Spelling suggestions: "subject:"enzymatique"" "subject:"enzymatiques""
241 |
Directed evolution of human dihydrofolate reductase: towards a better understanding of binding at the active siteFossati, Elena 11 1900 (has links)
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire, ce qui en fait une cible de choix pour le traitement de différents cancers. À cet effet, plusieurs inhibiteurs spécifiques de la DHFRh, les antifolates, ont été mis au point : le méthotrexate (MTX) et le pemetrexed (PMTX) en sont de bons exemples. Malgré l’efficacité clinique certaine de ces antifolates, le développement de nouveaux traitements s’avère nécessaire afin de réduire les effets secondaires liés à leur utilisation. Enfin, dans l’optique d’orienter la synthèse de nouveaux composés inhibiteurs des DHFRh, une meilleure connaissance des interactions entre les antifolates et leur enzyme cible est primordiale.
À l’aide de l’évolution dirigée, il a été possible d’identifier des mutants de la DHFRh pour lesquels l’affinité envers des antifolates cliniquement actifs se voyait modifiée. La mutagenèse dite ¬¬de saturation a été utilisée afin de générer des banques de mutants présentant une diversité génétique au niveau des résidus du site actif de l’enzyme d’intérêt. De plus, une nouvelle méthode de criblage a été mise au point, laquelle s’est avérée efficace pour départager les mutations ayant entrainé une résistance aux antifolates et/ou un maintient de l’activité enzymatique envers son substrat natif, soient les phénotypes d’activité. La méthode de criblage consiste dans un premier temps en une sélection bactérienne à haut débit, puis dans un second temps en un criblage sur plaques permettant d’identifier les meilleurs candidats. Plusieurs mutants actifs de la DHFRh, résistants aux antifolates, ont ainsi pu être identifiés et caractérisés lors d’études de cinétique enzymatique (kcat et IC50). Sur la base de ces résultats cinétiques, de la modélisation moléculaire et des données structurales de la littérature, une étude structure-activité a été effectuée. En regardant quelles mutations ont les effets les plus significatif sur la liaison, nous avons commencé à construire un carte moléculaire des contacts impliqués dans la liaison des ligands. Enfin, des connaissances supplémentaires sur les propriétés spécifiques de liaison ont put être acquises en variant l’inhibiteur testé, permettant ainsi une meilleure compréhension du phénomène de discrimination du ligand. / Human dihydrofolate reductase (hDHFR) is an essential enzyme for cellular proliferation and it has long been the target of antifolate drugs for the treatment of various types of cancer. Despite the clinical effectiveness of current antifolate treatments, new drugs are required to reduce the side-effects associated with their use. An essential requirement for design of new antifolates is a better understanding of how these drugs interact with their targets.
We applied directed evolution to identify mutant hDHFR variants with modified binding to some clinically relevant antifolates. A saturation mutagenesis approach was used to create genetic diversity at active-site residues of hDHFR and a new, efficient screening strategy was developed to identify the amino acids that preserved native activity and/or conferred antifolate resistance. The screening method consists in a high-throughput first-tier bacterial selection coupled with a second-tier in vitro assay that allows for rapid detection of the best variants among the leads, according to user-defined parameters. Many active, antifolate-resistant mutants of hDHFR were identified. Moreover, the approach has proven efficient in rapidly assessing kinetic (kcat) and inhibition parameters of the hDHFR variants (IC50). Structure-function relationship analysis based on kinetic investigation, available structural and functional data as well as modeling were performed. By monitoring which mutations have the greatest effect on binding, we have begun to build a molecular picture of the contacts involved in drug binding. By varying the drugs we test against, we gain a better understanding of the specific binding properties that determine ligand discrimination.
|
242 |
La dihydrofolate réductase R67, comme une cible d’antibiotiques et biocatalyseur potentielTimchenko, Natalia 12 1900 (has links)
La dihyrofolate réductase de type II R67 (DHFR R67) est une enzyme bactérienne encodée par un plasmide donc aisément transmissible. Elle catalyse la réaction de réduction du dihydrofolate (DHF) en tétrahydrofolate (THFA) essentiel pour la prolifération cellulaire. La DHFR R67 est une enzyme qui dépend du cofacteur NADPH. La DHFR R67 est différente, structurellement et génétiquement, de l’enzyme DHFR chromosomale présente chez tous les organismes et elle est résistante au triméthoprime (TMP) qui est largement utilisé dans les traitements antibactériens chez l’Homme. Aucun inhibiteur sélectif contre la DHFR R67 n’est actuellement répertorié.
Le but de cette étude a été d’identifier des molécules qui pourront inhiber la DHFR R67 sélectivement, sans affecter la DHFR humaine (DHFRh). La vérification de la qualité des essais enzymatiques en conditions déterminées pour le criblage d’inhibiteurs sur plusieurs lectrices à plaques a identifié des appareils appropriés pour l’analyse. L’étude de l’activité enzymatique de la DHFR R67 et de la DHFRh en présence des solvants organiques et liquides ioniques (LIs), comme des co-solvants pour le criblage rationnel d’inhibiteurs, a montré que certains LIs peuvent servir de milieu alternatif pour les essais enzymatiques. Le criblage rationnel basé sur l’approche du design d’un inhibiteur à partir de petites molécules, a révélé des molécules primaires qui inhibent la DHFR R67 de façon faible, mais sélective. Le test des composés biologiquement actifs qui comprennent des petits fragments, a montré l’augmentation de l’affinité entre la DHFR R67 et les composés testés. Trois composés ont été déterminés comme des inhibiteurs sélectifs prometteurs pour la DHFR R67. / Type II R-plasmid encoded dihyrofolate reductase (DHFR), R67 DHFR is a bacterial enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THFA) which is essential for cell proliferation. R67 DHFR is an enzyme that depends on the cofactor NADPH as the hydride donor. R67 DHFR is distinct, structurally and genetically, from E. coli chromosomal DHFR (DHFR Ec) and it provides drug resistance to the widely-administered antibiotic trimethoprim (TMP). No selective inhibitor against R67 DHFR exists currently.
The goal of this study was to discover molecules that can selectively inhibit R67 DHFR, without affecting human DHFR (hDHFR). Verification of the quality of enzyme assays under defined conditions for inhibitor screening on plate readers found several appropriate instruments for analysis. The study of the enzymatic activity of R67 DHFR and hDHFR in the presence of organic solvents and ionic liquids (ILs), as co-solvents for rational screening of inhibitors, showed that ILs can provide alternative media for enzymatic assays. Rational screening based on the approach of fragment-based drug design, revealed primary molecules that inhibited DHFR R67 weakly, but selectively. The testing of more complex compounds with known biological activities gave ligands with increased affinity for R67 DHFR. Three compounds were identified as promising selective inhibitors for R67 DHFR.
|
243 |
La tagatose-1,6-bisphosphate aldolase et la fructose-1,6-bisphosphate aldolase de classe I : mécanisme et stéréospécificitéLow-Kam, Clotilde Jeanne M. 08 1900 (has links)
La tagatose-1,6-biphosphate aldolase de Streptococcus pyogenes est une aldolase qui fait preuve d'un remarquable manque de spécificité vis à vis de ses substrats. En effet, elle catalyse le clivage réversible du tagatose-1,6-bisphosphate (TBP), mais également du fructose-1,6-bisphosphate (FBP), du sorbose-1,6-bisphosphate et du psicose-1,6-bisphosphate, quatre stéréoisomères, en dihydroxyacétone phosphate (DHAP) et en glycéraldéhyde-3-phosphate (G3P). Aldolase de classe I, qui donc catalyse sa réaction en formant un intermédiaire covalent obligatoire, ou base de Schiff, avec son susbtrat, la TBP aldolase de S. pyogenes partage 14 % d’identité avec l’enzyme modèle de cette famille, la FBP aldolase de muscle de mammifère. Bien que le mécanime catalytique de la FBP aldolase des mammifères ait été examiné en détails et qu’il soit approprié d’en tirer des renseignements quant à celui de la TBP aldolase, le manque singulier de stéréospécificité de cette dernière tant dans le sens du clivage que celui de la condensation n’est toujours pas éclairci. Afin de mettre à jour les caractéristiques du mécanisme enzymatique, une étude structurale de la TBP aldolase de S. pyogenes, un pathogène humain extrêmement versatile, a été entreprise. Elle a permis la résolution des structures de l’enzyme native et mutée, en complexe avec des subtrats et des inhibiteurs compétitifs, à des résolutions comprises entre 1.8 Å et 2.5 Å. Le trempage des cristaux de TBP aldolase native et mutante dans une solution saturante de FBP ou TBP a en outre permis de piéger un authentique intermédiaire covalent lié à la Lys205, la lysine catalytique. La determination des profils pH de la TBP aldolase native et mutée, entreprise afin d'évaluer l’influence du pH sur la réaction de clivage du FBP et TBP et ìdentifier le(s) résidu(s) impliqué(s), en conjonction avec les données structurales apportées par la cristallographie, ont permis d’identifier sans équivoque Glu163 comme résidu responsable du clivage. En effet, le mode de liaison sensiblement différent des ligands utilisés selon la stéréochimie en leur C3 et C4 permet à Glu163, équivalent à Glu187 dans la FBP aldolase de classe I, d’abstraire le proton sur l’hydroxyle du C4 et ainsi d’amorcer le clivage du lien C3-C4. L’étude du mécanimse inverse, celui de la condensation, grâce par exemple à la structure de l’enzyme native en complexe avec ses substrats à trois carbones le DHAP et le G3P, a en outre permis d’identifier un isomérisme du substrat G3P comme possible cause de la synthèse des isomères en C4 par cette enzyme. Ce résultat, ainsi que la decouverte d’un possible isomérisme cis-trans autour du lien C2-C3 de la base de Schiff formée avec le DHAP, identifié précedemment, permet de cerner presque complètement les particularités du mécanisme de cette enzyme et d’expliquer comment elle est capable de synthétiser les quatres stéréoisomères 3(S/R), 4(S/R). De plus, la résolution de ces structures a permis de mettre en évidence trois régions très mobiles de la protéine, ce qui pourrait être relié au rôle postulé de son isozyme chez S. pyogenes dans la régulation de l’expression génétique et de la virulence de la bactérie.
Enfin, la résolution de la structure du mutant Lys229→Met de la FBP aldolase de muscle en complexe avec la forme cyclique du FBP, de même que des études cristallographiques sur le mutant équivalent Lys205→Met de la TBP aldolase de S. pyogenes et des expériences de calorimétrie ont permis d’identifier deux résidus particuliers, Ala31 et Asp33 chez la FBP aldolase, comme possible cause de la discrimination de cette enzyme contre les substrats 3(R) et 4(S), et ce par encombrement stérique des substrats cycliques.
La cristallographie par rayons X et la cinétique enzymatique ont ainsi permis d'avancer dans l'élucidation du mécanisme et des propriétés structurales de cette enzyme aux caractéristiques particulières. / Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that shows a lack of stereospecificity that is rare in enzymes in general, and in aldolases in particular. This aldolase catalyzes the reversible cleavage of tagatose-1,6-bisphosphate (TBP), fructose-1,6-bisphosphate (FBP), sorbose-1,6-bisphosphate and psicose-1,6-bisphosphate, four stereoisomers, in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). A class I aldolase, the aldolase TBP S. pyogenes shares 14 % identity with the model enzyme of this family, mammalian FBP aldolase. Although the catalytic mechanism of the class I FBP aldolase has been examined in detail and it is appropriate to infer information as to the class I TBP aldolase, the singular lack of specificity of the latter enzyme both in the direction of cleavage and condensation is still not elucidated. To better comprehend the characteristics of the enzymatic mechanism, a structural study of the TBP aldolase of S. pyogenes, an extremely versatile human pathogen, has been undertaken. It has allowed the resolution of high resolution structures of the native and mutated enzyme in complex with subtrates and competitive inhibitors. These same structures allowed us to gain information as to the active site of the enzyme in general and the catalytic residues in particular. TBP aldolase native and mutated soaked in a saturated solution of FBP or TBP also trapped an iminium intermediate covalenty bound to Lys205, the Schiff base-forming lysine. The determination of the pH profiles of the native and mutated enzyme, carried out to assess the influence of pH on FBP and TBP cleavage and identify the residue(s) involved, in conjunction with the structural data provided by crystallography, identified unequivocally Glu163, corresponding to Glu187 in FBP aldolase, as the residue responsible for substrate cleavage. The substantially different binding mode of the ligands, according to the stereochemistry of their C3 and C4 carbons, indeed allows Glu163 to abstract the proton in C3-OH and thus initiate C3-C4 bond cleavage. The study of the inverse mechanism, the condensation one, using for instance the crystallographic structure of native TBP aldolase in complex with DHAP and G3P, its three carbons substrates, has led us to believe that a possible isomerism of the G3P substrate was the reason for the synthesis of both C4 isomers by this enzyme. This result, as well as the discovery of a possible cis-trans isomerism around the C2-C3 bond of the Schiff base formed with DHAP, identified previously, almost completely elucidated the features of this enzyme`s mechanism. In addition, these structures have highlighted three highly mobile regions of the protein, which may be related to the role of its isozyme in the regulation of gene expression and virulence in S. pyogenes.
Lastly, the resolution of the structure of the FBP aldolase mutant Lys229 → Met in complex with the cyclic form of FBP, as well as crystallographic studies of the corresponding mutant in TBP aldolase, Lys205→Met and ITC experiments, allowed the identification of two particular residues, Ala31 and Asp33 in FBP aldolase, as responsible for this enzyme discrimination against 3(R) 4(S) substrates, by steric hindrance of the cyclic substrates.
X-ray crystallography, enzyme kinetics and isothermal calorimetry thus enabled advances in the elucidation of the mechanism and structural properties of this enzyme with singular characteristics.
|
244 |
Développement de méthodes analytiques de séparation des produits de digestion enzymatique des dérivés de celluloseFarhat, Fatima 12 1900 (has links)
La cellulose et ses dérivés sont utilisés dans un vaste nombre d’applications incluant le domaine pharmaceutique pour la fabrication de médicaments en tant qu’excipient. Différents dérivés cellulosiques tels que le carboxyméthylcellulose (CMC) et l’hydroxyéthylcellulose (HEC) sont disponibles sur le commerce. Le degré de polymérisation et de modification diffèrent énormément d’un fournisseur à l’autre tout dépendamment de l’origine de la cellulose et de leur procédé de dérivation, leur conférant ainsi différentes propriétés physico-chimiques qui leurs sont propres, telles que la viscosité et la solubilité. Notre intérêt est de développer une méthode analytique permettant de distinguer la différence entre deux sources d’un produit CMC ou HEC. L’objectif spécifique de cette étude de maitrise était l’obtention d’un profil cartographique de ces biopolymères complexes et ce, par le développement d’une méthode de digestion enzymatique donnant les oligosaccharides de plus petites tailles et par la séparation de ces oligosaccharides par les méthodes chromatographiques simples. La digestion fut étudiée avec différents paramètres, tel que le milieu de l’hydrolyse, le pH, la température, le temps de digestion et le ratio substrat/enzyme. Une cellulase de Trichoderma reesei ATCC 26921 fut utilisée pour la digestion partielle de nos échantillons de cellulose. Les oligosaccharides ne possédant pas de groupements chromophores ou fluorophores, ils ne peuvent donc être détectés ni par absorbance UV-Vis, ni par fluorescence. Il a donc été question d’élaborer une méthode de marquage des oligosaccharides avec différents agents, tels que l’acide 8-aminopyrène-1,3,6-trisulfonique (APTS), le 3-acétylamino-6-aminoacridine (AA-Ac) et la phénylhydrazine (PHN). Enfin, l’utilisation de l’électrophorèse capillaire et la chromatographie liquide à haute performance a permis la séparation des produits de digestion enzymatique des dérivés de cellulose. Pour chacune de ces méthodes analytiques, plusieurs paramètres de séparation ont été étudiés. / Cellulose and its derivatives are used in a wide range of applications, including the pharmaceutical industry for the manufacturing of medicines as inactive additives. Various cellulosic derivatives such as carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC) are readily available for such use. The degree of polymerization and modification differs from one supplier to the other, according to the origin of the cellulose and its process of chemical modification, conferring on them different physico-chemical properties, such as viscosity and solubility. Our interest is to develop an analytical method that can distinguish between different sources of a given CMC or HEC product. The specific objective of this master’s study was to obtain a fingerprint of these complex biopolymers by developing an enzymatic digestion method to produce smaller oligosaccharides that could be separated by simple chromatographic methods. The digestion was studied as a function of various parameters, such as the composition of the hydrolysis solution, the pH, the temperature, the duration of digestion and the substrate/enzyme ratio. A cellulase enzyme from Trichoderma reesei ATCC 26921 was used for the partial digestion of our samples of cellulose. Since these oligosaccharides do not possess a chromophore or fluorophore, they can’t be detected either by absorbance or fluorescence. It was thus necessary to work out the labeling method for oligosaccharides using various agents, such as 8-aminopyrene-1,3,6-trisulfonic acid (APTS), 3-acetylamino-6-aminoacridine (AA-Ac) and phenylhydrazine (PHN). Finally, the use of capillary electrophoresis and high performance liquid chromatography allowed the separation of the enzymatic digestion products of the cellulose derivatives (CMC and HEC). For each of these analytical separation techniques, several parameters of the separation were studied.
|
245 |
Découverte et optimisation d’inhibiteurs pour des enzymes DfrBs impliquées dans la résistance bactérienneToulouse, Jacynthe 05 1900 (has links)
No description available.
|
246 |
Diffusion hyper Rayleigh des assemblages moléculairesRevillod, Guillaume 29 May 2006 (has links) (PDF)
Le caractère cohérent du processus de doublage de fréquence, processus de<br />conversion de deux photons à la fréquence fondamentale en un photon à la fréquence<br />harmonique, permet de sonder la matière à des échelles sub-longueur d'onde. Pour mettre en<br />évidence cette propriété, la technique de diffusion hyper Rayleigh a été employée pour sonder<br />l'organisation dans des assemblages moléculaires dispersés en solution liquide. Après une<br />étude initiale de quelques solvants usuels purs, l'influence de l'environnement sur la réponse<br />du cristal violet, une sonde moléculaire octupolaire de référence, a été étudiée. Ces études ont<br />été poursuivies pour des sondes moléculaires amphiphiles afin d'étudier des solutions mixtes<br />comprenant à la fois des sondes libres et des sondes engagées dans des assemblages<br />moléculaires appelés micelles. En raison de la centrosymétrie de ces assemblages, la<br />composante dipolaire de la réponse harmonique diffusée s'affaiblit, laissant la réponse<br />harmonique totale dominée par une forte contribution quadripolaire clairement mise en<br />évidence par ces mesures de diffusion hyper Rayleigh résolue en polarisation. Un modèle<br />complet décrivant les différentes composantes de la réponse harmonique totale est introduit<br />pour interpréter globalement les observations sur ces solutions mixtes. Enfin, les études<br />préliminaires d'un système biomimétique reconstitué à l'interface air-eau par doublage de<br />fréquence sont présentées.
|
247 |
Directed evolution of human dihydrofolate reductase: towards a better understanding of binding at the active siteFossati, Elena 11 1900 (has links)
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire, ce qui en fait une cible de choix pour le traitement de différents cancers. À cet effet, plusieurs inhibiteurs spécifiques de la DHFRh, les antifolates, ont été mis au point : le méthotrexate (MTX) et le pemetrexed (PMTX) en sont de bons exemples. Malgré l’efficacité clinique certaine de ces antifolates, le développement de nouveaux traitements s’avère nécessaire afin de réduire les effets secondaires liés à leur utilisation. Enfin, dans l’optique d’orienter la synthèse de nouveaux composés inhibiteurs des DHFRh, une meilleure connaissance des interactions entre les antifolates et leur enzyme cible est primordiale.
À l’aide de l’évolution dirigée, il a été possible d’identifier des mutants de la DHFRh pour lesquels l’affinité envers des antifolates cliniquement actifs se voyait modifiée. La mutagenèse dite ¬¬de saturation a été utilisée afin de générer des banques de mutants présentant une diversité génétique au niveau des résidus du site actif de l’enzyme d’intérêt. De plus, une nouvelle méthode de criblage a été mise au point, laquelle s’est avérée efficace pour départager les mutations ayant entrainé une résistance aux antifolates et/ou un maintient de l’activité enzymatique envers son substrat natif, soient les phénotypes d’activité. La méthode de criblage consiste dans un premier temps en une sélection bactérienne à haut débit, puis dans un second temps en un criblage sur plaques permettant d’identifier les meilleurs candidats. Plusieurs mutants actifs de la DHFRh, résistants aux antifolates, ont ainsi pu être identifiés et caractérisés lors d’études de cinétique enzymatique (kcat et IC50). Sur la base de ces résultats cinétiques, de la modélisation moléculaire et des données structurales de la littérature, une étude structure-activité a été effectuée. En regardant quelles mutations ont les effets les plus significatif sur la liaison, nous avons commencé à construire un carte moléculaire des contacts impliqués dans la liaison des ligands. Enfin, des connaissances supplémentaires sur les propriétés spécifiques de liaison ont put être acquises en variant l’inhibiteur testé, permettant ainsi une meilleure compréhension du phénomène de discrimination du ligand. / Human dihydrofolate reductase (hDHFR) is an essential enzyme for cellular proliferation and it has long been the target of antifolate drugs for the treatment of various types of cancer. Despite the clinical effectiveness of current antifolate treatments, new drugs are required to reduce the side-effects associated with their use. An essential requirement for design of new antifolates is a better understanding of how these drugs interact with their targets.
We applied directed evolution to identify mutant hDHFR variants with modified binding to some clinically relevant antifolates. A saturation mutagenesis approach was used to create genetic diversity at active-site residues of hDHFR and a new, efficient screening strategy was developed to identify the amino acids that preserved native activity and/or conferred antifolate resistance. The screening method consists in a high-throughput first-tier bacterial selection coupled with a second-tier in vitro assay that allows for rapid detection of the best variants among the leads, according to user-defined parameters. Many active, antifolate-resistant mutants of hDHFR were identified. Moreover, the approach has proven efficient in rapidly assessing kinetic (kcat) and inhibition parameters of the hDHFR variants (IC50). Structure-function relationship analysis based on kinetic investigation, available structural and functional data as well as modeling were performed. By monitoring which mutations have the greatest effect on binding, we have begun to build a molecular picture of the contacts involved in drug binding. By varying the drugs we test against, we gain a better understanding of the specific binding properties that determine ligand discrimination.
|
248 |
Mutagénèse semi-aléatoire au site actif de la DHFR humaine : création et caractérisation de variantes hautement résistantes au MTX.Volpato, Jordan 12 1900 (has links)
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire. Elle réduit le dihydrofolate en tétrahydrofolate, un co-facteur impliqué dans la biosynthèse des purines et du thymidylate. La DHFRh est une cible de choix pour des agents de chimiothérapie comme le méthotrexate (MTX), inhibant spécifiquement l’enzyme ce qui mène à un arrêt de la prolifération et ultimement à la mort cellulaire. Le MTX est utilisé pour le traitement de plusieurs maladies prolifératives, incluant le cancer. La grande utilisation du MTX dans le milieu clinique a mené au développement de mécanismes de résistance, qui réduisent l’efficacité de traitement. La présente étude se penche sur l’un des mécanismes de résistance, soit des mutations dans la DHFRh qui réduisent son affinité pour le MTX, dans le but de mieux comprendre les éléments moléculaires requis pour la reconnaissance de l’inhibiteur au site actif de l’enzyme. En parallèle, nous visons à identifier des variantes plus résistantes au MTX pour leur utilisation en tant que marqueurs de sélection en culture cellulaire pour des systèmes particuliers, tel que la culture de cellules hématopoïétiques souches (CHS), qui offrent des possibilités intéressantes dans le domaine de la thérapie cellulaire.
Pour étudier le rôle des différentes régions du site actif, et pour vérifier la présence d’une corrélation entre des mutations à ces régions et une augmentation de la résistance au MTX, une stratégie combinatoire a été dévelopée pour la création de plusieurs banques de variantes à des résidus du site actif à proximité du MTX lié. Les banques ont été sélectionnées in vivo dans un système bactérien en utilisant des milieux de croissance contenant des hautes concentrations de MTX. La banque DHFRh 31/34/35 généra un nombre considérable de variantes combinatoires de la DHFRh hautement résistantes au MTX. Les variantes les plus intéressantes ont été testées pour leur potentiel en tant que marqueur de sélection dans plusieurs lignées cellulaires, dont les cellules hématopoïétiques transduites. Une protection complète contre les effets cytotoxiques du MTX a été observée chez ces cellules suite à leur infection avec les variantes combinatoires. Pour mieux comprendre les causes moléculaires reliées à la résistance au MTX, des études de structure tridimensionnelle de variantes liées au MTX ont été entreprises. La résolution de la structure de la double variante F31R/Q35E lié au MTX a révélé que le phénotype de résistance était attribuable à d’importantes différences entre le site actif de la double variante et de l’enzyme native, possiblement dû à un phénomème dynamique. Une compréhension plus générale de la reconnaissance et la résistance aux antifolates a été réalisée en comparant des séquences et des structures de variantes de la DHFR résistants aux antifolates et provenant de différentes espèces.
En somme, ces travaux apportent de nouveaux éléments pour la comprehension des intéractions importantes entre une enzyme et un ligand, pouvant aider au développement de nouveaux antifolates plus efficaces pour le traitement de diverses maladies. De plus, ces travaux ont généré de nouveaux gènes de résistance pouvant être utilisés en tant que marqueurs de sélection en biologie cellulaire. / Human dihydrofolate reductase (hDHFR) is an enzyme that is essential to cell proliferation. It reduces dihydrofolate to tetrahydrofolate, an important cofactor involved in purine and thymidylate biosynthesis. hDHFR is a choice target for chemotherapeutic drugs like methotrexate (MTX), which specifically inhibits the enzyme, stopping cell proliferation and leading to cellular death. MTX is used for the treatment of many proliferative diseases, including cancers. Widespread use of MTX has lead to the development of resistance mechanisms appear which impair treatment efficiency. The present work focuses on a mechanism of resistance, namely mutations in hDHFR that reduce its affinity for MTX, to better understand the underlying mechanisms of inhibitor recognition at the active site of the enzyme. In parallel, we aim at identifying the most MTX-resistant variants to offer novel selectable markers for particular cell culture systems, such as hematopoietic cell culture, which offer important perspectives for cellular therapy.
To study the role of different regions of the hDHFR active site, and to verify if a correlation exists between mutations in these regions and increased resistance to MTX, a combinatorial strategy was developed enabling the creation of several hDHFR variant libraries at active site residues located in proximity to bound MTX. The libraries were selected in vivo in a bacterial system using culture media containing high concentration of the inhibitor. One library in particular, hDHFR 31/34/35, yielded a considerable number of highly MTX-resistant combinatorial hDHFR variants. The most interesting candidates were tested for their potential as selectable markers in various cell lines, including transduced hematopoietic cells. Complete protection from MTX-cytotoxicity was obtained for these cells following infection with the combinatorial variants. To better understand the molecular causes of MTX resistance, resolution of the crystal structures of variant proteins in presence of MTX was attempted. Resolution of the F31R/Q35E double variant revealed that the resistance phenotype was related to important differences in the active site relative to WT, possibly attributable to a dynamic motion effect. A more general comprehension of antifolate recognition and resistance was achieved by sequence and structural comparison of antifolate-resistant DHFR variants from different species.
Overall, our work contributes to the better understanding of enzyme-inhibitor interactions, which could provide new insights into the development of more efficient clinical therapies. In addition, this work has yielded novel drug-resistance genes useful as selectable markers for cellular biology.
|
249 |
Développement de méthodes analytiques de séparation des produits de digestion enzymatique des dérivés de celluloseFarhat, Fatima 12 1900 (has links)
La cellulose et ses dérivés sont utilisés dans un vaste nombre d’applications incluant le domaine pharmaceutique pour la fabrication de médicaments en tant qu’excipient. Différents dérivés cellulosiques tels que le carboxyméthylcellulose (CMC) et l’hydroxyéthylcellulose (HEC) sont disponibles sur le commerce. Le degré de polymérisation et de modification diffèrent énormément d’un fournisseur à l’autre tout dépendamment de l’origine de la cellulose et de leur procédé de dérivation, leur conférant ainsi différentes propriétés physico-chimiques qui leurs sont propres, telles que la viscosité et la solubilité. Notre intérêt est de développer une méthode analytique permettant de distinguer la différence entre deux sources d’un produit CMC ou HEC. L’objectif spécifique de cette étude de maitrise était l’obtention d’un profil cartographique de ces biopolymères complexes et ce, par le développement d’une méthode de digestion enzymatique donnant les oligosaccharides de plus petites tailles et par la séparation de ces oligosaccharides par les méthodes chromatographiques simples. La digestion fut étudiée avec différents paramètres, tel que le milieu de l’hydrolyse, le pH, la température, le temps de digestion et le ratio substrat/enzyme. Une cellulase de Trichoderma reesei ATCC 26921 fut utilisée pour la digestion partielle de nos échantillons de cellulose. Les oligosaccharides ne possédant pas de groupements chromophores ou fluorophores, ils ne peuvent donc être détectés ni par absorbance UV-Vis, ni par fluorescence. Il a donc été question d’élaborer une méthode de marquage des oligosaccharides avec différents agents, tels que l’acide 8-aminopyrène-1,3,6-trisulfonique (APTS), le 3-acétylamino-6-aminoacridine (AA-Ac) et la phénylhydrazine (PHN). Enfin, l’utilisation de l’électrophorèse capillaire et la chromatographie liquide à haute performance a permis la séparation des produits de digestion enzymatique des dérivés de cellulose. Pour chacune de ces méthodes analytiques, plusieurs paramètres de séparation ont été étudiés. / Cellulose and its derivatives are used in a wide range of applications, including the pharmaceutical industry for the manufacturing of medicines as inactive additives. Various cellulosic derivatives such as carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC) are readily available for such use. The degree of polymerization and modification differs from one supplier to the other, according to the origin of the cellulose and its process of chemical modification, conferring on them different physico-chemical properties, such as viscosity and solubility. Our interest is to develop an analytical method that can distinguish between different sources of a given CMC or HEC product. The specific objective of this master’s study was to obtain a fingerprint of these complex biopolymers by developing an enzymatic digestion method to produce smaller oligosaccharides that could be separated by simple chromatographic methods. The digestion was studied as a function of various parameters, such as the composition of the hydrolysis solution, the pH, the temperature, the duration of digestion and the substrate/enzyme ratio. A cellulase enzyme from Trichoderma reesei ATCC 26921 was used for the partial digestion of our samples of cellulose. Since these oligosaccharides do not possess a chromophore or fluorophore, they can’t be detected either by absorbance or fluorescence. It was thus necessary to work out the labeling method for oligosaccharides using various agents, such as 8-aminopyrene-1,3,6-trisulfonic acid (APTS), 3-acetylamino-6-aminoacridine (AA-Ac) and phenylhydrazine (PHN). Finally, the use of capillary electrophoresis and high performance liquid chromatography allowed the separation of the enzymatic digestion products of the cellulose derivatives (CMC and HEC). For each of these analytical separation techniques, several parameters of the separation were studied.
|
250 |
La dihydrofolate réductase R67, comme une cible d’antibiotiques et biocatalyseur potentielTimchenko, Natalia 12 1900 (has links)
La dihyrofolate réductase de type II R67 (DHFR R67) est une enzyme bactérienne encodée par un plasmide donc aisément transmissible. Elle catalyse la réaction de réduction du dihydrofolate (DHF) en tétrahydrofolate (THFA) essentiel pour la prolifération cellulaire. La DHFR R67 est une enzyme qui dépend du cofacteur NADPH. La DHFR R67 est différente, structurellement et génétiquement, de l’enzyme DHFR chromosomale présente chez tous les organismes et elle est résistante au triméthoprime (TMP) qui est largement utilisé dans les traitements antibactériens chez l’Homme. Aucun inhibiteur sélectif contre la DHFR R67 n’est actuellement répertorié.
Le but de cette étude a été d’identifier des molécules qui pourront inhiber la DHFR R67 sélectivement, sans affecter la DHFR humaine (DHFRh). La vérification de la qualité des essais enzymatiques en conditions déterminées pour le criblage d’inhibiteurs sur plusieurs lectrices à plaques a identifié des appareils appropriés pour l’analyse. L’étude de l’activité enzymatique de la DHFR R67 et de la DHFRh en présence des solvants organiques et liquides ioniques (LIs), comme des co-solvants pour le criblage rationnel d’inhibiteurs, a montré que certains LIs peuvent servir de milieu alternatif pour les essais enzymatiques. Le criblage rationnel basé sur l’approche du design d’un inhibiteur à partir de petites molécules, a révélé des molécules primaires qui inhibent la DHFR R67 de façon faible, mais sélective. Le test des composés biologiquement actifs qui comprennent des petits fragments, a montré l’augmentation de l’affinité entre la DHFR R67 et les composés testés. Trois composés ont été déterminés comme des inhibiteurs sélectifs prometteurs pour la DHFR R67. / Type II R-plasmid encoded dihyrofolate reductase (DHFR), R67 DHFR is a bacterial enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THFA) which is essential for cell proliferation. R67 DHFR is an enzyme that depends on the cofactor NADPH as the hydride donor. R67 DHFR is distinct, structurally and genetically, from E. coli chromosomal DHFR (DHFR Ec) and it provides drug resistance to the widely-administered antibiotic trimethoprim (TMP). No selective inhibitor against R67 DHFR exists currently.
The goal of this study was to discover molecules that can selectively inhibit R67 DHFR, without affecting human DHFR (hDHFR). Verification of the quality of enzyme assays under defined conditions for inhibitor screening on plate readers found several appropriate instruments for analysis. The study of the enzymatic activity of R67 DHFR and hDHFR in the presence of organic solvents and ionic liquids (ILs), as co-solvents for rational screening of inhibitors, showed that ILs can provide alternative media for enzymatic assays. Rational screening based on the approach of fragment-based drug design, revealed primary molecules that inhibited DHFR R67 weakly, but selectively. The testing of more complex compounds with known biological activities gave ligands with increased affinity for R67 DHFR. Three compounds were identified as promising selective inhibitors for R67 DHFR.
|
Page generated in 0.0701 seconds