Spelling suggestions: "subject:"electronbeam"" "subject:"electronelectron""
171 |
Svařování Ti 6Al 4V elektronovým svazkem / Electron beam welding of Ti 6Al 4VSkalka, Jan January 2016 (has links)
The thesis is dedicated to welding combination of titanium alloy Ti-6Al-4V and austenitic steels 1.4301 by electron beam. Based on literature studies of bonding titanium and its alloys with steels, it was proposed to select for welding interlayer of copper, which could limit the impact of intermetallic phases on the mechanical properties of the weld seam and enable the creation of weld. For welding the pipe samples were used three methods of welding with various welding parameters. Samples which remain after thermal cycling vacuum-tight, were then further analyzed (micro-hardness, tensile test, etc.).
|
172 |
Elektronenstrahlmodifizierung von diamantähnlichen Kohlenstoffschichten zur biofunktionalen Beschichtung von ImplantatmaterialienGotzmann, Gaby 16 January 2018 (has links)
Die vorliegende Arbeit befasst sich mit der Modifizierung von Beschichtungen auf Basis von diamantähnlichem Kohlenstoff (DLC). Die Modifizierung erfolgte mittels Elektronenstrahl (eBeam) und sollte der Oberflächenfunktionalisierung durch die Steuerung der Zelladhäsion dienen. Das Anwendungsfeld der modifizierten DLC-Schichten findet sich im biomedizinischen Bereich. Als Anwendungsbeispiel wurden Aktoren aus Formgedächtnislegierung (FGL) herangezogen. Diese sollen in Hüftendoprothesen genutzt werden. Ihre Aufgabe ist es, bei Implantatlockerung eine Wiederverankerung im Knochen, ohne äußeren Eingriff zu ermöglichen. Die Aktoren stellen an eine Beschichtung besondere Herausforderungen hinsichtlich Schichtstabilität und -flexibilität, Zelladhäsion sowie Barrierefunktion. Im Folgenden werden die untersuchten Schwerpunkte mit Bezug auf dieses Anwendungsbeispiel zusammenfassend dargestellt.
Im ersten Abschnitt der vorliegenden Arbeit wurden vier Abscheidemethoden für DLC-Beschichtungen verglichen: die plasmaaktivierte chemische Gasphasenabscheidung (PA CVD), das Magnetronsputtern (PVD-Spu), und die Lichtbogenverdampfung ungefiltert und -gefiltert (PVD-Arc bzw. PVD-Arcfil). Aus diesen Abscheidemethoden sollte eine für das medizintechnische Einsatzgebiet geeignete Methode zur DLC-Abscheidung ausgewählt werden. Dafür wurden folgende Kriterien untersucht: Schichtmorphologie und stabilität, Biokompatibilität und die Möglichkeit zur Modifizierung mittels eBeam. Es zeigte sich, dass mittels Magnetronsputtern homogene DLC-Schichten abgeschieden werden können. Diese Beschichtungen zeigen im Vergleich zu den Beschichtungen der anderen Abscheideverfahren die beste Biokompatibilität. Die Modifizierung der Schichten mittels eBeam ermöglicht eine gezielte Verringerung der Zelladhäsion auf den Oberflächen, ohne zelltoxische Nebenwirkungen. Mit diesem Resultat wird die ausgewählte Beschichtung den Funktionsansprüchen des Anwendungsbeispiels gerecht. Als Anwendungsbeispiel wurden Aktoren einer intelligenten Hüftendoprothese herangezogen. Die Aktoren bestehen aus FGL-Material und sollen im Anwendungsfall eine intrakorporale Verformung durchführen. Die DLC-Beschichtung soll den Austritt von toxischen Nickelionen aus diesem Material verringern. Daher ist die Stabilität der DLC-Schichten auf den Aktoren für den zielgerechten Einsatz von grundlegender Bedeutung. Die Formflexibilität von DLC-Schichten ist aus der Literatur bekannt, womit sie eine geeignete Barrierebeschichtung für verformbare Bauteile darstellen, ohne dabei die Funktion des Substratmaterials zu beeinträchtigen. Grundlage für diese Formflexibilität stellen eine gute Schichthaftung und Langzeitstabilität dar. Auch an dieser Stelle zeigten die mittels Magnetronsputtern abgeschiedenen DLC-Schichten sehr gute Ergebnisse. Selbst die Beanspruchung durch wiederholte Desinfektion und Sterilisation führte bei dieser Beschichtung zu keiner Veränderung. Im Anwendungsbeispiel Hüftendoprothese kann es an der Implantat-Knochen-Schnittstelle zu Mikrobewegungen kommen. Durch die im Vergleich zu den anderen Beschichtungen sehr guten Ergebnisse der PVD-Spu-Schichten bei der tribologischen Charakterisierung, stellen diese Schichten eine für das Anwendungsbeispiel geeignete Beschichtung dar. Ein geringer Reibwert gewährleistet dabei eine ungestörte Gewebsintegration. Das Magnetronsputtern wurde basierend auf diesen Ergebnissen als geeignete Abscheidemethode für die DLC-Beschichtung von Implantatmaterialien ausgewählt.
Im zweiten Abschnitt der Arbeit wurden die Modifizierung der Beschichtung, die Reaktion im biologischen Kontakt und die Barrierefunktion der Schichten bewertet. Durch die eBeam-Modifizierung der DLC-Beschichtung wird eine Hydrophilierung erzielt, die mit einer signifikanten Verringerung der Zellzahl auf der Oberfläche verbunden ist. Nach Beurteilung der Schichtmorphologie von unbehandelten und modifizierten DLC-Oberflächen konnte ausgeschlossen werden, dass die Hydrophilierung auf Veränderungen der Oberflächenmorphologie zurück zu führen ist. Vielmehr wurden chemisch-energetische Veränderungen als Ursache identifiziert, wobei die indirekte eBeam-Wirkung während der Modifizierung zum Tragen kommt. Die Intensität der Hydrophilierung ist dosisabhängig und zeigt eine Art Sättigungsverhalten ab 500 kGy. Es konnte gezeigt werden, dass durch die Modifizierung der Anteil stickstoff- und sauerstoffhaltiger Funktionalitäten auf der DLC-Oberfläche zunimmt. Die Verringerung der Zellzahl, welche ebenfalls eine Art Sättigung bei 500 kGy zeigt, steht über die Proteinadhäsion mit diesen Veränderungen in direktem Zusammenhang. In Korrelation mit der Literatur scheint es durch die Zunahme der sauerstoffhaltigen Funktionalitäten zu einer veränderten Proteinadhäsion zu kommen. Dabei wird die Proteinkonformation verändert, was die anschließende Zelladhäsion verringert. Mittels eBeam können sehr feine Strukturen bis in den Mikrometerbereich modifiziert werden, was bedeutet, dass damit die Zelladhäsion in den aneinander angrenzenden Bereichen des Aktors gezielt eingestellt werden kann. Damit wird die DLC-Beschichtung mit dieser Modifizierung den Funktionsansprüchen des Aktorbauteiles gerecht. Die Analyse der Langzeitstabilität zeigte, dass die Modifizierung sowohl an Luft als auch in phosphatgepufferter Salzlösung (PBS) über einen Zeitraum von mindestens zwei Monaten stabil ist. Somit kann für das Anwendungsbeispiel die Modifizierung bereits langfristig vor dem Einsatz eines Implantates erfolgen. Bisher wurden derartige Modifizierungen hauptsächlich mittels Plasmabehandlung durchgeführt. Im Gegensatz zur vorliegenden Arbeit können damit jedoch keine zeitlich stabilen Effekte erzielt werden. Weitere Nachteile der Plasmamethoden ergeben sich durch Materialveränderungen und verhältnismäßig lange Prozesszeiten. Weiterhin wird laut Literatur bei der Plasmabehandlung von DLC-Oberflächen eine Steigerung der Zelladhäsion erzielt. In der vorliegenden Arbeit besteht das Ziel jedoch in der Verringerung der Zelladhäsion, wodurch sich auch unter diesem Aspekt die eBeam-Modifizierung gegenüber der Plasmamodifizierung als vorteilhaft erweist.
Zusätzlich wurde neben der Langzeitstabilität für die eBeam-modifizierten DLC-Beschichtungen auch eine Stabilität gegenüber chemisch-mechanischer Reinigung mit anschließender Dampfsterilisation belegt. Da jedoch die FGL-Aktoren im Anwendungsbeispiel durch thermischen Energieeintrag aktiviert werden, könnte die herkömmliche Anwendung der Dampfsterilisation ein Problem darstellen. Auch dafür bietet die eBeam-Behandlung als alternative Sterilisationsmethode einen Lösungsansatz. Mit einer Sterilisationsdosis von lediglich 25 kGy ist die Anwendung des eBeams sowohl zur Sterilisation von unbehandelten als auch modifizierten DLC-Oberflächen möglich, ohne deren Eigenschaften oder die des beschichteten Substrates zu beeinflussen. Die eBeam-Modifizierung der DLC-Oberflächen bietet basierend auf den vorliegenden Ergebnissen eine Möglichkeit zur Steuerung der Zelladhäsion, da in den modifizierten Bereichen eine signifikante Verringerung der Zellzahl erzielt wird. Eine Verringerung der Zellzahl ist für die beweglichen Bereiche der FGL-Aktoren besonders wichtig, um deren Funktion zu gewährleisten (s. Abbildung 1). Für die modifizierten Schichten werden dabei keine Beeinträchtigung der Zellvitalität oder Veränderungen der Phasen des Zellzyklus festgestellt. Weiterhin ist belegt, dass von diesen Beschichtungen kein erhöhtes Entzündungspotential ausgeht, was den uneingeschränkten Einsatz der modifizierten DLC-Beschichtungen im biomedizinischen Bereich ermöglicht. Die unbehandelten DLC-Oberflächen hingegen sollen im Anwendungsbeispiel eine schnelle Implantatintegration gewährleisten. Auch diesem Anspruch wird die Beschichtung gerecht, da die osteogene Differenzierung humaner mesenchymaler Stammzellen auf diesen Oberflächen uneingeschränkt verläuft. Die Analyse des Calciumgehaltes als späten Differenzierungsmarker lässt sogar auf einen stimulierenden Effekt durch die Schichten schließen. Folglich kann für den Anwendungsfall der Hüftendoprothese eine beschleunigte Osseointegration erwartet werden. Die größte Herausforderung für die DLC-Beschichtungen bestand in der Verringerung des Nickelaustrittes aus dem FGL-Material. Die Ergebnisse der Extraktionsversuche belegen, dass aus unbeschichteten FGL Nickelionen austreten und die Stoffwechselaktivität von Osteoblasten beeinflussen. Auf DLC-beschichteten Proben hingegen kann kein messbarer Austritt von Nickelionen festgestellt werden. Im Direktkontakt mit humanen Osteoblasten zeigt sich auf den unbeschichteten FGL eine unnatürliche Zellmorphologie, was auf den Nickelaustritt zurückgeführt werden kann. Dahingegen erscheinen die Zellen auf den DLC-beschichteten Oberflächen in vitaler Morphologie. Diese Ergebnisse demonstrieren die Wirksamkeit der DLC-Beschichtung als Barriere gegenüber dem Austritt von Nickelionen.
Zusammenfassend wird festgestellt, dass das Magnetronsputtern die Abscheidung von DLC-Schichten ermöglicht, die dem Anwendungsbeispiel Hüftendoprothese mit FGL-Aktor sowohl hinsichtlich Barrierefunktion als auch Biokompatibilität gerecht werden. Die Modifizierung mittels eBeam gewährleistet dabei die gezielte Steuerung der Zellzahl, wodurch die DLC-Beschichtungen auch die biofunktionalen Ansprüche des Anwendungsbeispiels bedienen. DLC-Beschichtungen weisen aufgrund ihrer großen Variabilität hinsichtlich Materialeigenschaften und der sehr guten Biokompatibilität ein breites Spektrum für biomedizinische Anwendungen auf. Die eBeam-Modifizierung der Beschichtungen eröffnet aufgrund ihrer Langzeitstabilität darüber hinaus weitere Einsatzfelder. Vor allem die Option einer partiellen Oberflächenmodifizierung ermöglicht es, variierenden Funktionsansprüchen zahlreicher Anwendungen gerecht zu werden und die im Rahmen der vorliegenden Arbeit gewonnen Erkenntnisse auf weitere Einsatzfelder zu übertragen.
|
173 |
Diffusive transport of adsorbed n-alkanes along e-beam irradiated plane surfaces and nanopillarsZhdanov, Gleb S., Lozhkin, Maksim S. 13 September 2018 (has links)
Diffusion of adsorbed n-alkanes was studied by means of electron beam induced deposition
(EBID) technique. Carbon ring-like and pillar-like deposits were produced on bulk and thin
substrates in a scanning electron microscope (SEM) operated in a “spot” mode. Residual nalkanes
used as a precursor gas were delivered to the beam interaction region (BIR) via surface
diffusion.
The model of adsorbate diffusion along a heterogeneous surface with different diffusion
coefficients D1 and D2 outside and inside the BIR, respectively, was proposed to explain the
measured deposition rates. The estimates for diffusion coefficients ranging from ~1x10-10 to
~1x10-7 cm2s-1 at room temperature on surfaces with different roughness were obtained. These
estimates most likely should be attributed to n-decane molecules expected to play the key role in
the deposition process. Clusters of polymerized molecules produced by irradiation were assumed
to act as effective traps hampering surface diffusion. For high D1/D2 ratios the deposition rates
were found to be practically independent of the substrate material and initial roughness.
|
174 |
Shaped Charge Design : Construction of a Miniaturized Shaped Charge / RSV-design : Konstruktion av en miniatyriserad RSV-laddningGustafsson, Andreas January 2021 (has links)
The shaped charges on the market today ranges from about 20 to 200 mm in diameter but there is a need of smaller sizes for example in applications where a small projectile with a high speed is needed or to equip or take out drones with. The objective of this thesis work was to develop a miniaturized shaped charge with dimensions smaller than those available today and preferably with a diameter down to 10 mm. The project was conducted at Karlstad University in collaboration with Saab Dynamics AB. The process used during this project was to start with a feasibility study to obtain information about the limits on dimensions in order to investigate how small dimensions can be used for the casing and liner with respect to manufacturability. The feasibility study was conducted by studying academic literature, contacting companies with expertise within the field of manufacturing. A previously used shaped charge was used as a starting point and the dimensions was scaled in accordance with the objective. The influence of the design parameters was examined using the γSPH module in IMPETUS Afea. The liner material used was restricted to oxygen-free high thermal conductivity copper and different materials for the casing was tested. Two material selections for the casing were made with the aid of Granta Edupack. It has been concluded that it is possible to manufacture a miniaturized shaped charge with dimensions down to about ten mm. Both a design for a jet forming shaped charge and an explosively formed penetrator was developed during the project. The resulting projectile for the explosively formed penetrator had a velocity of 2450 m/s, a total length of 7.3 mm and 3.5 mm in diameter, and the jet forming shaped charge had a jet tip velocity of 7060 m/s and was able to penetrate 38-mm into an AISI 4340 steel target according to the models used in IMPETUS Afea. A prototype was planned but due to cost restrictions, it is left as future work. / Riktad sprängverkan (RSV)-laddningarna som finns på marknaden idag sträcker sig från ungefär 20 till 200 mm i diameter. Det finns dock ett behov för storlekar mindre än detta, till exempel i tillämpningar där en liten projektil med hög fart krävs, alternativt att utrusta eller sänka drönare med. Målet med detta examensarbete var att utveckla en miniatyriserad RSV-laddning med dimensioner mindre än vad som finns tillgängligt idag och helst med en diameter neråt tio mm. Projektet utfördes på Karlstads universitet i samarbete med Saab Dynamics AB. Processen som användes under detta projekt gick ut på att börja med en förstudie for att erhålla information om gränserna för mått för att undersöka hur små dimensioner som kan användas för höljet och linern med avseende på tillverkningsbarhet. Förstudien genomfördes genom att studera akademisk litteratur och kontakta företag med expertis inom tillverkningsområdet. En tidigare använd RSV-laddning användes som startpunkt och dimensionerna justerades i enlighet med målet. Påverkan av parametrar på prestanda undersöktes genom att använda γSPH modulen i IMPETUS Afea. Det använda materialet för linern begränsades till OFHC koppar och olika material för höljet testades. Två materialval gjordes för höljet med hjälp av Granta Edupack. Slutsatsen som kan dras utifrån arbetet är att det är möjligt att tillverka miniatyriserade RSV-laddningar med dimensioner neråt tio mm. Både en design för en strålbildande RSV-laddning och en projektilbildande RSV-laddning utvecklades under projektet. Den resulterande projektilen för den projektilbilande RSV-laddningen hade en fart på 2450 m/s, en längd av totalt 7.3 mm och 3.5 mm i diameter och den strålbildande RSV-laddningen hade en spetsfart på 7060 km/s och kunde penetrera 38 mm AISI 4340 stål enligt modellen som användes i IMPETUS Afea. En prototyp planerades men på grund av kostnadsrestriktioner lämnades det som framtida arbete.
|
175 |
Mikroobrábění nekovových materiálů elektronovým svazkem / Electron Beam Micromachining of Nonmetalic MaterialsDupák, Libor January 2013 (has links)
The thesis deals with electron beam micromachining of nonmetallic materials like glass, ceramics and plastics. A brief description of the device on which the experiments were carried out is included; the author has participated on its development. Main topic is experimental study of influence of main electron beam parameters on results of machining. Examined parameters include accelerating voltage, beam current, focusing and speed of machining. Influence of beam deflection is analyzed. Method of sequential machining by repeated passes of the electron beam is presented. Main examined materials are quartz glass, alumina and selected plastics. The usefulness of the technology is shown by several practical applications.
|
176 |
Emission Mechanisms in Al-rich AlGaN Quantum Wells toward Deep Ultraviolet Light Emitters by Electron Beam Pumping / 電子線励起深紫外発光素子に向けた高Al組成AlGaN量子井戸の発光機構に関する研究Oto, Takao 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18229号 / 工博第3821号 / 新制||工||1585(附属図書館) / 31087 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 川上 養一, 教授 北野 正雄, 教授 木本 恒暢 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
177 |
Electron-beam assisted synthesis and application of a collagen-elastin composite network: from biomimetic crosslinking to thermoactuationWilharm, Nils 30 June 2023 (has links)
No description available.
|
178 |
Development of a Data Transformation Method for a Customized Stent usingAdditive ManufacturingTepe, Julius January 2018 (has links)
Conventionally manufactured stents are available in uniform sizes and straight forms. These standard products are not suitable for all patients and research indicates that this is the reason for migration of stents in the vessel, and tubular structure in general, after deployment. The occurrence of migration makes readmission into hospital and the removal of the deployed stent necessary. This thesis develops a method which results in patient-customized stents which can be manufactured through additive manufacturing. These individualized stents intent to offer the same advantages of conventional stents while mitigating the disadvantages. The work’s core part is thedesign of a stent based on the geometric information through a medical scan. It converts the relevant areas from the medical scan data which is in the DICOM format to the STL file format. After cleaning and further processing, the shape will be the base for the design process of a stent using CAD software. Additionally, it also gives insight into the subjacent technologies such as medical scanning, additive manufacturing, choice of material and necessary further processing steps. A process chain from scanning, data transformation, 3D printing and post processing is described.The developed method delivers a reliable model and results in a fully individualized stent. In the current stage, it involves manual work since the representation of data in the steps is different. Further suggestions for steps to automate the process and an estimation of economic efficiency is given. / Det finns konventionellt tillverkade stenter i likformiga storlekar och raka former. Dem här standardprodukter är inte lämpliga för alla patienter och forskning tyder på att detta är orsaken till migrationen av stenter i blodkärl efter placering. Förekomsten av migration skapa återtagande på sjukhus och avlägsnande av den placerade stenten är nödvändig. Den här avhandlingen utvecklar en metod som resulterar i patient anpassade stenter som kan varatillverkad genom additiv tillverkning. Dessa individualiserade stenter avser att erbjuda samma fördelar som konventionella stenter och mildra nackdelarna. Arbetets kärna är designen av en stent baserad på den geometriska informationen baserande på en medicinsk bildteknik. Det omvandlar relevanta kroppsdelar från det medicinska bildteknik som finns i DICOM-formatet till STLfilformatet. Efter rengöring och vidare bearbetning kommer formen att vara basen för stentens designprocess med CAD-mjukvara. Dessutom ger den också inblick i de underliggande teknikerna som medicinsk bildteknik, tillsatsframställning, materialval och nödvändig vidarebehandling steg. En processkedja från skanning, datatransformation, 3D-utskrift och efterbehandling är beskrivits.Den utvecklade metoden ger en tillförlitlig modell och resulterar i en helt individualiserad stent. I det aktuellt stadium, innebär det manuellt arbete eftersom representationen av data i stegen är annorlunda. Ytterligare förslag till åtgärder för att automatisera processen och en uppskattning av ekonomisk effektivitet är given.
|
179 |
Effect of Beam Scan Length on Microstructure Characteristics of EBM Manufactured Alloy 718Gustavsson, Bengt January 2018 (has links)
Additive Manufacturing (AM) as a method is on the rise and allow for a high freedom to create unique shapes without being limited by conventional machining methods. The Electron Beam Melting method, developed by Arcam AB in Mölndal, Sweden, use Powder Bed Fusion together with an electron beam and at an elevated temperature (+1000ºC) to lower stress due to thermal gradients. The purpose of this paper is to study the influence of Scan Length during Electron Beam Melting of Alloy 718 in regards to the appearance of shrinkage, porosity, primary carbide precipitation (mainly NbC), primary dendrite width and hardness. Samples built had the dimensions of 10x15xVar mm3 (Height x Depth x Width) with widths ranging from 10 mm in steps of 5 mm up to a maximum of 90 mm. The parameters were set as a single entry within the build project and as such each layer was melted as a single unit. A Light-Optical Microscope (LOM) and a Scanning Electron Microscope (SEM) was used to obtain images for manual counting to calculate the fraction of porosity and NbC-precipitates as well as the columnar grain width. The space between lines of interdendritical precipitation of NbC was used to determine the dendrite arm widths and a series of Hardness Vickers (500g for 15s) indents was performed. An Energy-Dispersive X-Ray Spectroscope (EDS) was used to help identify precipitates and phases. Columnar grain width and the spacing between vertical bands of interdendritical NbC was measured according to ASTM112-13 while porosity and hardness was measured according to ASTM562-11. Both of these only looked at the XZ-plane instead of all three planes. The columnar grain width was measured in the 10 mm, 40 mm and 90 mm samples at a distance of 4 mm from the top and with a slight spread over the sample width according to ASTM112-13 but using only one plane for counting. No significant change to columnar width was found. Primary dendrite arm width was measured on the 10 mm, 40 mm and 90 mm samples at about 5 mm from the top. An average for all samples was found to be 7.82 μm ± 2.89. No significant trend could be found with increased sample width. A total average porosity of 0.33% ± 0.16 was found. Variations between samples were less than the standard deviation. Even though the variations were not high enough to be significant, no obvious trend could be seen in regards to sample width, position on the base plate or heat transfer through the build. The presence of NbC was investigated in all samples with a total average of 0.36% ± 0.23 with variations between sample lengths being within the standard deviation. An insignificant trend could be seen between the smaller samples together with the wider samples having a higher degree of NbC compared to the middle samples. No significant trend could be seen in NbC based on row. Across all samples, the mean hardness was found to be 406.75 HV0.5 ± 16.53. No significant trend could be seen with increased sample width. Based on sample rows no significant trend could be seen.
|
180 |
Radiation Effects on Wide Band Gap Semiconductor Transport PropertiesSchwarz, Casey Minna 01 January 2012 (has links)
In this research, the transport properties of ZnO were studied through the use of electron and neutron beam irradiation. Acceptor states are known to form deep in the bandgap of doped ZnO material. By subjecting doped ZnO materials to electron and neutron beams we are able to probe, identify and modify transport characteristics relating to these deep accepter states. The impact of irradiation and temperature on minority carrier diffusion length and lifetime were monitored through the use of the Electron Beam Induced Current (EBIC) method and Cathodoluminescence (CL) spectroscopy. The minority carrier diffusion length, L, was shown to increase as it was subjected to increasing temperature as well as continuous electron irradiation. The near-band-edge (NBE) intensity in CL measurements was found to decay as a function of temperature and electron irradiation due to an increase in carrier lifetime. Electron injection through application of a forward bias also resulted in a similar increase of minority carrier diffusion length. Thermal and electron irradiation dependences were used to determine activation energies for the irradiation induced effects. This helps to further our understanding of the electron injection mechanism as well as to identify possible defects responsible for the observed effects. Thermal activation energies likely represent carrier delocalization energy and are related to the increase of diffusion length due to the reduction in recombination efficiency. The effect of electron irradiation on the minority carrier diffusion length and lifetime can be attributed to the trapping of non-equilibrium electrons on neutral acceptor levels. The effect of neutron irradiation on CL intensity can be attributed to an increase in shallow donor concentration. Thermal activation energies resulting from an increase in L or decay of CL intensity monitored through EBIC and CL measurements for p-type Sb doped ZnO were found to be the range of Ea = 112 to 145 meV. P-type Sb doped ZnO nanowires under the influence of temperature and electron injection either through continuous beam impacting or through forward bias, displayed an increase in L and corresponding decay of CL intensity when observed by EBIC or CL measurements. These measurements led to activation energies for the effect ranging from Ea = 217 to 233 meV. These values indicate the possible involvement of a SbZn-2VZn acceptor complex. For N-type unintentionally doped ZnO, CL measurements under the influence of temperature and electron irradiation by continuous beam impacting led to a decrease in CL intensity which resulted in an electron irradiation activation energy of approximately Ea = 259 meV. This value came close to the defect energy level of the zinc interstitial. CL measurements of neutron irradiated ZnO nanostructures revealed that intensity is redistributed in favor of the NBE transition indicating an increase of shallow donor concentration. With annealing contributing to the improvement of crystallinity, a decrease can be seen in the CL intensity due to the increase in majority carrier lifetime. Low energy emission seen from CL spectra can be due to oxygen vacancies and as an indicator of radiation defects.
|
Page generated in 0.0539 seconds