Spelling suggestions: "subject:"electrolysis"" "subject:"lectrolysis""
181 |
Some of the factors affecting electrolytic formation of chlorates from solvay wasteMiller, William C. January 1942 (has links)
M.S.
|
182 |
Characterization of Electrically Controlled Gel Polymer Electrolyte MonopropellantsAutry, Harrison Ryan 04 May 2023 (has links)
Increasing interest in the development of nontoxic monopropellants for the replacement of hydrazine and its derivatives stems from the desire for safer and thus more cost-effective alternatives. Ionic liquid monopropellants based on the hydroxylammonium nitrate and ammonium dinitramide ionic oxidizer salts have received the majority of attention over the last two decades and present a promising alternative with higher performance and more attractive handling qualities than hydrazine. These monopropellants are employed using catalytic methods which lead to their decomposition and ignition. However, the development of compatible catalysts remains a limiting step in the technological readiness of these alternative monopropellants. Due to their ionic nature, the development of ionic liquid monopropellants has led to many investigations on the utilization of electrolysis to achieve combustion.
Separately, there has been a longtime interest in the use of gelled propellants for enhanced handling and operating safety. Atomization and combustion inefficiencies associated with gels have continued to limit their use. Monopropellants composed of gel polymer electrolytes present a unique opportunity which combines the safety features of gelled propellants as well as the ionic conductivity seen in ionic liquids, allowing them to decompose and ignite electrolytically. In this research, a family of electrically controlled monopropellants that utilize electrolysis in this fashion was developed from a gel polymer electrolyte. Their fundamental properties, including those pertaining to rheology, conductivity, thermal stability, and combustion, are explored as the composition of the oxidizer salt is varied. / Master of Science / Current advancements in rocket propulsion include interests in developing alternative green propellants for use in spacecraft propulsion systems with the hope of replacing current options which may be toxic to handle and present a serious safety hazard. Alternative propellants are generally thought of as not requiring special safety equipment or protocols in their handling, thereby reducing costs. Several promising options belonging to a category of propellants known as ionic liquids have made significant progress in development since the 1990s and have the potential to be used alongside a novel electrical combustion method known as electrolysis. Gelled propellants are another possible alternative which have been researched for their appealing safety qualities for some time.
While not researched for their use as rocket propellants until very recently, gel polymer electrolytes have received interest in this application due to their composition which includes a polymer, commonly used as rocket fuel, and an oxidizer salt. Due to their inherent electrical conductivity, their potential to use electrolysis in a similar manner to ionic liquids to achieve combustion is of interest. The research detailed in this thesis was completed to characterize fundamental material and combustion properties of a gel polymer electrolyte propellant as its oxidizer constituents are varied.
|
183 |
Formation and electrolysis of disubstituted alkali-metal amidesKorn, Gerhard Gunter 26 April 2010 (has links)
The purpose of this investigation was to determine the products of the electrolysis of dimethyl lithium amide. / Master of Science
|
184 |
In-situ activated hydrogen evolution from pH-neutral electrolytesGustavsson, John January 2012 (has links)
The goal of this work was to better understand how molybdate and trivalent cations can be used as additives to pH neutral electrolytes to activate the Hydrogen Evolution Reaction (HER). Special emphasis was laid on the chlorate process and therefore also to some of the other effects that the additives may have in that particular process. Cathode films formed from the molybdate and trivalent cations have been investigated with electrochemical and surface analytical methods such as polarization curves, potential sweep, Electrochemical Impedance Spectroscopy (EIS), current efficiency measurements, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma (ICP) analysis. Trivalent cations and molybdate both activate the HER, although in different ways. Ligand water bound to the trivalent cations replaces water as reactant in the HER. Since the ligand water has a lower pKa than free water, it is more easily electrochemically deprotonated than free water and thus catalyzes the HER. Sodium molybdate, on the other hand, is electrochemically reduced on the cathode and form films which catalyze the HER (on cathode materials with poor activity for HER). Molybdate forms films of molybdenum oxides on the electrode surface, while trivalent cation additions form hydroxide films. There is a risk for both types of films that their ohmic resistance increases and the activity of the HER decreases during their growth. Lab-scale experiments show that for films formed from molybdate, these negative effects become less pronounced when the molybdate concentration is reduced. Both types of films can also increase the selectivity of the HER by hindering unwanted side reactions, but none of them as efficiently as the toxic additive Cr(VI) used today in the chlorate process. Trivalent cations are not soluble in chlorate electrolyte and thus not suitable for the chlorate process, whereas molybdate, over a wide pH range, can activate the HER on catalytically poor cathode materials such as titanium. / Målsättningen med detta doktorsarbete har varit att bättre förstå hur trivalenta katjoner och molybdat lösta i elektrolyten kan effektivisera elektrokemisk vätgasproduktion. Tillämpningen av dessa tillsatser i kloratprocessen och eventuella sidoeffekter har undersökts. De filmer som bildas på katoden av tillsatserna har undersökts med både elektrokemiska och fysikaliska ytanalysmetoder: polarisationskurvor, potentialsvep, elektrokemisk impedansspektroskopi (EIS), strömutbytesmätningar, svepelektronmikroskopi (SEM), energidispersiv röntgenspektroskopi (EDS), röntgenfotoelektronspektroskopi (XPS), röntgenfluorensens (XRF) och induktivt kopplat plasma (ICP). Både trivalenta katjoner och molybdat kan aktivera elektrokemisk vätgasutveckling, men på olika sätt. Vatten bundet till trivalenta katjoner ersätter fritt vatten som reaktant vid vätgasutveckling. Eftersom vatten bundet till trivalenta katjoner har lägre pKa-värde, går det lättare att producera vätgas från dessa komplex än från fritt vatten. Natriummolybdat däremot reduceras på katoden och bildar filmer som kan katalysera vätgasutvecklingen på substratmaterial som har låg katalytisk aktivitet för reaktionen. Molybdat bildar molybdenoxider på ytan medan trivalenta katjoner bildar metallhydroxider. Båda typerna av film riskerar att bilda filmer som är resistiva och deaktiverar vätgasutvecklingen. Laboratorieexperiment visar att problemen minskar med minskad molybdathalt. Båda filmerna kan öka selektiviteten för vätgasutveckling genom att hindra sidoreaktioner. Filmerna är dock inte lika effektiva som de filmer som bildas från den ohälsosamma tillsatsen Cr(VI), vilken används i kloratprocessen idag. Trivalenta katjoner är inte lösliga i kloratelektrolyt och är därför inte en lämplig tillsats i kloratprocessen. Molybdat har god löslighet och kan aktivera vätgasutveckling i ett stort pH‑intervall på titan och andra substratmaterial som själva har betydlig sämre aktivitet för vätgasutveckling. / <p>QC 20120530</p> / c6839
|
185 |
Solid Oxide Cell Constriction Resistance EffectsNelson, George Joseph 12 April 2006 (has links)
Solid oxide cells are best known in the energy sector as novel power generation devices through solid oxide fuel cells (SOFCs), which enable the direct conversion of chemical energy to electrical energy and result in high efficiency power generation. However, solid oxide electrolysis cells (SOECs) are receiving increased attention as a hydrogen production technology through high temperature electrolysis applications. The development of higher fidelity methods for modeling transport phenomena within solid oxide cells is necessary for the advancement of these key technologies. The proposed thesis analyzes the increased transport path lengths caused by constriction resistance effects in prevalent solid oxide cell designs. Such effects are so named because they arise from reductions in active transport area.
Constriction resistance effects of SOFC geometry on continuum level mass and electronic transport through SOFC anodes are simulated. These effects are explored via analytic solutions of the Laplace equation with model verification achieved by computational methods such as finite element analysis (FEA). Parametric studies of cell geometry and fuel stream composition are performed based upon the models developed. These studies reveal a competition of losses present between mass and electronic transport losses and demonstrate the benefits of smaller SOFC unit cell geometry. Furthermore, the models developed for SOFC transport phenomena are applied toward the analysis of SOECs. The resulting parametric studies demonstrate that geometric configurations that demonstrate enhanced performance within SOFC operation also demonstrate enhanced performance within SOEC operation.
Secondarily, the electrochemical degradation of SOFCs is explored with respect to delamination cracking phenomena about and within the critical electrolyte-anode interface. For thin electrolytes, constriction resistance effects may lead to the loss of electro-active area at both anode-electrolyte and cathode-electrolyte interfaces. This effect (referred to as masking) results in regions of unutilized electrolyte cross-sectional area, which can be a critical performance hindrance. Again analytic and computational means are employed in analyzing such degradation issues.
|
186 |
Étude de l'effet de la pression sur l'électrolyse de H2O et la co-électrolyse de H2O et CO2 à haute température / Study of the effect of pressure on electrolysis of H2O and co-electrolysis of H2O and CO2 at high temperatureBernadet, Lucile 28 November 2016 (has links)
Ces travaux de thèse portent sur l’étude du comportement sous pression d’une cellule à oxydes solides fonctionnant à haute température en mode électrolyse de H2O et en mode co-électrolyse de H2O et CO2. Une étude expérimentale sur mono-cellule associée au développement de modèles multi-physiques a été mise en place. Les essais, réalisés à partir d’une installation unique présente au CEA-Grenoble, sur deux types de cellules entre 1 et 10 bar et de 700 à 800 °C, ont permis d’identifier dans les deux modes de fonctionnement, que la pression a un effet positif ou négatif sur les performances selon le point de fonctionnement (courant, tension) de la cellule. De plus, des analyses de gaz conduites en mode co-électrolyse ont permis de détecter une production de CH4 in-situ sous pression. Ces effets de la pression ont été correctement simulés par les modèles calibrés à pression atmosphérique. L’analyse des simulations a ensuite permis l’identification des mécanismes impactés par la pression et la proposition de conditions opératoires de fonctionnement grâce à l’établissement de cartographies de fonctionnement. / This thesis work investigates the behavior of a solid oxide cell operating under pressure in high temperature steam electrolysis and co-electrolysis mode (H2O and CO2). The experimental study of single cell associated with the development of multi-physical models have been set up. The experiments, carried out using an original test bench developed by the CEA-Grenoble on two types of cells between 1 and 10 bar and 700 to 800 °C, allowed to identify in both operating modes that the pressure has a positive or negative effect on performance depending on the cell operating point (current, voltage). In addition, gas analyzes performed in co-electrolysis led to detect in situ CH4 production under pressure. These pressure effects were simulated by models calibrated at atmospheric pressure. Simulations analysis helped identify the pressure dependent mechanisms and propose operating conditions thanks to the establishment of operating maps.
|
187 |
A Mechanical Development of a Dry Cell to Obtain HHO from Water ElectrolysisSalazar, Gustavo, Solis, Wilmer, Vinces, Leonardo 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / This article proposes a mechanical development of a dry cell in order to obtain HHO through water electrolysis. Calculations and technical specifications of the materials used for implementation are supported by mathematical, physical and chemical formulas and theories (Faraday´s Law, electrolysis process and mechanical design). The importance of mechanical design is focused on achieving efficient use of the energy provided to the cell that allows the H2 and O2 molecules to be separated without overheating the cell, evaporating the water, loss of current due to the geometry of the electrodes (Foucault Current). Moreover, choosing materials for proper implementation and physical robustness is mandatory. In addition, the mechanical design is not justified in different articles. Nevertheless, the mechanical design of the cell and the efficiency in the production of HHO are related. Therefore, the mechanical design and the calculations were performed, as well as the construction of the dry cell to obtain HHO. The results of the implementation and production were placed and compared with what theoretically the dry cell should produce from the law of Faraday. Finally, the volumetric flow of HHO obtained was 2.70 L per minute. It means a production efficiency of 98.68%. It is higher than the majority of the dry cells. / Revisión por pares
|
188 |
Vers le développement d’électrocatalyseurs de dégagement d’oxygène actifs et stables / Towards the development of stable and active oxygen generating electrocatalystsClaudel, Fabien 15 October 2019 (has links)
Cette thèse porte sur l’étude et le développement d’électrocatalyseurs à base d’iridium pour la réaction de dégagement de dioxygène (OER) dans les électrolyseurs à membrane échangeuse de protons. En raison de la dégradation marquée des électrocatalyseurs en conditions OER, nous nous sommes particulièrement intéressés à la recherche d’un compromis optimal entre activité catalytique et stabilité. Différents électrocatalyseurs (supportés sur noir de carbone, supportés sur oxydes métalliques dopés et non-supportés) ont été synthétisés et caractérisés par des méthodes électrochimiques et physico-chimiques, notamment par spectroscopie photoélectronique X, microscopie électronique en transmission à localisation identique et spectrométrie de masse à plasma à couplage inductif. Les électrocatalyseurs supportés sont les moins stables en conditions OER, notamment du fait de l’agglomération, la coalescence, la dissolution et le détachement des nanoparticules d’oxyde d’iridium. Ces deux derniers mécanismes de dégradation sont exacerbés par la corrosion des supports carbonés et la dissolution des éléments composant les supports oxydes métalliques dopés. Les électrocatalyseurs non-supportés offrent ainsi le meilleur compromis entre activité et stabilité. Les degrés d’oxydation Ir(III) et Ir(V) ont été identifiés comme les plus actifs pour l’OER en électrolyte acide tandis que l’oxyde Ir(IV) est le plus stable, l’espèce la moins stable étant l’iridium métallique Ir(0). La dégradation des couches catalytiques en cellule d’électrolyse PEM ne semble impacter que très peu les performances globales d’électrolyse par rapport à la dégradation des collecteurs de courant. / This thesis focuses on the study and the development of iridium-based electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers. This work investigates in particular electrocatalyst degradation phenomena and aims at reaching an optimal OER activity-stability ratio. Various electrocatalysts (supported on high-surface area carbon, supported on doped-metal oxides and unsupported) have been synthetized and characterized by electrochemical and physico-chemical methods such as X-ray photoelectron spectroscopy, identical-location transmission electron microscopy and inductively coupled plasma mass spectrometry. Supported electrocatalysts feature stability limitations in OER conditions as revealed by agglomeration, coalescence, dissolution, and detachment of iridium oxide nanoparticles, these last two degradation mechanisms being amplified by corrosion of the carbon supports and dissolution of the elements composing the doped metal oxide supports. Unsupported electrocatalysts currently represent the best compromise between OER activity and stability. Ir(III) and Ir(V) oxides were shown to be the most active towards the OER while Ir(IV) oxide is the most stable, the least stable species being metallic iridium Ir(0). In real PEM water electrolyzers, the global electrolysis performance seems to be less impacted by the degradation of catalytic layers than the degradation of current collectors.
|
189 |
The development of alternative cathodes for high temperature solid oxide electrolysis cellsYue, Xiangling January 2013 (has links)
This study mainly explores the development of alternative cathode materials for the electrochemical reduction of CO₂ by high temperature solid oxide electrolysis cells (HTSOECs), which operate in the reverse manner of solid oxide fuel cells (SOFCs). The conventional Ni-yttria stabilized zirconia (YSZ) cermets cathode suffered from coke formation, whereas the perovskite-type (La, Sr)(Cr, Mn)O₃ (LSCM) oxide material displayed excellent carbon resistance. Initial CO₂ electrolysis performance tests from different cathode materials prepared by screen-printing showed that LSCM based cathode performed poorer than Ni-YSZ cermets, due to non-optimized microstructure. Efforts were made on microstructure modification of LSCM based cathodes by means of various fabrication methods. Among the LSCM/YSZ graded cathode, extra catalyst (including Pd, Ni, CeO₂, and Pt) aided LSCM/GDC (Gd₀.₁Ce₀.₉O₁.₉₅) cathode, LSCM impregnated YSZ cathode, and GDC impregnated LSCM cathode, the GDC impregnated LSCM cathode, with porous LSCM as backbone for finely dispersed GDC nanoparticles, was found to possess the desired microstructure for CO₂ splitting reaction via SOEC. Incorporating of 0.5wt% Pd into GDC impregnated LSCM cathode gave rise to an Rp of 0.24 Ω cm² at open circuit voltage (OCV) at 900°C in CO₂-CO 70-30 mixture, comparable with the Ni/YSZ cermet cathode operated in the identical conditions. Meanwhile, the cathode kinetics and possible mechanisms of the electrochemical reduction of CO₂ were studied, and factors including CO₂/CO composition, operation temperature and potential were taken into account. The current-to-chemical efficiency of CO₂ electrolysis was evaluated with gas chromatography (GC). The high performance Pd and GDC co-impregnated LSCM cathode was also applied for CO₂ electrolysis without protective CO gas in feed. This cathode also displayed superb performance towards CO₂ electrochemical reduction under SOEC operation condition in CO₂/N₂ mixtures, though it had OCV as low as 0.12V at 900°C. The LSCM/GDC set of SOEC cathode materials were investigated in the application of steam electrolysis and H₂O-CO₂ co-electrolysis as well. For the former, adequate supply of steam was essential to avoid the appearance of S-shaped I-V curves and limited steam transport. The 0.5wt% Pd and GDC co-infiltrated LSCM material has been found to be a versatile cathode with high performance and good durability in SOEC operations.
|
190 |
Solid oxide steam electrolysis for high temperature hydrogen productionEccleston, Kelcey L. January 2007 (has links)
This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel cells (SOFC), so many of the same component materials may be used. However, other electrode materials are of interest to improve performance and efficiency. In this work anode materials were investigated for use in solid oxide electrolysers. Perovskite materials of the form L₁₋xSrxMO₃ , where M is Mn, Co, or Fe. LSM is a well understood electrode material for the SOFC. Under electrolysis operation LSM performed well and no interface reactions were observed between the anode and YSZ electrolyte. LSM has a relatively low conductivity and the electrode reaction is limited to the triple phase boundary regions. Mixed ionic-electronic conductors of LSCo and LSF were investigated, with these materials the anode reaction is not limited to triple phase boundaries. The LSCo anode had adherence problems in the electrolysis cells due to the thermal expansion coefficient mismatch with the YSZ electrolyte. The LSCo reacted with the YSZ at the anode/electrolyte interface forming insulating zirconate phases. Due to these issues the LSCo anode cells performed the poorest of the three. The performance of electrolysis cells with LSF anode exceeded both LSM and LSCo, particularly under steam operation, although an interface reaction between the LSF anode and YSZ electrolyte was observed. In addition to the anode material studies this work included the development of solid oxide electrolyser tubes from tape cast precursor materials. Tape casting is a cheap processing method, which allows for co-firing of all ceramic components. The design development resulted in a solid design, which can be fabricated reliably, and balances strength with performance. The design used LSM anode, YSZ electrolyte, and Ni-YSZ cathode materials but could easily be adapted for the use of other component materials. Proper sintering rates, cathode tape formulation, tube length, tape thickness, and electrolyte thickness were factors explored in this work to improve the electrolyser tubes.
|
Page generated in 0.0559 seconds