• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 90
  • 63
  • 34
  • 22
  • 20
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 612
  • 612
  • 101
  • 98
  • 97
  • 89
  • 88
  • 86
  • 85
  • 84
  • 54
  • 54
  • 49
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

Rast, Timothy J., Kullas, Amy L., Southern, Peter J., Davis, Dana A. 18 April 2016 (has links)
The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.
142

NEUROPILIN IN THE VASCULAR SYSTEM: MECHANISTIC BASIS OF ANGIOGENESIS

Guo, Hou-Fu 01 January 2014 (has links)
The vascular system is critical for maintaining homeostasis in all vertebrates. Structural studies of Neuropilin (Nrp), an essential angiogenic receptor, have defined its role in regulating angiogenesis, the formation of new vessels from the existing vasculature. Utilizing biochemical and biophysical tools we describe the ability of Nrp to function as a co-receptor for the VEGFR receptor tyrosine kinase. Two families of Nrp-1 ligands, Vascular Endothelial Growth Factor A (VEGF-A) and Semaphorin3F (Sema3F), physically compete for binding to the Nrp-1 b1 domain, and have opposite roles. VEGF-A is a potent pro-angiogenic cytokine while Sema3F is an angiogenesis inhibitor. Using coupled structural and functional studies, we have discovered the basis for potent competitive binding of Sema3F to Nrp1 requires engagement of two distinct binding sites. These data provide a basis for understanding the rational design of novel high affinity Nrp-1 inhibitor.
143

Models of coupled smooth muscleand endothelial cells

Shaikh, Mohsin Ahmed January 2011 (has links)
Impaired mass transfer characteristics of blood borne vasoactive species such as ATP in regions such as an arterial bifurcation have been hypothesized as a prospective mechanism in the aetiology of atherosclerotic lesions. Arterial endothelial (EC) and smooth muscle cells (SMC) respond differentially to altered local hemodynamics and produce coordinated macro-scale responses via intercellular communication. Using a computationally designed arterial segment comprising large populations of mathematically modelled coupled ECs & SMCs, we investigate their response to spatial gradients of blood borne agonist concentrations and the effect of micro-scale driven perturbation on the macro-scale. Altering homocellular (between same cell type) and heterocellular (between different cell types) intercellular coupling we simulated four cases of normal and pathological arterial segments experiencing an identical gradient in the concentration of the agonist. Results show that the heterocellular calcium (Ca2+) coupling between ECs and SMCs is important in eliciting a rapid response when the vessel segment is stimulated by the agonist gradient. In the absence of heterocellular coupling, homocellular Ca2+ coupling between smooth muscle cells is necessary for propagation of Ca2+ waves from downstream to upstream cells axially. Desynchronized intracellular Ca2+ oscillations in coupled smooth muscle cells are mandatory for this propagation. Upon decoupling the heterocellular membrane potential, the arterial segment looses the inhibitory effect of endothelial cells on the Ca2+ dynamics of underlying smooth muscle cells. The full system comprising hundreds of thousands of coupled nonlinear ordinary differential equations simulated on the massively parallel Blue Gene architecture. The use of massively parallel computational architectures shows the capability of this approach to address macro-scale phenomena driven by elementary micro-scale components of the system.
144

Homogenised models of Smooth Muscle and Endothelial Cells.

Shek, Jimmy January 2014 (has links)
Numerous macroscale models of arteries have been developed, comprised of populations of discrete coupled Endothelial Cells (EC) and Smooth Muscle Cells (SMC) cells, an example of which is the model of Shaikh et al. (2012), which simulates the complex biochemical processes responsible for the observed propagating waves of Ca2+ observed in experiments. In a 'homogenised' model however, the length scale of each cell is assumed infinitely small while the population of cells are assumed infinitely large, so that the microscopic spatial dynamics of individual cells are unaccounted for. We wish to show in our study, our hypothesis that the homogenised modelling approach for a particular system can be used to replicate observations of the discrete modelling approach for the same system. We may do this by deriving a homogenised model based on Goldbeter et al. (1990), the simplest possible physiological system, and comparing its results with those of the discrete Shaikh et al. (2012), which have already been validated with experimental findings. We will then analyse the mathematical dynamics of our homogenised model to gain a better understanding of how its system parameters influence the behaviour of its solutions. All our homogenised models are essentially formulated as partial differential equations (PDE), specifically they are of type reaction diffusion PDEs. Therefore before we begin developing the homogenised Goldbeter et al. (1990), we will first analyse the Brusselator PDE with the goal that it will help us to understand reaction diffusion systems better. The Brusselator is a suitable preliminary study as it shares two common properties with reaction diffusion equations: oscillatory solutions and a diffusion term.
145

Dissecting Tumor Response to Radiation Therapy Using Genetically Engineered Mouse Models

Moding, Everett James January 2015 (has links)
<p>Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their illness. Despite advances in radiation delivery and treatment planning, normal tissue toxicity often limits the ability of radiation to eradicate tumors. The tumor microenvironment consists of tumor cells and stromal cells such as endothelial cells that contribute to tumor initiation, progression and response to therapy. Although endothelial cells can contribute to normal tissue injury following radiation, the contribution of stromal cells to tumor response to radiation therapy remains controversial. To investigate the contribution of endothelial cells to the radiation response of primary tumors, we have developed the technology to contemporaneously mutate different genes in the tumor cells and stromal cells of a genetically engineered mouse model of soft tissue sarcoma. Using this dual recombinase technology, we deleted the DNA damage response gene <italic>Atm</italic> in sarcoma and heart endothelial cells. Although deletion of <italic>Atm</italic> increased cell death of proliferating tumor endothelial cells, <italic>Atm</italic> deletion in quiescent endothelial cells of the heart did not sensitize mice to radiation-induced myocardial necrosis. In addition, the ATM inhibitor NVP-BEZ235 selectively radiosensitized primary sarcomas, demonstrating a therapeutic window for inhibiting ATM during radiation therapy. Sensitizing tumor endothelial cells to radiation by deleting <italic>Atm</italic> prolonged tumor growth delay following a non-curative dose of radiation, but failed to increase local control. In contrast, deletion of <italic>Atm</italic> in tumor parenchymal cells increased the probability of tumor eradication. These results demonstrate that tumor parenchymal cells rather than endothelial cells are the critical targets that regulate tumor eradicaiton by radiation therapy.</p> / Dissertation
146

Rôle de l'adrénomédulline dans la néoangiogenèse tumorale des glioblastomes / Role of adrenomedullin in the tumoral angiogenesis of glioblastoma

Khalfaoui-Bendriss, Ghizlane 13 December 2010 (has links)
La croissance tumorale et le processus de métastatisation dépendent de la néoformation de vaisseaux sanguins ou néoangiogenèse. Parmi les molécules intervenant dans ce processus, l'adrenomédul1ine (AM) est un peptide, dont l'expression est corrélée à l'agressivité de certaines tumeurs, et qui représente un maillon «clé» dans les interactions entre les cellules tumorales et les cellules du microenvironnement. Les résultats spectaculaires qu'offre le traitement des xénogreffes de cellules issues de glioblastomes (GBM) humains par les anticorps dirigés contre l'AM ou son récepteur sont très encourageants, puisque la tumeur traitée régresse en quelques semaines, la vascularisation tumorale s'en trouve touchée de manière spécifique. C'est dans ce contexte, que nous avons choisi de poursuivre notre travail sur les mécanismes d'action de l'AM dans la néoangiogenèse. Grâce à des études in vitro et in vivo, nous avons pu montrer que l'AM est impliquée dans plusieurs étapes de la néoangiogenèse tumorale : migration des cellules endothéliales, stabilisation des contacts endothéliaux et endothélio-péricytaires, recrutement des cellules mésenchymateuses. Nos résultats démontrent que nous sommes en présence d'une molécule d'AM qui agit sur diverses cibles moléculaires et cellulaires, régulant la stabilité du complexe d”adhésion intercellulaire VE-cadhérine/-caténine, nécessaire à la protection des interactions homotypiques et hétérotypiques de l°endothélium nouvellement formé. Ainsi, l'étude des mécanismes d'action de l'AM réalisée pennettra d'établir ue stratégie thérapeutique autour de l'AM. / Tumoral growth and process of metastatization depend on the formation of new blood vessels or angiogenesis. Among the molecules implicated in this process, adrenomedullin (AM) is a peptide, which expression is correlated with the aggressiveness of tumors, and which represents a "key" link in the interactions between tumoral cells and the microenvironment cells. The spectacular results offered by the treatment of human glioblastoma (GBM) xenograft by antibodies directed against the AM or its receptor are very encouraging, as the treated tumor declines in some weeks, and the tumoral vascularization is also touched in a specific way. In this context, we chose to pursue our work on the mechanisms of action of AM in angiogenesis. In vitro and in vivo studies showed that AM is involved in several stages of tumoral angiogenesis : migration of endothelial cells, stabilization of endothelial contacts, stabilization of the pericyte coverage, recruitment of multipotent cells. Our results demonstrate that we are in presence of a molecule of AM which acts on diverse molecular and cellular targets, regulating the stability of the VE-cadherin/β-catenin complex, required for the protection of the homotypics and heterotypics interactions of the newly formed endothelium. The study of the mechanisms of action of AM realized will allow us to establish a therapeutic strategy around AM.
147

Innate immunity in human atherosclerosis and myocardial infarction : Role of CARD8 and NLRP3

Paramel Varghese, Geena January 2017 (has links)
Atherosclerosis is complex inflammatory disease of the arterial wall with progressive accumulation of lipids and narrowing of the vessel. Increasing evidence suggest that inflammation plays an important role in plaque stability and often accelerate cardiovascular events such as myocardial infarction (MI). Among the vast number of inflammatory cytokines, IL-1β is known to be a key modulator in vessel wall inflammation and acceleration of the atherosclerotic process. The biologically active IL-1β is regulated by a multiprotein complex known as the NLRP3 inflammasome complex. In this thesis, we have focused on polymorphisms in the NLRP3 and CARD8 genes and their possible association to atherosclerosis and/or MI. We have also investigated the expression of inflammasome components NLRP3 and CARD8 in atherosclerosis and the role of genetic variants for the expression of these genes. The expression of NLRP3, CARD8, ASC, caspase-1, IL-1β, and IL-18 were found significantly upregulated in atherosclerotic lesions compared to normal arteries. Human carotid plaques not only express the NLRP3 inflammasome, but also release IL-1β upon exposure to lipopolysaccharide (LPS), adenosine triphosphate (ATP) and cholesterol crystals, which suggest NLRP3 inflammasome activation in human atherosclerotic lesions. Also, CARD8 was found to be important in the regulation of several inflammatory markers in endothelial cells, like RANTES, IP10 and ICAM-1. We further assessed the potential association of a CARD8 polymorphism and polymorphisms located downstream of the NLRP3 gene to the risk of MI in two independent Swedish cohorts. The CARD8 variant exhibited no association to risk of MI in either of the two cohorts. Some of the minor alleles of NLRP3 variants were associated with increased IL-1β levels and to NLRP3 mRNA levels in peripheral blood monocytic cells (PBMC). Taken together, the present thesis shows that NLRP3 inflammasome activation and increased expression of CARD8 in the atherosclerotic plaque might be possible contributors to the enhanced inflammatory response and leukocyte infiltration in the pathophysiology of atherosclerosis.
148

Induced pluripotent stem cells from patients with hypoplastic left heart syndrome (HLHS) as a model to study functional contribution of endothelial-mesenchymal transition (EndMT) in HLHS

Liu, Xiaopeng 28 November 2016 (has links)
No description available.
149

Characterization Of A Non-Canonical Function For Threonyl-Trna Synthetase In Angiogenesis

Mirando, Adam Christopher 01 January 2015 (has links)
In addition to its canonical role in aminoacylation, threonyl-tRNA synthetase (TARS) possesses pro-angiogenic activity that is susceptible to the TARS-specific antibiotic borrelidin. However, the therapeutic benefit of borrelidin is offset by its strong toxicity to living cells. The removal of a single methylene group from the parent borrelidin generates BC194, a modified compound with significantly reduced toxicity but comparable anti-angiogenic potential. Biochemical analyses revealed that the difference in toxicities was due to borrelidin's stimulation of amino acid starvation at ten-fold lower concentrations than BC194. However, both compounds were found to inhibit in vitro and in vivo models of angiogenesis at sub-toxic concentrations, suggesting a similar mechanism that is distinct from the toxic responses. Crystal structures of TARS in complex with each compound indicated that the decreased contacts in the BC194 structure may render it more susceptible to competition with the canonical substrates and permit sufficient aminoacylation activity over a wider concentration of inhibitor. Conversely, both borrelidin and BC194 induce identical conformational changes in TARS, providing a rationale for their comparable effects on angiogenesis. The mechanisms of TARS and borrelidin-based compounds on angiogenesis were subsequently tested using zebrafish and cell-based models. These data revealed ectopic branching, non-functional vessels, and increased cell-cell contracts following BC194-treatment or knockdown of TARS expression, suggesting a role for the enzyme in the maturation and guidance of nascent vasculature. Using various TARS constructs this function was found to be dependent on two interactions or activities associated with the TARS enzyme that are distinct from its canonical aminoacylation activity. Furthermore, observations that TARS may influence VEGF expression and purinergic signaling suggest the possibility for a receptor-mediated response. Taken together, the results presented here demonstrate a clear role for TARS in angiogenesis, independent of its primary function in translation. Although the exact molecular mechanisms through which TARS and borrelidin regulate this activity remain to be determined, these data provide a foundation for future investigations of TARS's function in vascular biology and its use as a target for angiogenesis-based therapy.
150

Biochemical and microscale modification of polymer for endothelial cell angiogenesis / Fonctionnalisation de polymère par des ligands bioactifs et contrôle de leurs distributions à l'échelle micrométrique pour l'induction de l'angiogenèse

Lei, Yifeng 10 October 2012 (has links)
La création d'un réseau vasculaire fonctionnel est une préoccupation importante afin d'assurer la parfaite vitalité des produits d’ingénierie tissulaire (IT). La compréhension des mécanismes de l'angiogenèse est essentielle dans un objectif de synthèse de produits d’ingénierie tissulaire vascularisés. Dans ce travail, nous avons visé à caractériser le microenvironnement responsable de l'angiogenèse des cellules endothéliales (CEs). Pour cela, nous avons élaboré des biomatériaux bioactifs (polymères fonctionnalisés par des peptides, et contrôlé leur distribution à l'échelle micrométrique) afin de mimer une situation physiologique des CEs.Dans en premier temps, nous avons mis au point une stratégie de fonctionnalisation biochimique d’un matériau polymère (le polyéthylène téréphtalate, PET) en utilisant des peptides spécifiques des CEs. L'immobilisation de ces peptides a permis d’assurer une bioactivité de ces surfaces, et l’amélioration des fonctions des CEs comme l'adhésion, l’étalement et la migration cellulaire.Ensuite, notre travail s’est inscrit dans l’évaluation de l’impact d’une distribution contrôlée de peptides en surface de matériaux (acquise par photolithographie) sur le comportement des CEs et sur l’angiogenèse. Nos résultats ont montré que les CEs adhèrent et sont alignés sur les « micropatterns » peptidiques quelle que soit la taille de ces « micropatterns » (lignes de largeurs comprises entre 10 et 100 µm). Nous avons mis en évidence que la taille des « micropatterns » bioactifs a un réel impact sur le comportement des CEs (l’étalement, l'orientation et la migration cellulaire). La morphogenèse des CEs (la formation d’un « tube-like ») a été mise en évidence sur des matériaux microstructurés par des lignes peptidiques de 10 et 50 µm de largeur, quels que soient les peptides RGD ou SVVYGLR immobilisés en surface. Nous avons montré que la lumière de structures tubulaires peut être constituée d’une à quatre cellules selon la contrainte géométrique appliquée sur les « micropatterns ». Nos travaux ont montré que le « sprouting » ainsi que la formation du réseau vasculaire peuvent être induits seulement sur des surfaces « micropatternés » par des peptides SVVYGLR. Nos résultats démontrent que l'induction de l'angiogenèse est multiparamétrique. Celle-ci est dépendante de constituants biochimiques ainsi que de leur micro-distribution.Troisièmement, nous avons utilisé la modélisation mathématique pour comprendre l'impact de « micropatterns » bioactifs sur la migration des CEs. Un modèle de type continu Patlak-Keller-Segel a été utilisé, et les résultats numériques sont bien conformes avec nos résultats expérimentaux. Pour finir, nos travaux se sont focalisés sur l'étude de la stabilisation de ces structures tubulaires. Les résultats ont montré que les cocultures de CEs avec les péricytes, ainsi que le recrutement de composant de membrane basale (Matrigel) peuvent stabiliser ces structures vasculaires.En conclusion générale, le travail réalisé dans cette thèse a prouvé que le « micropatterning » des principes bioactifs sur polymères est efficace pour stimuler l'angiogenèse et pour construire une vascularisation fonctionnelle. Enfin, ce travail a permis de comprendre la biologie de l’angiogenèse et pourra aider indéniablement tous les travaux en cours s’inscrivant dans l’ingénierie tissulaire. / The creation of a functional vascular network is a major concern to ensure the vitality of perfect tissue engineered products. Understanding the mechanisms of angiogenesis is essential for the vascularization in tissue engineering. In this work, we aimed to characterize the microenvironment responsible for angiogenesis of endothelial cells. To achieve this request, we developed bioactive biomaterials (polymers functionalized mainly with peptides, and controlled their distribution at micrometer scale) to mimic a physiological microenvironment of endothelial cells. First, we developed the biochemical functionalized of polymer materials (polyethylene terephthalate, PET) using endothelial cell specific peptides. The peptide immobilization ensured the bioactivity onto material surfaces, and enhanced endothelial cell functions such as cell adhesion, spreading and migration. Second, we introduced photolithographical technique to control geometrical distribution of peptides on material surfaces, and studied the effects of peptide micropatterning onto endothelial cell (EC) angiogenesis. ECs were adhered and aligned onto peptides micropatterns whatever the size of peptide micropatterns. However, EC behaviors (cell spreading, orientation and migration) were significantly more regulated on smaller micropatterns (10 and 50 µm) than on larger stripes (100 µm). EC morphogenesis into tube formation can also switch onto the smaller micropatterns (10 and 50 µm) with either RGD or SVVYGLR peptides. The central lumen of tubular structures can be formed by single-to-four cells due to geometrical constraints applied on the micropatterns. Sprouting angiogenesis of ECs and vascular network formation can be induced on surfaces micropatterned with angiogenic SVVYGLR peptides. Our overall results revealed that the induction of angiogenesis is multi-parametric. This is dependent on biochemical constituents and their micro-distributions. Third, we employed mathematical modeling to understand the impact of bioactive micropatterns on endothelial cell migration. A continuous Patlak-Keller-Segel type model was used, and the numerical results were in well accordance with our experimental results.Furthermore, we also developed the study of stabilization of tubulogenenic structure in this thesis. The results showed that the co-cultures of endothelial cells with pericytes, as well as the recruitment of basement membrane components (Matrigel) can stabilize the vascular tube structures. In general conclusion, our work in this thesis proved that bioactive micropatterning of polymer is effective to stimulate angiogenesis and to construct functional vascularization. This work helps us to understand the fundamental biology of angiogenesis, and has great potential for application in tissue engineering.

Page generated in 0.0878 seconds