• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 31
  • 27
  • 25
  • 22
  • 9
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 420
  • 420
  • 420
  • 103
  • 81
  • 52
  • 48
  • 42
  • 42
  • 40
  • 40
  • 39
  • 39
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Developmental Regulation of Prion Expression in Cattle and Mouse Embryonic Stem Cells

Peralta, Oscar A. 03 September 2008 (has links)
The host encoded cellular prion protein (PrPC) is an N-linked glycoprotein tethered to the cell membrane by a glycophosphatidylinositol (GPI) anchor. Under certain conditions, PrPC can undergo conversion into a conformationally-altered isoform (PrPSc) widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Thus, tissues expressing PrPC are potential sites for conversion of PrPSc during TSE pathogenesis. Although much is known about the role of PrPSc in prion diseases, the normal function of PrPC is poorly understood. Lines of mice and cattle in which PrPC has been ablated by gene knockout show no major phenotypical alterations other than resistance to TSE infection. However, recent reports using Prnp-null mouse models have suggested the participation of PrPC in neural stem/progenitor cell proliferation and differentiation. The first objective in our study was to map the expression of PrPC in twenty six somatic and reproductive tissues in ruminants. Our second objective was to characterize the ontogeny of PrPC expression during bovine embryonic and early fetal development. Finally, we used a mouse embryonic stem cell (mESC) model to study the potential role of PrPC during neurogenesis. In adult tissues, intense expression of PrPC was detected in the central nervous system (CNS), thymus and testes, whereas the liver, striated muscle and female reproductive tissues showed the lowest expression. We observed that PrPC was associated with tissues undergoing cellular differentiation including spermatogenesis, lymphocyte activation and hair follicle regeneration. Analyses in bovine embryos and fetuses indicated peaks in expression of PrPC at days 4 and 18 post-fertilization, stages associated with the maternal-zygote transition and the maternal recognition of pregnancy and initiation of placental attachment, respectively. Later in development, PrPC was expressed in the CNS where it was localized in mature neurons of the neuroepithelium and emerging neural trunks. Based on these observations, we hypothesized that PrPC was involved in neurogenesis. We tested this hypothesis in a murine embryonic stem cell model (mESC). mESC were induced to form embryoid bodies (EBs) by placing them in suspension culture under differentiating conditions and allowed to differentiate in vitro for 20 days. We detected increasing levels of PrPC starting on day 12 (8.21- fold higher vs. day 0; P < 0.05) and continuing until day 20 (20.77-fold higher vs. day 0; P < 0.05). PrPC expression was negatively correlated with pluripotency marker Oct-4 (r= -0.85) confirming that mESC had indeed differentiated. To provide a more robust system for assessing the role of PrPC in neural differentiation, mESC were cultured with or without retinoic acid (RA) to encourage differentiation into neural lineages. Induction of EBs with retinoic acid (RA) resulted in an earlier up-regulation of PrPC and nestin (day 12 vs. day 16; P < 0.05). In addition, immunofluorescence studies indicated co-expression of PrPC and nestin in the same cells. The results of these experiments suggested a temporal link between PrPC expression and expression of nestin, a marker of neural progenitor cells. We next tested whether PrPC was involved in RA-enhanced neural differentiation from mESC using a PrPC knockdown model. Plasmid vectors designed to express either a PrP-targeted shRNA or scrambled, control shRNA were transfected into mESC. Stable transfectants were selected under G418 and cloned. PrP-targeted and control shRNA clones, as well as wild-type mESC, were differentiated in presence of RA and sampled as above. PrPC expression was knocked down in PrP-targeted shRNA cultures between days 12 and 20 (62.2 % average reduction vs. scrambled shRNA controls). Nestin expression was reduced at days 16 and 20 in PrPC knockdown cells (61.3% and 70.7%, respectively vs. scrambled shRNA controls). These results provide evidence that PrPC plays a role in the neural differentiation at a point up-stream from the stages at which nestin is expressed. In conclusion, the widely distributed expression of PrPC in ruminant tissues suggests an important biological role for this protein. In the present work we have provided evidence for the participation of PrPC in the differentiation of mESC along the neurogenic pathway. / Ph. D.
322

ROLE OF IONS IN STEM CELLS SIGNALLING

Mnatsakanyan Movsesyan, Hayk 03 July 2019 (has links)
[ES] Los procesos de comunicación celular permiten a las células desarrollar una acción coordinada durante la embriogénesis y asimilar de forma coherente las señales recibidas a través del entorno. Algunas de las moléculas señalizadoras más usadas en la clínica y la investigación son las citoquinas. Sin embargo, existe una tendencia creciente en el uso de otro tipo de moléculas, como los iones metálicos. Algunos iones como el calcio y el zinc actúan como segundos mensajeros intracelulares. Otros como el litio son capaces de inactivar proteínas quinasa alterando rutas de señalización. En el desarrollo de esta tesis doctoral, se ha estudiado el efecto del zinc en células musculares de ratón, el papel del zinc en la auto-renovación de células madre embrionarias (CMEs), y el papel del litio en la diferenciación de CMEs. El estudio del efecto del zinc sobre los mioblastos demostró que el zinc es capaz de estimular la diferenciación de los mioblastos. El análisis del zinc intracelular, en los diferentes estadios de diferenciación de las células musculares, demostró que los miotubos eran capaces de albergar mayor cantidad de zinc en su interior. Los resultados mostraron que la adición de zinc extracelular estimula la fosforilación y activación de la proteína quinasa Akt. También se ha visto que el transportador de zinc, Zip7, es crítico en el proceso de diferenciación celular mediado por el zinc, además, su activación incrementa la fosforilación de Akt. La inhibición de Zip7 mediante ARN interferente redujo la fosforilación de Akt y consecuentemente origino unos niveles menores de diferenciación de los mioblastos expuestos a zinc extracelular. Nuestros resultados demuestran que altas concentraciones de zinc extracelular producen un incremento en la diferenciación de los mioblastos debido a la activación de Akt mediada por Zip7. Para el segundo estudio, se analizó el efecto del zinc sobre las CMEs. Como control de mantenimiento de la pluripotencia se usó medio suplementado con factor inhibidor de leucemia (LIF). Se ha observado que la adición externa de concentraciones de zinc superiores a 100 µM produce un incremento inmediato de la concentración de zinc intracelular activando Akt. Los resultados demuestran que las células tratadas con altas concentraciones de zinc mantienen su capacidad de auto-renovación. Para demostrar que el efecto del zinc en CMEs está asociado a la activación de Akt mediada por Zip7, se inhibió la fosforilación de Akt y se silenció Zip7. Ambos abordajes dieron como resultado un incremento en la diferenciación de las células tratadas con zinc. Por otro lado, CMEs cultivadas durante 30 días en presencia de zinc fueron capaces de retener su pluripotencia, mientras que el control sin zinc presentaba rasgos claros de diferenciación celular. Por último, la combinación de LIF con zinc produjo un incremento importante del efecto del LIF en cuanto al mantenimiento de la capacidad de auto-renovación celular. Por último, se ha estudiado el efecto del litio en la diferenciación de las CMEs. El litio es un inhibidor de la glucógeno sintasa quinasa 3ß (GSK3ß). En términos de CMEs, GSK3ß activa los mecanismos de diferenciación. Los resultados obtenidos indican que altas concentraciones de litio (10 mM) son capaces de fosforilar e inhibir la proteína GSK3ß. Sin embargo, en lugar de mantener la pluripotencia, las células madre se diferenciaron hacia el linaje del mesodermo tras 3 días de cultivo. Después de un total de 6 días, las células tratadas con 10 mM de litio presentaron características de endotelio hemogénico. La inhibición de GSK3ß dio como resultado la activación de la proteína ß-catenina, cuya actividad transcripcional es necesaria para la hematogénesis embrionaria. La capacidad de las células endoteliales con potencial hemogénico obtenidas de derivar en células madre hematopoyéticas fue confirmada tras su maduración durante 11 día / [CA] Els processos de comunicació cel·lular permeten a les cèl·lules desenvolupar una acció coordinada durant la embriogènesis y assimilar de forma coherent als senyals rebudes a través de l'entorn. Algunes de les molècules senyalitzadores més usades en la clínica i la investigació són les citocines. No obstant, hi ha una tendència creixent en l'ús d'un altre tipus de molècules, com els ions metàl·lics. Alguns ions com el calci i el zinc són capaços de dur a terme funcions de missatger secundari. Altres com el liti són capaços d'inactivar proteïnes quinasa alterant rutes de senyalització. Durant el desenvolupament d'aquest treball de tesi doctoral, s'ha estudiat l'efecte del zinc sobre mioblasts de ratolí, el paper del zinc en l'auto-renovació de les cèl·lules mare embrionàries (CMEs), i el paper del liti sobre la diferenciació de les CMEs. L'estudi de l'efecte del zinc sobre els mioblasts ha demostrat que el zinc és capaç d'incrementar la diferenciació dels mioblasts. L'anàlisi del zinc intracel·lular ha demostrat que els mioblasts diferenciats eren capaços d'albergar major quantitat de zinc intracel·lular. Els resultats han mostrat que suplementar les cèl·lules amb zinc extracel·lular produïx una major fosforilació i activació de la proteïna quinasa Akt. D'altra banda, s'ha observat que el transportador de zinc Zip7 es crític per a la diferenciació cel·lular mediada pel zinc. S'ha demostrat que l'activació d'aquest transportador mitjançant zinc extracel·lular és capaç d'incrementar la fosforilació d'Akt. La inhibició d'aquest transportador mitjançant ARN interferent ha donat com a resultat una menor fosforilació d'Akt i una menor diferenciació dels mioblasts exposats a zinc. Aquests resultats demostren que altes concentracions de zinc extracel·lular produeixen un incrementar la diferenciació dels mioblasts a causa de l'activació d'Akt per mitja de Zip7. Per al segon estudi, s'ha analitzat l'efecte del zinc sobre les CMEs. Com a control de manteniment de la pluripotència es va usar medi suplementat amb factor inhibidor de leucèmia (LIF). S'ha observat que les concentracions extracel·lulars de zinc a partir de 100 µM produïxen un increment immediat de la concentració intracel·lular, produint l'activació d'Akt per mitja de Zip7. Les CMEs tractades amb altes concentracions de zinc mantenen l'auto-renovació. Per demostrar que aquest efecte està associat a l'activació d'Akt mediada per Zip7, es va inhibir la fosforilació d'Akt i es va silenciar el transportador Zip7. Tots dos abordatges han donat com a resultat un increment en la diferenciació de les CMEs tractades amb zinc. D'altra banda, les CMEs van ser capaços de retenir la seva pluripotència després de ser cultivades durant 30 dies en presència de zinc, mentre que el control sense zinc presentava trets clars de diferenciació cel·lular. Finalment, la combinació de LIF amb zinc ha produit un increment sinèrgic de l'efecte del LIF. Finalment, també s'ha estudiat l'efecte del liti en la diferenciació de les CMEs. El liti és un inhibidor de la glicogen sintasa quinasa 3 beta (GSK3ß). En termes de CMEs, aquesta proteïna activa els mecanismes de diferenciació. Els resultats obtinguts indiquen que altes concentracions de liti (10 mM) tenen la capacitat de fosforilar i inhibir la proteïna GSK3ß. No obstant això, en lloc de mantenir la pluripotència, les CMEs es van diferenciar cap al llinatge del mesoderma després de 3 dies. Després d'un total de 6 dies, les cèl·lules tractades amb 10 mM de liti presentaven característiques d'endoteli hemogénic. La fosforilació de GSK3ß va donar com a resultat l'activació de la proteïna ß-catenina, l'activitat trasncripcional d'aquesta proteïna és necessària per a la hematogénesis embrionària. La capacitat de les cèl·lules endotelials amb potencial hemogénic obtingudes de derivar en cèl·lules mare hematopoètiques va ser confirmada després de la / [EN] The cell signalling process allows cells to develop a coordinated action during embryogenesis and assimilate coherently the signals received through the environment. Some of the most currently used signalling molecules in clinics and research are growth factors and cytokines. However, there is a growing trend in the use of other types of molecules, such as metal ions. Some ions such as calcium and zinc are able to carry out secondary messenger functions, transmitting signals in cascade. Others ions, such as lithium, are capable to inactivate protein kinases altering signalling pathways. During the development of this doctoral thesis, we investigated the effect of zinc on mouse muscle cells (myoblasts), the role of zinc in embryonic stem cells (ESCs) self-renewal, and the role of lithium in the differentiation of ESCs. In the first chapter, we showed that zinc is able to increase the differentiation of myoblasts. The analysis of intracellular zinc indicated that the differentiated myoblasts were capable to harbour higher concentration of intracellular zinc than undifferentiated ones. Addition of high concentration of extracellular zinc increased protein kinase Akt phosphorylation and activation. Akt activity is critical for myoblasts differentiation and has been well studied by other authors. Our results indicated that zinc transporter Zip7 was critical for zinc-mediated cell differentiation. It was prior demonstrated that the activation of this transporter by extracellular zinc increased the phosphorylation of Akt. The inhibition of Zip7 by interfering RNA resulted in a lower phosphorylation of Akt and reduced differentiation of the myoblasts exposed to extracellular zinc. These results demonstrated that high concentration of extracellular zinc enhances the differentiation of myoblasts through activation of Akt mediated by Zip7. In the second chapter, we have analysed the effect of zinc on ESCs. Leukaemia inhibitory factor (LIF) was used as pluripotency sustaining factor. We observed that extracellular supplementation of 100 ¿M zinc produced an immediate increase of the intracellular concentration, which resulted in the activation of Akt mediated by Zip7 transporter. ESCs treated with high concentrations of zinc maintained self-renewal. The role of Akt on ESCs self-renewal has been well established in the literature. To demonstrate that this effect is associated with the activation of Akt mediated by Zip7, we inhibited Akt phosphorylation and silenced the expression of Zip7. Both approaches resulted in an increase in the differentiation levels of the ESCs treated with zinc. We further demonstrated that ESCs treated with zinc during 30 days were able to retain their pluripotency, while the control condition cultured 30 days without zinc presented evident traits of spontaneous cellular differentiation. Finally, the combination of LIF with zinc produced a synergistic-like increase in the effect of LIF on ESCs self-renewal. Finally, we addressed the effect of lithium on the differentiation of ESCs. Lithium is an inhibitor of glycogen synthase kinase 3 beta (GSK3ß). In terms of ESCs, GSK3ß activates differentiation mechanisms. Our results indicated that high concentration of lithium (10 mM) was able to phosphorylate and strongly inhibit the activity of GSK3ß. However, instead of maintaining pluripotency, ESCs differentiated into the mesoderm lineage after 3 days of culture. After a total of 6 days, ESCs treated with 10 mM lithium showed haemogenic endothelium characteristics, expressing CD31, Sca-1 and CD31/Sca-1 positive cells. The phosphorylation of GSK3ß resulted in the activation of the ß-catenin protein, whose transcriptional activity is necessary for embryonic hematogenesis. The ability of endothelial cells with hemogenic potential obtained from lithium-treated ESCs to derive into hematopoietic stem cells was confirmed after maturation of these cells, resulting in rounded cell aggregates positive for Sox17. / Ministerio de Ciencia, Innovación y Universidades a través de la beca BES-2013-064052 y los proyectos MAT2012-38359-C03-01 y MAT2015-69315-C3-1-R. / Mnatsakanyan Movsesyan, H. (2019). ROLE OF IONS IN STEM CELLS SIGNALLING [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/123063
323

PTBP1 Is Required for Embryonic Development before Gastrulation

Solimena, Michele, Suckale, Jakob, Wendling, Olivia, Masjkur, Jimmy, Jäger, Melanie, Münster, Carla, Anastassiadis, Konstantinos, Stewart, A. Francis 07 January 2016 (has links) (PDF)
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
324

Rôle de la voie de transduction P38MAPK dans la différenciation des cellules souches embryonnaires de souris / Role of the P38MAPK pathway in embryonic stem cell differentiation

Barruet, Emilie 30 November 2010 (has links)
La thérapie cellulaire représente une alternative intéressante aux approchespharmacologiques dans le cadre de certaines pathologies comme les dystrophiesneuromusculaires ou l’ischémie du myocarde. La transplantation de précurseurs adultes deces tissus peut améliorer ces pathologies. Toutefois, le faible nombre de ces précurseursdans l’organisme et la difficulté de leur culture et expansion in vitro sont des facteurslimitants. Grâce à leurs propriétés spécifiques, les cellules souches embryonnaires (ES)constituent une source alternative pour la thérapie cellulaire. Cependant, leur efficacité dedifférenciation dans un lignage donné doit être finement contrôlée avant de pouvoir lesutiliser avec succès.Afin de mieux connaître le potentiel thérapeutique des cellules dérivées de cellulesES, il est essentiel de caractériser les mécanismes moléculaires qui engagent les cellules ESvers différents lignages. Nous nous sommes plus particulièrement intéressés à la voie designalisation p38MAPK, qui est largement impliquée dans la différenciation cellulaire et lasurvie cellulaire. Nous avons plus précisement étudié l’implication de p38MAPK au coursdes différenciations endothéliale, du muscle lisse et du muscle squelettique.Nous avons mis en évidence que les cellules ES p38!-/- ne se différencient plus encellules endothéliales, en cellules du muscle lisse et en cellules du muscle squelettique. Laré-expression de p38MAPK dans ces cellules restaure partiellement les différenciationsdérivées du mésoderme (les différenciations endothéliale, du muscle lisse,cardiomyocytaire et de muscle squelettique). Parallèlement grâce à une inhibitionspécifique de la voie p38MAPK au cours de la différenciation des cellules ES, nous avonsmontré que la voie p38MAPK agit via deux mécanismes moléculaires distincts successifspour réguler la différenciation mésodermique des cellules ES. Le premier mécanisme estcorrèlé à l’expression de Brachyury, un marqueur précoce du mésoderme, alors que lesecond mécanisme est indépendant de Brachyury.Nous avons ensuite poursuivi l’étude de l’implication de p38MAPK dans lamyogénèse des cellules ES et nous avons pu mettre en évidence que p38MAPK estnécessaire à la fois pour l’engagement précoce et la différenciation terminale des cellulesmusculaires.En combinant des approches biochimiques et génétiques, nous avons démontré que lavoie de signalisation p38MAPK est nécessaire très précocement à la différenciation deslignages issus du mésoderme.Ces résultats permettent une meilleure compréhension des mécanismes moléculairesimpliqués dans la différenciation des cellules ES, ce qui constitue une étape préalable ausuccés de futures thérapies cellulaires. / Embryonic stem (ES) cells give rise, in vivo, to all of the three germ layers and, invitro, to differentiate into a broad variety of cell lineages which opens up largeperspectives in regenerative medicine. We previously found that the p38MAPKpathway controls the commitment of ES cells toward either cardiomyogenesis (p38on) or neurogenesis (p38 off ). In this study, we show that p38a knock-out ES cellsdo not differentiate into cardiac, endothelial, smooth muscle, and skeletal musclelineages. Reexpression of p38MAPK in these cells partially rescues theirmesodermal differentiation defects and corrects the high level of spontaneousneurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPKspecificinhibitor during the differentiation process. These experiments allowed us toidentify 2 early independent successive p38MAPK functions in the formation ofmesodermal lineages. Further, the first one correlates with the regulation of theexpression of Brachyury, an essential mesodermal-specific transcription factor, byp38MAPK. Moreover, we also showed that p38MAPK is required for the late stageskeletal muscle differentiation. In conclusion, by genetic and biochemicalapproaches, we demonstrate that p38MAPK activity is essential for the commitmentof ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermallineages.
325

La dérivation de cellules souches embryonnaires chez le rat, Rattus norvegicus

Demers, Simon-Pierre January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
326

Establishing a Robust In Vitro Embryonic Stem Cell Differentiation Assay to Monitor the Hematopoietic Potential of DELES Clones

Shetty, Swati 01 1900 (has links)
Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues. / To carry out functional studies on the mouse genome, our laboratory has generated a library of Embryonic Stem Cell (ESC) clones harboring random nested chromosomal deletions – DELES library. This library contains deletions covering ~ 25% of the mouse genome. In the lab, we are interested in identifying novel hematopoietic cell fate determinants using this resource. A primary screen using benzidine to demonstrate the presence of hemoglobin in embryoid bodies (EBs) was able to identify several DELES clones exhibiting abnormal hematopoietic phenotype. Since this assay only tested for the presence of hemoglobin, the goal of my project is to establish a robust in vitro ESC differentiation assay to monitor the hematopoietic potential of DELES clones. My hypothesis is that the hematopoietic differentiation assay published by Dr. Keller can be used to observe hematopoietic commitment of the DELES clones. Using QRT-PCR and FACS assays I was able to monitor the kinetics of hematopoietic differentiation by observing the expression of hematopoietic genes and surface markers including CD41, C-KIT, RUNX1, GATA2, CD45, β-GLOBIN 1 and TER-119. This assay will be used to validate the hematopoietic potential of the candidate DELES clones identified in the primary screen. My secondary project aims to use the same retro-viral Cre-loxP strategy used for the DELES library, in order to generate a library of KBM-7 leukemic cells harboring nested chromosomal deletions. My goal here is to test if the human near haploid KBM-7 cell line can be exploited using the DELES approach to create this library. The library of KBM-7 clones will be used to delineate the molecular activities of potential anti-leukemic drugs that we have identified in the lab to inhibit cell growth in several patient-derived acute-myeloid leukemia specimens. It will also allow me to identify molecular signaling pathways that, when genetically disrupted, can confer resistance to these drugs.
327

Analýza pluripotentního programu genové exprese v časných embryích a embryonálních kmenových buňkách / Analysis of pluripotent gene expression program in early embryos and embryonic stem cells

Moravec, Martin January 2012 (has links)
Pluripotence je schopnost buňky diferencovat do jakéhokoliv buněčného typu. Formuje se během časného embryonálního vývoje u savců a její vznik je spojen s reprogramací genové exprese na globální úrovni. Proces přirozeného vzniku pluripotence není stále zcela pochopen. Pro získání nového pohledu na události, které vedou ke vzniku pluripotence u savců, studovali jsme změny v genové expresi během oocyt-zygotického přechodu u myši. V tomto modelovém systému, oplodněné vajíčko podstoupí reprogramaci, která vede k vytvoření pluripotentních blastomer. Tyto blastomery zakládají samotné embryo. Cílem mé diplomové práce bylo analyzovat aktivaci transkripce během časného vývoje a vyvinout metodu pro monitorování exprese genů v oocytech, časných embryích a embryonálních kmenových buňkách. Metoda využívá kvantitativní PCR a umožnuje změřit expresi až 48 vybraných genů, které slouží jako markery pro maternální degradaci, aktivaci pluripotentního programu a diferenciaci do zárodečných linií. Dále ukazujeme, že náš systém monitoruje dynamiku transkriptomu během oocyt-zygotického přechodu, a získané výsledky jsou srovnatelné s daty naměřenými pomocí jiných metod. Díky našemu bioinformatickému přístupu jsme navíc identifikovali nové oocyt-specifické a zygotické nekódující RNA. Klíčová slova: pluripotence,...
328

Rôle du système d'activation du plasminogène dans la différenciation des cellules souches embryonnaires de souris

Hadadeh, Ola 12 December 2011 (has links)
Le système d’activation du plasminogène (AP) comprenant les protéases uPA et tPA, et leur inhibiteur PAI-1, génère une activité protéolytique dans la matrice extracellulaire et contribue au remodelage tissulaire dans une grande variété de processus physiopathologiques, y compris la myogenèse squelettique, et la différenciation adipocytaire.Nous avons évalué son rôle spécifique dans la différenciation des cellules souches embryonnaires (ES) de souris. On a trouvé que les activités d’uPA et de tPA ainsi que les niveaux protéiques de PAI-1 sont maximaux dans les cellules différenciées, contrairement aux cellules ES indifférenciées où ils sont indétectables et augmentent progressivement dès le jour 3 de la différenciation. La différenciation adipocytaire dans le modèle des cellules ES est inhibée par le traitement par l’amiloride, un inhibiteur spécifique de l’uPA. Egalement, les cellules ES surexprimant une forme active du PAI-1 sous le contrôle d’un système d’expression inductible, montrent des capacités adipogéniques réduites après l’induction du gène. Nos résultats démontrent que le contrôle de l’adipogenèse des cellules ES par le système AP correspond à des étapes successives, différentes, depuis les cellules indifférenciées jusqu’aux cellules bien différenciées. De plus, les capacités de la différenciation adipogénique des cellules pluripotentes induites déficientes en PAI-1 sont augmentées par rapport aux cellules contrôles.Similairement, la myogenèse squelettique est réduite par l’inhibition de l’uPA par l’amiloride ou par la surexpression du PAI-1 durant l’étape terminale de la différenciation du jour 7 au jour 24. Cependant, l’interférence avec l’uPA durant les jours 0 à 3 de la différenciation, stimule la formation des myotubes. Les différenciations cardiomyocyotaire, neuronale, endothéliale et du du muscle lisse ne sont pas affectées par le traitement à l’amiloride ou la surexpression du PAI-1.Nos résultats montrent que le système AP est capable de moduler spécifiquement l’adipogenèse et la myogenèse squelettique des cellules ES par des mécanismes moléculaires successifs différents. / Regulation of the extracellular matrix (ECM) plays an important functional biological role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiationin vitro is unknown. We found that uPA and tPA activities and PAI-1 protein are very low in undifferentiated ESCs and increase strongly during the differentiation, reaching a maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system, display reduced adipogenic capacities after induction of the gene. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Furthermore, the adipogenic differentiation capacities of PAI-1-/- induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.
329

Étude de la pluripotence des cellules souches embryonnaires chez le lapin / Study of embryonic stem cell pluripotency in rabbit

Osteil, Pierre 16 December 2013 (has links)
Les cellules souches embryonnaires (ESCs) sont issues de la masse cellulaire interne (ICM) de blastocystes préimplantatoires. Elles sont pluripotentes c'est-à-dire capables de se différencier dans les trois lignages embryonnaires (ectoderme, mésoderme et endoderme) et de s'autorenouveller, c'est-à-dire de se multiplier indéfiniment en culture. Chez la souris, ces cellules (mESCs) sont à la base des techniques de transgénèse permettant des modifications génétiques ciblées. Chez l'Homme ces cellules (hESCs) représentent un grand espoir en médecine régénérative pour traiter des maladies dégénératives comme les maladies de Parkinson ou de Huntington. Le modèle le plus pertinent de l'espèce humaine est le singe. Cependant l'expérimentation sur cette espèce est soumise à une réglementation très stricte. C'est pourquoi il est nécessaire de développer des modèles alternatifs. C'est dans ce cadre que s'inscrit le lapin, qui est phylogénétiquement plus proche de l'Homme que ne l'est la souris. Mon projet de thèse a eu pour but d'étudier la pluripotence dans les ESCs de lapin (rESCs), afin de pouvoir les utiliser en transgénèse et produire des animaux transgéniques, modèles de maladies humaines. La première partie de ces analyses est regroupée au sein de l'article que notre laboratoire a publié en 2013 dans Biology Open (Osteil et al. 2013). D'autres analyses ont abouti à la dérivation de nouvelles lignées stabilisées dans un état plus proche de celui des cellules de l'ICM. L'ensemble des résultats a permis d'établir des bases solides pour la compréhension de la pluripotence et pour la dérivation d'ESCs dites naïves chez un autre mammifère que la souris / Embryonic stem cells (ESCs) result from cultures of inner cell masses (ICMs) isolated at preimplantation blastocyst stage. ESCs are defined by their self-renewal capacity, characterized by robust proliferation while maintaining plutipotent potential, the ability to give rise to cells from all three germ layers mesoderm, endoderm and ectoderm. Mouse ESCs (mESCs) allow the production of transgenic models by site-specific mutagenesis. Human ESCs (hESCs) represent major hope for regenerative medicine in order to treat degenerative diseases like Parkinson or Huntington. The more relevant model of Human is monkey. However, working on this specie is subjected to extremely strict regulation. Consequently it is very important to develop alternative animal models. Rabbit appears to be a very good candidate, because he is phylogenetically closer to Human than the mouse. My thesis project aimed to study the pluripotency mechanism of rabbit ESCs (rESCs), in order to use these cells for the production of transgenic animal models for human diseases. First part of theses analyses is synthesized in a publication into Biology Open in 2013 (Osteil et al. 2013). Other analyses produced new rESCs lines stabilized in a closer state compared to ICM state. All these results led to obtain solid knowledge on pluripotency and derivation on so-called naïve ESCs in a non-rodent specie
330

MOLECULAR MECHANISMS THAT GOVERN STEM CELL DIFFERENTIATION AND THEIR IMPLICATIONS IN CANCER

Lama Abdullah Alabdi (7036082) 02 August 2019 (has links)
<p>Mammalian development is orchestrated by global transcriptional changes, which drive cellular differentiation, giving rise to diverse cell types. The mechanisms that mediate the temporal control of early differentiation can be studied using embryonic stem cell (ESCs) and embryonal carcinoma cells (ECCs) as model systems. In these stem cells, differentiation signals induce transcriptional repression of genes that maintain pluripotency (PpG) and activation of genes required for lineage specification. Expression of PpGs is controlled by these genes’ proximal and distal regulatory elements, promoters and enhancers, respectively. Previously published work from our laboratory showed that during differentiation of ESCs, the repression of PpGs is accompanied by enhancer silencing mediated by the Lsd1/Mi2-NuRD-Dnmt3a complex. The enzymes in this complex catalyze histone H3K27Ac deacetylation and H3K4me1/2 demethylation followed by a gain of DNA methylation mediated by the DNA methyltransferase, Dnmt3a. The absence of these chromatin changes at PpG enhancers during ESC differentiation leads to their incomplete repression. In cancer, abnormal expression of PpG is commonly observed. Our studies show that in differentiating F9 embryonal carcinoma cells (F9 ECCs), PpG maintain substantial expression concomitant with an absence of Lsd1-mediated H3K4me1 demethylation at their respective enhancers. The continued presence of H3K4me1 blocks the downstream activity of Dnmt3a, leading to the absence of DNA methylation at these sites. The absence of Lsd1 activity at PpG enhancers establishes a “primed” chromatin state distinguished by the absence of DNA methylation and the presence of H3K4me1. We further established that the activity of Lsd1 in these cells was inhibited by Oct3/4, which was partially repressed post-differentiation. Our data reveal that sustained expression of the pioneer pluripotency factor Oct3/4 disrupts the enhancer silencing mechanism. This generates an aberrant “primed” enhancer state, which is susceptible to activation and supports tumorigenicity. </p> <p>As differentiation proceeds and multiple layers of cells are produced in the early embryo, the inner cells are depleted of O<sub>2</sub>, which triggers endothelial cell differentiation. These cells form vascular structures that allow transport of O<sub>2</sub> and nutrients to cells. Using ESC differentiation to endothelial cells as a model system, studies covered in this thesis work elucidated a mechanism by which the transcription factor Vascular endothelial zinc finger 1 (Vezf1) regulates endothelial differentiation and formation of vascular structures. Our data show that Vezf1-deficient ESCs fail to upregulate the expression of pro-angiogenic genes in response to endothelial differentiation induction. This defect was shown to be the result of the elevated expression of the stemness factor Cbp/p300-interacting transactivator 2 (Cited2) at the onset of differentiation. The improper expression of Cited2 sequesters histone acetyltransferase p300 from depositing active histone modifications at the regulatory elements of angiogenesis-specific genes that, in turn, impedes their activation. </p> <p>Besides the discovery of epigenetic mechanisms that regulate gene expression during differentiation, our studies also include development of a sensitive method to identify activities of a specific DNA methyltransferase at genomic regions. In mammals, DNA methylation occurs at the C5 position of cytosine bases. The addition of this chemical modification is catalyzed by a family of enzymes called DNA methyltransferases (Dnmts). Current methodologies, which determine the distribution of Dnmts or DNA methylation levels in genomes, show the combined activity of multiple Dnmts at their target sites. To determine the activity of a particular Dnmt in response to an external stimulus, we developed a method, Transition State Covalent Crosslinking DNA Immunoprecipitation (TSCC-DIP), which traps catalytically active Dnmts at their transition state with the DNA substrate. Our goal is to produce a strategy that would enable the determination of the direct genomic targets of specific Dnmts, creating a valuable tool for studying the dynamic changes in DNA methylation in any biological process.</p>

Page generated in 0.0823 seconds