. Then, a description of the rig test is proposed. The following three chapters are devoted to a theoretical and experimental study of the loop equipment. Each chapter begins with a state of the art on modeling and correlations of the heat exchange coefficients and losses. A second part of the chapter describes phenomena and equations. A third part is dedicated to the experimental validation. A final chapter presents the coupling works of dynamic models validated separately. Finally, a summary of all contributions is made. Prospects for future developments in short and medium term are proposed.
|
70 |
PRODUCTION D'HUILES LOURDES PAR DÉPRESSURISATION : ÉTUDE DES INTERFACES HUILE-AIR ET MODÉLISATION DU PROCÉDÉBAUGET, FABRICE 14 October 2002 (has links) (PDF)
La thèse est une contribution expérimentale et théorique à la modélisation d'écoulements de bruts pétroliers produits par dépressurisation du réservoir. Il s'agit de produire l'huile en dessous du point de bulle et de profiter de l'expansion de la phase gaz pour déplacer l'huile (procédé appelé "Solution Gas Drive"). Jusqu'à présent les simulateurs de réservoir permettaient la simulation d'un tel mécanisme pour les huiles légères. Un problème se pose avec les huiles lourdes dont la forte viscosité et la physico-chimie intensifient l'état hors d'équilibre dû au mécanisme de changement de phase. Les simulateurs numériques classiques ne prennent pas en compte ce type de mécanisme hors équilibre, ni l'écoulement du gaz sous forme dispersée. Bien qu'un grand nombre de travaux aient déjà été réalisés essentiellement à l'échelle des pores, l'étude bibliographique montre qu'il est nécessaire d'avoir un modèle décrit par des équations continues (approche de Darcy). L'étude expérimentale des propriétés physico-chimiques (tension dynamique, élasticité de surface) des principaux constituants des bruts montre que les asphaltènes ont un effet tensioactif favorisant la formation de mousse au dessus d'une concentration seuil. Enfin, l'étude théorique des différents processus physiques permet d'établir un modèle d'écoulement continu, ne faisant intervenir que des grandeurs macroscopiques mesurables. La nucléation et le transfert de masse sont modélisés par une fonction volumique de transfert, la nucléation étant basée sur le modèle de bulles préexistantes. Deux phases gaz peuvent coexister : l'une continue à l'échelle du milieu, l'autre dispersée dans l'huile sous forme de bulles. Les simulations de plusieurs expériences, réalisées avec des roches et des fluides différents, montrent que le modèle permet d'interpréter et de prédire les productions de gaz et d'huile.
|
Page generated in 0.0376 seconds