• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 64
  • 57
  • 18
  • 12
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 435
  • 435
  • 406
  • 112
  • 103
  • 95
  • 64
  • 63
  • 62
  • 61
  • 54
  • 53
  • 49
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Positron emission tomography of extra-striatal dopamine release

Gravel, Paul. January 2008 (has links)
Altered dopamine (DA) neurotransmission is implicated in neurological and psychiatric disorders. Positron Emission Tomography (PET) imaging of DA release has mainly been restricted to striatal areas, rich in D2/D 3 receptors, owing to the moderate affinity of the radioligands used. To measure extra-striatal DA release, where D2/D3 receptor concentrations are much smaller, an approach using a high affinity radioligand, such as [18F]Fallypride, is required. The aim of the present study was to investigate in healthy volunteers the suitability of [ 18F]Fallypride to measure variations in D2/D3 receptor occupancy, as a function of amphetamine-induced DA release, in extra-striatal regions. Six healthy male volunteers underwent two 18F-Fallypride PET sessions, following the double-blind oral administration of 0.3 mg/kg of d-amphetamine (Dexedrine) or placebo (lactose), counter-balanced for order. Following amphetamine administration, D2/D3 receptor occupancy of 18F-Fallypride was significantly reduced in striatum, but also in extra-striatal regions, including substantia nigra, amygdala, thalamus, hippocampus, and cortical areas.
192

Partikeltherapie-PET – Optimierung der Datenverarbeitung für die klinische Anwendung

Helmbrecht, Stephan 19 February 2015 (has links) (PDF)
Die Strahlentherapie ist einer der drei Partner im interdisziplinären Feld der Onkologie. In Europa, Asien und den USA besteht zunehmend die Möglichkeit einer Therapie mit Strahlen aus geladenen Ionen anstelle von Photonen. Eine Anlage in Dresden befindet sich in der Kommissionierungsphase. Die Ionenstrahltherapie bietet den Vorteil einer sehr konformalen Behandlung des Tumorvolumens durch die endliche Reichweite der Strahlen und ein ausgeprägtes Dosismaximum kurz vor dem Ende des Strahlpfades. Da eine Therapie in der Regel über bis zu 30 Sitzungen an verschiedenen Tagen durchgeführt wird und der Strahlweg stark von dem durchdrungenen Gewebe beeinflusst wird, sind Verfahren für eine in vivo Verifikation der Strahlapplikation wünschenswert. Eine dieser Methoden ist die Partikeltherapie–Positronen-Emissions-Tomografie (PT-PET). Sie beruht auf der Messung der vom Therapiestrahl erzeugten β+-Aktivitätsverteilung. Da eine direkte Berechnung der Dosis aus der Aktivität in lebendem Gewebe nicht möglich ist, wird die gemessene Aktivitätsverteilung mit einer berechneten Vorhersage verglichen und anschließend entschieden, ob die nächste Therapiesitzung wie geplant erfolgen kann oder Anpassungen notwendig sind. Die vorliegende Arbeit beschäftigt sich mit drei Themen aus dem Bereich der Datenverarbeitung für die PT-PET. Im ersten Teil wird ein Algorithmus zur Bestimmung von Reichweitendifferenzen aus zwei β+- Aktivitätsverteilungen adaptiert und evaluiert. Dies geschieht zunächst anhand einer Simulationsstudie mit realen Patientendaten. Ein Ansatz für eine automatisierte Analyse der Daten lieferte keine zufriedenstellenden Ergebnisse. Daher wird ein Software-Prototyp für eine semiautomatische, assistierte Datenanalyse entwickelt. Die Evaluierung erfolgt durch Experimente mit Phantomen am 12C-Strahl. Die erzeugte Aktivitätsverteilung wird von physiologischen Prozessen im Organismus beeinflusst. Dies führt zu einer Entfernung von Emittern vom Ort ihrer Erzeugung und damit zu einer Verringerung der diagnostischen Wertigkeit der erfassten Verteilung. Zur Quantifizierung dieses als Washout bezeichneten Effektes existiert ein am Tierexperiment gewonnenes Modell. Dieses Modell wird im zweiten Teil der Arbeit auf reale Patientendaten angewendet. Es konnte gezeigt werden, dass das Modell grundsätzlich anwendbar ist und für die betrachtete Tumorlokalisation Schädelbasis ein Washout mit einer Halbwertszeit von (155,7±4,6) s existiert. Die Berechnung der Vorhersage der β+-Aktivitätsverteilung kann durch übliche Monte-Carlo-Verfahren erfolgen. Dabei werden die Wechselwirkungsquerschnitte zahlreicher Reaktionskanäle benötigt. Als alternatives Verfahren wurde die Verwendung gemessener Ausbeuten (Yields) radioaktiver Nuklide in verschiedenen Referenzmaterialien vorgeschlagen. Auf Basis einer vorhandenen Datenbank dieser Yields und einer existierenden Condensed-History-Monte-Carlo-Simulation wird ein Programm zur Berechnung von Aktivitätsverteilungen auf Yieldbasis entwickelt. Mit der Methode kann die β+-Aktivitätsverteilung in Phantomen und Patienten zufriedenstellend vorhergesagt werden. Die entwickelten Verfahren sollen einen Einsatz der PT-PET im klinischen Umfeld erleichtern und damit einen breiten Einsatz ermöglichen, um das volle Potential der Ionenstrahltherapie nutzbar zu machen.
193

11C Molecular Imaging in Focal Epilepsy

Danfors, Torsten January 2012 (has links)
Epilepsy is a common neurological disease affecting 6 million people in Europe. Early prevention and accurate diagnosis and treatment are of importance to obtain seizure freedom. In this thesis new applications of carbon-11-labelled tracers in PET and autoradiographic studies were explored in focal epilepsy. Patients with low-grade gliomas often experience epileptic seizures. A retrospective PET-study assessing seizure activity, metabolic rate measured with 11C-methionine and other known prognostic factors was performed in patients with glioma. No correlation was found between seizure activity and uptake of methionine. The presence and termination of early seizures was a favourable prognostic factor. Activation of the neurokinin-1 (NK1) receptor by substance P (SP) induces epileptic activity. PET with the NK1 receptor antagonist GR205171 was performed in patients with temporal lobe epilepsy (TLE) and healthy controls. In TLE patients an increased NK1 receptor availability was found in both hemispheres, most pronounced in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptors and seizure frequency was observed in ipsilateral medial structures consistent with an intrinsic network using the NK1-SP receptor system for transmission of seizure activity. The uptake of 18F-fluoro-deoxy-glucose (FDG) is related to cerebral blood flow (CBF). Previously, methods to estimate blood flow from dynamic PET data have been described. A retrospective study was conducted in 15 patients undergoing epilepsy surgery investigation, including PET with 11C-FDG and 11C-Flumazenil (FMZ). The dynamic FMZ dataset and pharmacokinetic modeling with a multilinear reference tissue model were used to determine images of relative CBF. Agreement between data of FDG and CBF was analyzed showing a close association between interictal brain metabolism and relative CBF. Epilepsy often occurs after traumatic brain injuries. Changes in glia and inhibitory neuronal cells contribute to the chain of events leading to seizures. Autoradiography with 11C-PK11195, 11C-L-deprenyl and 11C-Flumazenil in an animal model of posttraumatic epilepsy studied the temporal and spatial distribution of microglia, astrocytes and GABAergic neurons. Results showed an instant increase in microglial activity that subsequently normalized, a late formation of astrogliosis and an instant and prolonged decease in GABA binding. The model can be used to visualize pathophysiological events during the epileptogenesis.
194

Assessment of abdominal aortic aneurysm biology using magnetic resonance imaging and positron emission tomography-computed tomography

Forsythe, Rachael Olivia January 2018 (has links)
Background Although abdominal aortic aneurysm (AAA) growth is non-linear, serial measurements of aneurysm diameter are the mainstay of aneurysm surveillance and contribute to decisions on timing of intervention. Aneurysm biology plays a key part in disease evolution but is not currently routinely assessed in clinical practice. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography-Computed Tomography (PET-CT) provide insight into disease processes on a cellular or molecular level, and represent exciting new imaging biomarkers of disease activity. Macrophage-mediated inflammation may be assessed using ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and the PET radiotracer 18FSodium Fluoride (18F-NaF) identifies microcalcification which is a response to underlying necrotic inflammation. The central aim of this thesis was to investigate these imaging modalities in patients with AAA. Methods and Results USPIO MRI: MULTI-CENTRE STUDY In a prospective multi-centre observational cohort study, 342 patients (85.4% male, mean age 73.1±7.2 years, mean AAA diameter 49.6±7.7mm) with asymptomatic AAA ≥4 cm anteroposterior diameter underwent MRI before and 24-36 hours after intravenous administration of USPIO. Colour maps (depicting the change in T2* caused by USPIO) were used to classify aneurysms on the basis of the presence of USPIO uptake in the aneurysm wall, representing mural inflammation. Intra- and inter-observer agreement were found to be very good, with proportional agreement of 0.91 (kappa 0.82) and 0.83 (kappa 0.66), respectively. At 1 year, there was 29.3% discordant classification of aneurysms on repeated USPIO MRI and at 2 years, discordance was 65%, suggesting that inflammation evolves over time. In the observational study, after a mean of 1005±280 days of follow up, there were 126 (36.8%) aneurysm repairs and 17 (5.0%) ruptures. Participants with USPIO enhancement (42.7%) had increased aneurysm expansion rates (3·1±2·5 versus 2·5±2·4 mm/year; difference 0·6 [95% confidence intervals (CI), 0·02 to 1·2] mm/year, p=0·0424) and had higher rates of aneurysm rupture or repair (69/146=47·3% versus 68/191=35·6%; difference 11·7%, 95% CI 1·1 to 22·2%, p=0·0308). USPIO MRI was therefore shown to predict AAA expansion and the composite of rupture or repair, however this was not independent of aneurysm diameter (c-statistic, 0·7924 to 0·7926; unconditional net reclassification -13·5%, 95% confidence intervals -36·4% to 9·3%). 18F-NaF PET-CT: SINGLE-CENTRE STUDY A sub-group of 76 patients also underwent 18F-NaF PET-CT, which was evaluated using the maximum tissue-to-background ratio (TBRmax) in the most diseased segment (MDS), a technique that showed very good intra- (ICC 0.70-0.89) and inter-observer (ICC 0.637-0.856) agreement. Aneurysm tracer uptake was compared firstly in a case-control study, with 20 patients matched to 20 control patients for age, sex and smoking status. 18F-NaF uptake was higher in aneurysm when compared to control aorta (log2TBRmax 1.712±0.560 vs. 1.314±0.489; difference 0.398 (95% CI 0.057, 0.739), p=0.023), or to non-aneurysmal aorta in patients with AAA (log2TBRmax 1.647±0.537 vs. 1.332±0.497; difference 0.314 (95% CI 0.0685, 0.560), p=0.004). An ex vivo study was performed on aneurysm and control tissue, which demonstrated that 18F-NaF uptake on microPET-CT was higher in the aneurysm hotspots and higher in aneurysm tissue compared to control tissue. Histological analysis suggested that 18F-NaF was highest in areas of focal calcification and necrosis. In an observational cohort study, aneurysms were stratified by tertiles of TBRmax in the MDS and followed up for 510±196 days, with 6 monthly serial ultrasound measurements of diameter. Those in the highest tertile of tracer uptake expanded more than 2.5 times more rapidly than those in the lowest tertile (3.10 [3.58] mm/year vs. 1.24 [2.41] mm/year, p=0.008) and were also more likely to experience repair or rupture (15.3% vs. 5.6%, log-rank p=0.043). In multivariable analyses, 18F-NaF uptake on PET-CT emerged as an independent predictor of AAA expansion (p=0.042) and rupture or repair (HR 2.49, 95% CI1.07, 5.78; p=0.034), even when adjusted for age, sex, body mass index, systolic blood pressure, current smoking and, crucially, aneurysm diameter. Conclusion These are the largest USPIO MRI and PET-CT studies in AAA disease to date and the first to investigate 18F-NaF. Both USPIO MRI and 18F-NaF PET-CT are able to predict AAA expansion and the composite of rupture and repair, with 18F-NaF PETCT emerging as the first imaging biomarker that independently predicts expansion and AAA events, even after adjustment for aneurysm diameter. This represents an exciting new predictor of disease progression that adds incremental value to standard clinical assessments. Feasibility and randomised clinical trials are now required to assess the potential of this technique to change the management and outcome of patients with AAA.
195

Efeito da perda de peso induzida por cirurgia bariátrica sobre metabolismo cerebral e função cognitiva / The effect of bariatric surgery induced weight loss on brain metabolism and cognitive function

Emerson Leonildo Marques 07 August 2014 (has links)
INTRODUÇÃO: Obesidade e doença de Alzheimer afetam um número cada vez maior de pessoas no mundo. Nos últimos anos, surgiram várias evidências de que essas duas doenças estão interligadas, sendo obesidade um fator de risco para a ocorrência de demência. A doença de Alzheimer é de mau prognóstico e de difícil tratamento e estão envolvidos na sua patogênese fatores genéticos e ambientais. A obesidade é encarada como um fator ambiental modificável e, talvez, capaz de mudar a história natural da doença se precocemente controlada. A cirurgia bariátrica é o tratamento mais eficaz para obesidade severa; no entanto, não se sabe claramente o efeito da cirurgia bariátrica sobre o metabolismo cerebral e a função cognitiva. OBJETIVOS: Avaliar prospectivamente o impacto da perda de peso induzida pela cirurgia bariátrica sobre metabolismo cerebral e função cognitiva de obesos; correlacionar metabolismo cerebral e função cognitiva antes e após a cirurgia bariátrica com marcadores metabólicos e inflamatórios. MÉTODOS: 17 mulheres obesas realizaram tomografia computadorizada com emissão de pósitrons com flúor-desoxi-glicose (PET-FDG) para avaliação do metabolismo cerebral de repouso (metabolismo glicolítico regional), testes neuropsicológicos para avaliação da função cognitiva e dosagens de marcadores metabólicos e inflamatórios antes e após a cirurgia bariátrica e, foram comparadas com 16 mulheres de peso normal, eutróficas, pareadas em idade e escolaridade. Foram excluídas da seleção pacientes portadoras de diabetes, usuárias de medicação psicotrópica nos três meses que antecederam as avaliações, portadoras de doença psiquiátrica grave atual ou prévia e mulheres com história de pais acometidos por demência antes dos 70 anos de idade. Nas mulheres obesas as avaliações do metabolismo cerebral, da função cognitiva e das dosagens laboratoriais foram realizadas antes e aproximadamente seis meses após a cirurgia bariátrica, enquanto nas mulheres eutróficas foram realizadas apenas uma vez. Os dados de imagem foram processados através do programa Statistical Parametric Mapping (SPM versão 8) e os demais através do Statistical Analysis System (SAS versão 9.3). Os dados encontrados nas obesas antes da cirurgia foram comparados aos obtidos após a perda de peso e, ambos foram comparados aos dados obtidos nas mulheres eutróficas. RESULTADOS: Mulheres com idade média de 40,5±9,1 anos e índice de massa corporal (IMC) médio de 50.1±4,7 kg/m2 quando comparadas a mulheres de mesma faixa etária com IMC médio de 22.3±2,1 kg/m2 apresentaram aumento do metabolismo cerebral em algumas áreas, principalmente do giro cingulado posterior, com valor de p corrigido para comparações múltiplas de 0,004. No entanto, não encontramos diferença no desempenho dos testes neuropsicológicos entre os grupos. Após a perda de peso, o metabolismo cerebral das mulheres obesas ficou semelhante ao das mulheres eutróficas e houve melhora no desempenho de teste que avalia função executiva (Trail Making Test). CONCLUSÃO: Estudos mostram que o giro cingulado posterior é uma das primeiras áreas acometidas pela doença de Alzheimer e que o aumento do metabolismo cerebral regional pode ser deletério. Esta condição encontrada em obesas, parece ser revertida após a perda de peso induzida por cirurgia bariátrica, acompanhando melhora da função executiva e de marcadores metabólicos e inflamatórios / INTRODUCTION: Obesity and Alzheimer\'s disease affect a growing number of people in the world. In recent years, evidence has arisen suggesting that these two illnesses are linked, with obesity being a risk factor for the occurrence of dementia. Alzheimer\'s disease has an unfavorable prognosis, is hard to treat and genetic and environmental factors are involved in the pathogenesis. Obesity is regarded as a modifiable environmental factor and maybe capable of changing the natural prognosis of the disease if controlled at an early stage. Bariatric surgery is the most effective treatment for severe obesity, however the effect of bariatric surgery on cerebral metabolism and cognitive function is not clearly known. OBJECTIVES: Prospectively assess the impact of weight loss caused by bariatric surgery on the cerebral metabolism and cognitive function of the obese. Correlate the cerebral metabolism and cognitive function before and after bariatric surgery with metabolic and inflammatory markers. METHODS: 17 obese women performed computerized positron emission tomography with fluoro-deoxy-glucose (FDG-PET) for the assessment of resting cerebral metabolism (regional glycolytic metabolism), neuropsychological tests to assess cognitive function and doses of metabolic and inflammatory markers before and after bariatric surgery and compared with 16 women of normal weight, eutrophic, paired by age and level of education. Patients with diabetes, those who had used psychotropic medication within three months prior to the assessments, people with current or previous history of severe psychiatric illness and women with a family history of dementia before 70 years of age. The assessments of cerebral metabolism, cognitive function and laboratory doses were conducted before and approximately 6 months after bariatric surgery in the obese women, whereas the women of normal weight were only assessed once. The imaging data was processed using the Statistic Parametric Mapping (SPM version 8) program and the others through the Statistical Analysis System (SAS version 9.3). The data found in the obese women prior to surgery were compared with those after the weight loss, and both were compared to the data taken from the eutrophic women. RESULTS: Women with a mean age of 40.5±9.1 years and mean body mass index (BMI) of 50.1±4.7 kg/m2 when compared to women of the same age group with mean BMI of 22.3±2.1 kg/m2 presented increased cerebral metabolism in some areas, in particular of the posterior cingulate gyrus, with a corrected p value for multiple comparisons of 0.004. However, differences were not found between the groups for the performance of the neuropsychological tests. After weight loss, the cerebral metabolism of the obese women was similar to the eutrophic women and they performed better in the tests to assess executive function (Trail Making Test). CONCLUSION: Studies show that the posterior cingulate gyrus is one of the first areas affected by Alzheimer\'s disease and that having increased regional cerebral metabolism may be deleterious. This condition found in the obese, appears to be reversed after weight loss induced by bariatric surgery, followed by improved executive function and metabolic and inflammatory markers
196

Brain activity associated with episodic memory : similarities and differences between encoding and retrieval

Persson, Jonas January 2002 (has links)
Understanding the mnemonic functions of the brain has been extensively facilitated by the development of functional neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The present thesis aims at investigating the neural mechanisms underlying memory for personally experienced events (episodic memory), using PET. In paper I, similarities between encoding and retrieval of enacted (motor) information were explored. We observed increased retrieval activation in right premotor areas in the brain when sentences encoded by motor enactment and sentences encoded by maintenance rehearsal were contrasted. In paper II, overlap between encoding and retrieval was explicitly tested for three types of event information: spatial, item, and temporal. Using conjunction analyses, we found that encoding and retrieval of spatial information was associated with increased brain activity in bilateral inferior parietal regions. Encoding and retrieval of item information were related to increased activation in right inferior temporal cortex, and encoding and retrieval of temporal information were associated with increased activation in left inferior temporal and left inferior frontal cortex. In paper III, brain activity associated with retrieval success was examined. Conditions included three levels of retrieval success (high, medium, and low level), for two types of information (pictures and sentences). The results showed a pattern of activation that distinguished between brain regions involved in processing of sentences vs. processing of pictures. A second pattern that distinguished between brain regions involved in encoding vs. retrieval processes, irrespectively of material (sentences and pictures) and retrieval success, was also found. The manipulation of retrieval success was associated with systematic changes in the correlation between material specific regions and other areas of the brain. In study IV, changes in activation related to successful retrieval of pictures were investigated. More specifically, we expected to find decreases in infero-temporal (IT) regions of the brain that were associated with successful recognition memory. As expected, we found a region in left IT cortex that showed decreased activation related to memory for event information. This decrease in activation could be dissociated from responses related to novelty detection, and perceptual priming. The results from study I and II are discussed in relation to findings and theories regarding similarities between encoding and retrieval processes, and reactivation of modality-specific brain areas important for memory storage. The results from studies III and IV are discussed in relation to differences between encoding and retrieval processes, e.g. asymmetric frontal activation and sub-processes of episodic memory, such as retrieval mode, retrieval success, and novelty detection. Taken together, the studies show that different episodic memory processes are correlated with distinct brain areas, hence supporting the view that remembering is based on multiple component processes. / digitalisering@umu.se
197

Synthèse de nouveaux ligands pour l'imagerie de la neuroinflammation par tomographie par émission de positons / Synthesis of novel ligands for neuroinflammation imaging using Positron Emission Tomography

Cacheux, Fanny 18 October 2016 (has links)
La neuroinflammation joue un rôle important dans de nombreuses maladies neurodégénératives telles que la maladie d’Alzheimer, Parkinson, ou encore la sclérose en plaques. De récents développements en imagerie moléculaire permettent aujourd’hui un meilleur diagnostique et un meilleur suivi thérapeutique de ces maladies. Parmi les techniques d’imagerie dont nous disposons actuellement, la Tomographie par Emission de Positions (TEP) et Tomographie par Emission Mono Photonique (TEMP) jouent un rôle important de par leur haute sensibilité et leurs aspects quantitatifs. L’objectif de ma thèse est de développer de nouveaux ligands et radioligands dédiés à l’imagerie de cibles spécifiques impliquées dans les processus de neuroinflammation. Pour ce faire, la TEP et ses émetteurs de positons à vie brève associés (notamment le fluor-18 ; T1/2 : 109.8 min) constituent un outil de choix. Le projet est divisé en deux sections principales. La première est dédiée au développement de ligands ciblant la protéine de Translocation 18 kDa (TSPO). Cette protéine est aujourd’hui reconnue comme un biomarqueur précoce des processus neuroinflammatoires, et de nombreux ligands ont déjà été synthétisés pour cette cible. Le plus anciens d’entre eux est le PK11195 appartenant à la famille des isoquinoléines, qui a été marqué au carbone-11 à la fin des années 80. Plus récemment, d’autres familles de composés ont vu le jour, et notamment la familles des pyrazolopyrimidines avec le [11C]DPA-713, ainsi que celle des pyridazinoindoles avec le [11C]SSR180575. A travers cette première partie de ma thèse, l’objectif est de synthétiser et de caractériser in vitro de nouveaux ligands dérivés des deux composés leaders de ces deux familles. Les précurseurs de marquage correspondant ont également été synthétisés pour les composés les plus prometteurs, permettant ainsi un radiomarquage au fluor-18. Certains résultats ont par ailleurs été présentés lors d’un congrès international (21st International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA – Mai 26-31, 2015)). La seconde partie de ma thèse est dédiée au développement de ligands pour des cibles alternatives à la TSPO, qui sont les récepteurs cannabinoïdes de type 2 (CB2R), et les récepteurs purinergiques P2Y12 et P2Y14. Ces nouvelles cibles, récemment émergées présentent un fort potentiel pour de nouvelles opportunités en imagerie. Une nouvelle série de sept composés a par ailleurs déjà été synthétisée en ce qui concerne le CB2R. Les précurseurs des molécules les plus prometteuses ont également été préparés. La synthèse des ligands dédiés aux récepteurs purinergiques a été initiée, et un premier couple référence /précurseur a été obtenu. / Neuroinflammation plays an important role in many neurodegenerative diseases (Alzheimer, Parkinson, Multiple sclerosis …) and recent developments in molecular imaging provide today new insights into the diagnostic and the treatement managment of these diseases. Among the existing imaging techniques, the highly sensitive and quantitative nuclear modalities SPECT (single photon emission computed tomography) but especially PET (positron emission tomography) play key roles. My PhD program is devoted to the design and synthesis of novel radioligands, all dedicated to the imaging of specific targets and processes linked to neuroinflammation. For this, PET and the short-lived positron-emitter fluorine-18 (T1/2: 109.8 min) remain the main focuses. The project has been divided into two sections, the first one concentrates on the development of novel ligands targeting the Translocator Protein 18 kDa (TSPO). Indeed, this target is today recognized as an early biomarker of neuroinflammatory processes and PK11195, an isoquinoline carboxamide labelled with carbon-11, was, in the late 80’s, the first reported PET-radioligand. More recently, new compounds, all belonging to different chemical classes, have emerged and notably the pyrazolopyrimidine acetamide [11C]DPA-713 and the pyridazinoindole acetamide [11C]SSR180575. Within the first section of my PhD, novel derivatives of both DPA-713 and SSR180575 have been synthesized and in vitro characterized. Dedicated precursors for labelling were also developed for the most promising candidates, and radiolabelling has been performed. Some results have been presented at the 21st International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA – May 26-31, 2015).The second part of my PhD, deals with the development of ligands for alternative targets to the TSPO, like the type-2 cannabinoid receptor (CB2R) and the purinergic P2Y14 / P2Y12 receptors, the latter emerging today as a hot topic for imaging opportunities. Up to now, a series of seven compounds targeting the CB2R has been successfully synthetized and in vitro characterized. Dedicated precursors of the most promising compounds have also been prepared and labelling will be shortly performed. The synthesis of ligands targeting the purinergic receptors has also been initiated and a first couple of reference / precursor has been obtained for the P2Y12R.
198

Stade prodromal de la maladie d'Alzheimer : nature des déficits mnésiques et liens avec les biomarqueurs d'imagerie. / Prodromal stage of Alzheimer's disease : nature of memory deficits and link with imaging biomarkers

Tomadesso, Clemence 17 December 2018 (has links)
La complémentarité des outils de neuroimagerie et de neuropsychologie permettent de mieux comprendre les liens complexes entre le syndrome clinique et les lésions pathologiques de la maladie d’Alzheimer (MA). Les objectifs de cette thèse étaient de mieux caractériser la nature des déficits mnésiques au stade prodromal de la MA et leurs liens avec les biomarqueurs d’imagerie. Dans un premier temps, nous avons étudié l’atteinte des souvenirs récents versus anciens en mémoire autobiographique au stade prodromal et ses corrélats cognitifs, cérébraux structuraux et fonctionnels. Nos résultats suggèrent une atteinte plus précoce des souvenirs récents et de ses substrats cérébraux et cognitifs. Nous nous sommes ensuite intéressés aux différences quantitatives et qualitatives entre les patients amyloïdes positifs et négatifs au niveau cognitif (avec un focus sur la mémoire épisodique) et cérébraux structuraux et fonctionnels. Nos travaux montrent que la présence d’amyloïde chez les patients au stade prodromal se répercute par des profils particuliers au niveau cognitif et plus particulièrement en mémoire épisodique (score global, autobiographique et effet de primauté) ce que la neuroimagerie ne parvient pas à mettre en évidence. Dans une dernière étude, nous avons évalué les modifications lors du vieillissement normal et pathologique (MA) de la concentration plasmatique de tissue plasminogen activator (tPA), une molécule impliquée dans les processus de mémoire, neurodégénérescence, inflammation et dans l’élimination des dépôts amyloïde. Nous avons ainsi pu montrer que la concentration plasmatique de tPA augmentait avec l’âge alors qu’elle n’est pas affectée par la pathologie. Une augmentation du niveau de tPA aurait un effet négatif sur le cerveau. En conclusion, une évaluation neuropsychologique détaillée particulièrement en mémoire épisodique pourrait refléter la présence de la pathologie amyloïde au stade prodromal de la MA et ceci de façon plus efficace que les biomarqueurs d’imagerie classiques. / The complementarity of neuroimaging and neuropsychological tools allows to better understand the complex links between the clinical syndrome and the neuropathological lesions of Alzheimer’s disease (AD). The objectives of this thesis were to better characterize the nature of memory deficits at the prodromal stage of AD and their links with imaging biomarkers. First, we studied the alterations and the cognitive and brain substrates of recent versus remote autobiographical memories in prodromal AD. Our results reveal that there is an earlier alteration of recent memories and of their cognitive and brain substrates. Secondly, we were interested in quantitative and qualitative differences between amyloid positive and negative patients on cognitive (focusing on episodic memory) and brain structural and functional measures. We demonstrated that the presence of amyloid in the brain of patients at the prodromal stage is associated with a specific cognitive profile including greater episodic memory deficits (global score, autobiographical memory, and primacy effect), more than to a specific profile of brain alteration. Then, we evaluated the changes in normal and pathological aging (AD) in the plasma concentration of tissue plasminogen activator (tPA; a molecule implicated in memory neurodegeneration, inflammation and amyloid degradation processes) and their impact on brain integrity. We showned that tPA plasma concentration was increased with age, with a negative effect on brain structure, while it was not affected by AD. Overall, this thesis highlights that a detailed neuropsychological evaluation particularly in episodic memory could reflect specific AD-related brain alterations in the prodromal stage, more efficiently than classical imaging biomarkers.
199

Messung thorakaler [18F]Fluordesoxyglukose-Aufnahme mittels Positronen-Emissions-Tomographie/Computertomographie bei Patienten mit pulmonaler Hypertonie

Frille, Armin 02 November 2017 (has links)
Positron emission tomography (PET) visualizes increased cellular [18F]fluorodeoxyglucose ([18F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [18F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [18F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH. Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated. The [18F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm5 (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [18F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r=0.55, r=0.42, respectively). Pulmonary and cardiac [18F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to play a certain role in terms of severity of PH. These results suggest that [18F]FDG-PET imaging can help understand the pathophysiology of PH as a proliferative pulmonary disease.
200

Positron Emission Tomography for the dose monitoring of intra-fractionally moving Targets in ion beam therapy

Stützer, Kristin January 2014 (has links)
Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumour conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumour volume to reach higher tumour control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumour entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumour sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany. High standards for quality assurance are required in IBT to ensure a safe and precise dose application. Both underdosage in the tumour and overdosage in the normal tissue might endanger the treatment success. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. It makes use of the tissue autoactivation by nuclear fragmentation reactions occurring along the beam path. Among others, +-emitting nuclides are generated and decay according to their half-life under the emission of a positron. The subsequent positron-electron annihilation creates two 511 keV photons which are emitted in opposite direction and can be detected as coincidence event by a dedicated PET scanner. The induced three-dimensional (3D) +- activity distribution in the patient can be reconstructed from the measured coincidences. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two +-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. This workflow has been proven to be valuable for the dose monitoring in IBT when it was applied for about 440 patients, mainly suffering from deep-seated head and neck tumours that have been treated with 12C ions at GSI. In the presence of intra-fractional target motion, the conventional 3D PET data processing will result in an inaccurate representation of the +-activity distribution in the patient. Fourdimensional, time-resolved (4D) reconstruction algorithms adapted to the special geometry of in-beam PET scanners allow to compensate for the motion related blurring artefacts. Within this thesis, a 4D maximum likelihood expectation maximization (MLEM) reconstruction algorithm has been implemented for the double-head scanner Bastei installed at GSI. The proper functionality of the algorithm and its superior performance in terms of suppressing motion related blurring artefacts compared to an already applied co-registration approach has been demonstrated by a comparative simulation study and by dedicated measurements with moving radioactive sources and irradiated targets. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the successful reduction of motion artefacts from a measurement with rotating (two-dimensional moving) radioactive sources. For 1D cos2 and cos4 motion, it has been clearly illustrated by systematic point source measurements that the motion influence can be better compensated with the same number of motion phases if amplitudesorted instead of time-sorted phases are utilized. In any case, with an appropriate parameter selection to obtain a mean residual motion per phase of about half of the size of a PET crystal size, acceptable results have been achieved. Additionally, it has been validated that the 4D MLEM algorithm allows to reliably access the relevant parameters (particle range and lateral field position and gradients) for a dose verification in intra-fractionally moving targets even from the intrinsically low counting statistics of IBT-PET data. To evaluate the measured +-activity distribution, it should be compared to a simulated one that is expected from the moving target irradiation. Thus, a 4D version of the simulation software is required. It has to emulate the generation of +-emitters under consideration of the intra-fractional motion, their decay at motion state dependent coordinates and to create listmode data streams from the simulated coincidences. Such a revised and extended version that has been compiled for the special geometry of the Bastei PET scanner is presented within this thesis. The therapy control system provides information about the exact progress of the motion compensated dose delivery. This information and the intra-fractional target motion needs to be taken into account for simulating realistic +-activity distributions. A dedicated preclinical phantom simulation study has been performed to demonstrate the correct functionality of the 4D simulation program and the necessity of the additional, motionrelated input parameters. Different to the data evaluation for static targets, additional effort is required to avoid a potential misleading interpretation of the 4D measured and simulated +-activity distributions in the presence of deficient motion mitigation or data processing. It is presented that in the presence of treatment errors the results from the simulation might be in accordance to the measurement although the planned and delivered dose distribution are different. In contrast to that, deviations may occur between both distributions which are not related to anatomical changes but to deficient 4D data processing. Recommendations are given in this thesis to optimize the 4D IBT-PET workflow and to prevent the observer from a mis-interpretation of the dose monitoring data. In summary, the thesis contributes on a large scale to a potential future application of the IBT-PET monitoring for intra-fractionally moving target volumes by providing the required reconstruction and simulation algorithms. Systematic examinations with more realistic, multi-directional and irregular motion patterns are required for further improvements. For a final rating of the expectable benefit from a 4D IBT-PET dose monitoring, future investigations should include real treatment plans, breathing curves and 4D patient CT images.

Page generated in 0.1195 seconds