Spelling suggestions: "subject:"elípticos"" "subject:"polípticos""
51 |
Existência de soluções não-negativas para uma classe de problemas semilineares elípticos indefinidos / Existence of nonnegative solutions for a class of indefinite semilinear elliptic problemsCosta, Gustavo Silvestre do Amaral 17 March 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-27T17:45:29Z
No. of bitstreams: 2
Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-28T11:31:51Z (GMT) No. of bitstreams: 2
Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-28T11:31:51Z (GMT). No. of bitstreams: 2
Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we will discuss the existence of nonnegative solutions for a class of
indefinite semilinear elliptic problems:
(Pμ)
− u = λ1u+μg(x,u)+W(x)f(u), em
u = 0 , sobre ∂
,
where
is a bounded smooth domain in RN, N ≥ 3, μ is a nonnegative parameter,
λ1 is the first eigenvalue of the operator − under Dirichlet boundary conditions,
W ∈ C(¯
,R) is a weight function, f ∈ C(R,R), and g : ¯
×R→R is a Carathéodory
locally bounded function, i.e, for every s0 > 0, there is M := M(s0) > 0 such that
|g(x,s)| ≤M for 0 ≤ |s| ≤ s0 and for almost every x ∈ ¯
. / Neste trabalho discutiremos a existência de soluções não negativas para os seguintes
problemas semilineares elípticos indefinidos:
(Pμ)
− u = λ1u+μg(x,u)+W(x)f(u), em
u = 0 , sobre ∂
.
onde
é um domínio limitado suave de RN, N ≥ 3, λ1 é o primeiro autovalor de
− , μ > 0, W ∈ C(¯
,R) e f ∈ C(R,R), g :
×R→R é uma função Carathéodory
localmente limitada, isto é, para todo s0 > 0 existe M(s0) > 0, tal que |g(x,s)| ≤
M(s0), para todo s ∈ [−s0,s0] e q.t.p em ¯
.
|
52 |
Sistemas elípticos de tipo hamiltoniano perto da ressonância / Elliptic systems of Hamiltonian type near resonanceRafael Antonio Rossato 30 October 2014 (has links)
Neste trabalho consideramos sistemas elípticos de tipo hamiltoniano, envolvendo o operador Laplaciano, com uma parte linear dependendo de dois parâmetros e uma perturbação sublinear. Obtemos a existência de pelo menos duas soluções quando a parte linear está perto da ressonância (este fenômeno é chamado de quase ressonância). Mostramos também a existência de uma terceira solução, quando a quase ressonância é em relação ao primeiro autovalor do operador Laplaciano. No caso ressonante obtemos resultados análogos, adicionando mais uma perturbação sublinear. Os sistemas estão associados a funcionais fortemente indefinidos, e as soluções são obtidas através do Teorema de Ponto de Sela e aproximação de Galerkin. / In this work we consider elliptic systems of hamiltonian type, involving the Laplacian operator, a linear part depending on two parameters and a sublinear perturbation. We obtain the existence of at least two solutions when the linear part is near resonance (this phenomenon is called almost-resonance). We also show the existence of a third solution when the almost-resonance is with respect to the first eigenvalue of the Laplacian operator. In the resonant case, we obtain similar results, with an additional sublinear term. These systems are associated with strongly indefinite functionals, and the solutions are obtained by Saddle Point Theorem and Galerkin approximation.
|
53 |
Estudo de uma classe de equações elípticas via métodos variacionais e topológicos / Study of a class of elliptic equations via variational and topological methodsJúlia Silva Silveira Borges 23 April 2012 (has links)
Alguns problemas elípticos assintoticamente lineares são considerados e é provada a existência de solução. Os principais resultados são estabelecidos de dois modos distintos e as provas são baseadas em resultados clássicos da teoria de pontos críticos, a saber: minimização, princípio variacional de Ekeland, grau topológico, teorema do ponto de sela e o teorema do passo da montanha / Some asymptotically linear elliptic problems are considered and solutions are proved to exist. The main results are proved in two different ways. The proofs rely on some classical results in Critical Point Theory such as minimization, Ekeland variational principle, topological degree, saddle point theorem and mountain pass theorem
|
54 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthFreitas, Luciana Roze de 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
55 |
Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos / Estimation methods based on the likelihood function in Elliptical Linear ModelsPérez, Natalia Andrea Milla 14 September 2018 (has links)
O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência. / The aim of this thesis is to study estimation methods based on the likelihood functions in elliptical linear mixed models. First, we review the modified profile maximum likelihood and the restricted maximum likelihood methods as well as the traditional maximum likelihood method in normal linear models. Then, we extend the methodologies for elliptical linear models and we compare the estimating equations derived for each method. The main motivation of the work is that the restricted maximum likelihood method has been largely applied in normal linear mixed models in order to reduce the bias of the maximum likelihood variance-component estimators. So, we intend to investigate the possible extension for elliptical linear mixed models as well as to compare with the modified profile maximum likelihood and the maximum likelihood methods. Particular studies for Student-t and power exponential linear mixed models are presented.
|
56 |
Sistemas elípticos com pesos envolvendo o expoente crítico de Hardy-SobolevRodrigues, Rodrigo da Silva 20 November 2007 (has links)
Made available in DSpace on 2016-06-02T20:27:36Z (GMT). No. of bitstreams: 1
1610.pdf: 953018 bytes, checksum: 71de779ec49ee3cef03c3060c45a97f3 (MD5)
Previous issue date: 2007-11-20 / Financiadora de Estudos e Projetos / In this work, we will study the existence and nonexistence of positive weak solutions
for two classes of elliptic systems with weights. The first class will involve nonlinearities of
the type positone and semipositone. We will prove a strong maximum principle, and we
will obtain some properties of the first eigenfunction of the eigenvalue problem associated
to our operator, and also we will prove the sub and supersolution method. The second
class will involve a nonlinear perturbation. We will use the variational methods to study
the subcritical and critical situations, and under certain hypotheses, we will show the
existence of a second weak solution. / Neste trabalho, estudaremos a existência e inexistência de solução fraca positiva para duas classes de sistemas elípticos com pesos. A primeira classe envolverá não linearidades do tipo positônico e semipositônico. Provaremos um princípio de máximo forte, e obteremos algumas propriedades da primeira autofunção do problema de autovalor associado ao nosso operador, e também provaremos o método de sub e supersolução. A segunda classe que consideraremos terá uma perturbação não linear. Usaremos os métodos variacionais para estudar tanto a situação subcrítica quanto à situação crítica, e sob certas hipóteses, mostraremos a existência de uma segunda solução fraca.
|
57 |
Teoria do Grau e aplicações. / Degree Theory and Applications.ALMEIDA, Orlando Batista de. 10 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-10T17:20:01Z
No. of bitstreams: 1
ORLANDO BATISTA DE ALMEIDA - DISSERTAÇÃO PPGMAT 2006..pdf: 835416 bytes, checksum: ebd7a7b886fc9fa8eddfddb98da9aa05 (MD5) / Made available in DSpace on 2018-07-10T17:20:01Z (GMT). No. of bitstreams: 1
ORLANDO BATISTA DE ALMEIDA - DISSERTAÇÃO PPGMAT 2006..pdf: 835416 bytes, checksum: ebd7a7b886fc9fa8eddfddb98da9aa05 (MD5)
Previous issue date: 2006-05 / Nesta dissertação, seguindo o trabalho do Berestycki [7] e idéias desenvolvidas
por Alves & de Figueiredo [3] e Alves, Corrêa & Gonçalves [4], estudamos
a Teoria do Grau de Brouwer e Leray & Schauder, bem como o Método de
Galerkin para obter solução de alguns problemas elípticos. / In this of dissertation, motivated by work of Berestycki [7] and ideas conceived
byAlves & from Figueiredo [3] andAlves, Corrêa & Gonçalves [4], we styding
the theory of Degree fromBrouwer and Leray & Schauder, well how theMethod
from Galerkin to obtain solution of some ellíptic problems.
|
58 |
Problemas elípticos semilineares com não linearidades do tipo côncavo-convexo / Semilinear elliptic problems with concave-convex nonlinearitiesSousa, Karla Carolina Vicente de 01 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-03T18:04:36Z
No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T10:40:35Z (GMT) No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T10:40:35Z (GMT). No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-01 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we study the existence of positive solutions for the following semilinear
elliptic problem with concave-convex nonlinearities
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
where Ω is a bounded domain in R
N with smooth boundary and 0 < q < 1 < p < 2
∗−1
(where 2∗−1 = +∞, if N = 1 or N = 2 and 2∗−1 = N+2
N−2
, where N ≥ 3). Furthermore,
λ > 0 is a parameter and a,b : Ω → R are continuous functions which are somewhere
positives, however, such functions may change sign in Ω. / Neste trabalho estudaremos a existência de soluções positivas para o seguinte
problema elíptico semilinear com não linearidades do tipo côncavo-conexo
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
onde Ω é uma domínio limitado de R
N , com bordo regular e 0 < q < 1 < p < 2
∗ −1
(onde 2∗ −1 = +∞, se N = 1 ou N = 2 e 2∗ −1 = N+2
N−2
, quando N ≥ 3). Além disso,
λ > 0 é um parâmetro e a,b : Ω → R são funções contínuas que assumem valores
positivos, porém, tais funções podem mudar de sinal em Ω.
|
59 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthLuciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
60 |
Multiplicidade de soluções para uma classe de problemas elípticos de quarta ordem com condição de contorno de Navier / Multiplicity of solutions for a class of fourth-order elliptic problems under Navier conditionsCavalcante, Thiago Rodrigues 27 February 2018 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-03-23T22:13:05Z
No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-26T12:16:44Z (GMT) No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-26T12:16:44Z (GMT). No. of bitstreams: 2
Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the first two chapters, we consider the following problem
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{in}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{on } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
where $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmonic (fourth-order
operator)}}$,
$\alpha > 0$ and $ \beta \in \R.$ The subset $\displaystyle{ \Omega \subset \mathbb{R}^{N}\,
(N \geq 4)}$ is as somooth bounded domain and $\displaystyle{ f \in C(\overline{\Omega}
\times \mathbb{R},\mathbb{R}) }.$ In each of the results obtained, we will consider different
technical hypotheses and characteristics for the nonlinear function $f$ e for the value of the
constant $ \beta. $
In the third chapter, we study an equation of the concave type super linear, of the form:
\begin{equation}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{in}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{on} \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation}
where $\beta \in (-\infty, \alpha \lambda_{1}).$ We consider that the function $a \in L^{\infty}
(\Omega)$ and $s \in (1,2).$
Finally, in the last chapter we will consider a fourth order problem in which nonlinearity is also of
the convex concave type. More precisely, we study the following class of equations:
\begin{equation}
\left\{ \begin{aligned}
\alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\
&\mbox{in}\,\, \Omega \\
u = \Delta u & = 0 & \,\,\,\,&\mbox{on} \,\, \partial \Omega,
\end{aligned}
\right.
\end{equation}
where the parameter $ \mu > 0 $, the powers $ 1 <q <2 <p <2 N / (N - 4) $. In addition we assume
that the functions $ \displaystyle {a, b: \Omega \rightarrow \mathbb {R}}$ are continuous that can
change signal and, $ a ^{+}, b ^{+} \neq 0. $ / Nos dois primeiros Capítulos, consideramos a seguinte classe de problemas:
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{em}\,\, \Omega \\
u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
onde $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmônico},}$
$\alpha > 0$ e $ \beta \in \R.$ O subconjunto $\displaystyle{ \Omega \subset
\mathbb{R}^{N}\,(N \geq 4)}$ será um domínio limitado e a não linearidade $\displaystyle{
f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ Em cada um dos resultados
obtidos, consideraremos hipóteses técnicas e características diferentes para a função não
linear $f$ e para o valor da constante $\beta.$
No terceiro Capítulo, estudamos uma equação do tipo côncavo super linear, da forma:
\begin{equation*}
\left \{
\begin{array}{rcll}
\alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{em}\,\,
\Omega \\
u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega,
\end{array}
\right.
\end{equation*}
onde $\alpha > 0$ e $\beta \in (-\infty, \alpha \lambda_{1})$. Consideramos que a função
$a \in L^{\infty}(\Omega)$ e que $s \in (1,2).$
Por fim, no último Capítulo vamos considerar um problema de quarta ordem no qual a não
linearidade é do tipo côncavo-convexa. Mais precisamente, estudamos a seguinte classe de
equações:
\begin{equation*}
\left\{ \begin{aligned}
\alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\
&\mbox{em}\,\, \Omega \\
u = \Delta u & = 0 & \,\,\,\,&\mbox{sobre} \,\, \partial \Omega,
\end{aligned}
\right.
\end{equation*}
onde o parâmetro $\mu > 0$ e as potências $ 1 < q < 2 < p < 2 N /(N - 4)$. Adicionalmente
supomos que as funções $\displaystyle{a, b : \Omega \rightarrow \mathbb{R} }$ sejam
contínuas podendo trocar de sinal em $\Omega$ e que $a^{+},b^{+} \neq 0.$
|
Page generated in 0.0455 seconds