• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 61
  • 18
  • Tagged with
  • 262
  • 116
  • 57
  • 45
  • 40
  • 39
  • 34
  • 32
  • 32
  • 30
  • 27
  • 25
  • 25
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Tirer profit de l’espace de séquence : une approche multidisciplinaire pour élucider l’évolution d’une famille d’enzymes primitives

Lemay-St-Denis, Claudèle 01 1900 (has links)
L’habileté des enzymes à évoluer joue un rôle fondamental dans l'adaptation des organismes à leur environnement, leur permettant de s'adapter aux changements de température, aux nutriments disponibles ou encore à l'introduction de composés cytotoxiques. Au cours des dernières décennies, cette capacité a conduit à l'émergence rapide de mécanismes de résistance aux antibiotiques chez des bactéries pathogènes pour l’humain, notamment dans le cas de l'antibiotique synthétique triméthoprime. Dix ans après l'introduction de cet antibiotique, l'enzyme dihydrofolate réductase de type B (DfrB) a été identifiée comme conférant une résistance aux bactéries l'exprimant en catalysant par voie d’enzyme alternative la réaction inhibée par l’antibiotique. Des études structurales, cinétiques et mécanistiques de la DfrB en ont révélé la nature atypique, et suggèrent que cette enzyme est un modèle d’enzyme primitive. En particulier, son site actif unique est formé via l’interface de quatre protomères identiques. Puisque les DfrB ne sont pas apparentées sur le plan évolutif à des protéines connues et caractérisées, on ne connait pas comment elles ont évolué pour ultimement contribuer à la résistance au triméthoprime, et en particulier comment leur capacité catalytique a émergé au sein du petit domaine codé par leurs gènes. Ainsi, cette thèse vise à approfondir notre compréhension de l’évolution des enzymes en examinant spécifiquement l’évolution des DfrB et les propriétés qui ont guidé ce processus. Puisque les gènes des DfrB ont rarement été rapportés, je présente d’abord nos efforts déployés pour identifier et caractériser de manière génomique les DfrB dans les bases de données publiques. Ces efforts ont conduit à la découverte, pour la première fois, de DfrB en dehors du contexte clinique. Nous avons ensuite caractérisé, sur le plan biophysique et enzymatique, des homologues protéiques aux DfrB que nous avons identifiés dans des bases de données de protéines putatives. Nous avons démontré la capacité d’homologues identifiés dans des contextes environnementaux, non associés aux activités humaines, à catalyser la réduction du dihydrofolate de la même façon que les DfrB. Enfin, une large exploration d’homologues de séquence, suivie d'une caractérisation expérimentale et computationnelle, nous a permis d'identifier des homologues distants des DfrB, certains capables de procurer une résistance au triméthoprime, et d'autres dépourvus de cette capacité. Ces résultats nous ont permis de proposer un modèle expliquant l’émergence de l'activité catalytique au sein du domaine protéique des DfrB. En résumé, cette thèse présente une approche multidisciplinaire pour l’exploration et la caractérisation de l’espace de séquence d’une famille de protéines. Cette approche, qui comprend des analyses génomiques, enzymologiques, biophysiques et bio-informatiques, nous a permis d’identifier les caractéristiques structurales et de séquences nécessaires à la formation d’une enzyme DfrB fonctionnelle. Nous avons également proposé un modèle pour expliquer l’évolution de cette enzyme primitive. Dans l’ensemble, nos résultats suggèrent que la capacité catalytique des DfrB a évolué indépendamment de l’introduction de l’antibiotique triméthoprime, et donc que ce mécanisme de résistance existait dans l’environnement préalablement à son recrutement génomique dans un contexte clinique. Ces travaux contribuent à notre compréhension fondamentale des mécanismes sous-jacents à l’émergence de l’activité catalytique au sein d’un domaine protéique non catalytique, et informent les études des mécanismes développés par les bactéries pour proliférer en présence d’antibiotiques. / The ability of enzymes to evolve plays a fundamental role in the adaptation of organisms to their environment, allowing them to adjust to changes in temperature, available nutrients, or the introduction of cytotoxic compounds. In recent decades, this ability has led to the rapid emergence of antibiotic resistance mechanisms in human pathogenic bacteria, particularly in the case of the synthetic antibiotic trimethoprim. Ten years after the introduction of this antibiotic, the type B dihydrofolate reductase (DfrB) was identified as conferring resistance to bacteria expressing it by providing an alternative enzyme to catalyze the reaction inhibited by the antibiotic. Structural, kinetic, and mechanistic studies of DfrB have revealed its atypical nature and suggest that this enzyme is a model of a primitive enzyme. In particular, its unique active site is formed by the interface of four identical protomers. Since DfrB enzymes are not evolutionarily related to any known and characterized proteins, it is not known how they evolved to ultimately contribute to trimethoprim resistance, and in particular how their catalytic ability arose within the small domain encoded by their genes. Thus, this thesis aims to deepen our understanding of enzyme evolution by specifically examining the evolution of DfrB and the properties that guided this process. Since DfrB genes have rarely been reported, I first present our efforts to genomically identify and characterize DfrB in public databases. These efforts led to the first discovery of DfrB genes outside the clinical context. We then biophysically and enzymatically characterized protein homologues of the DfrB we identified in putative protein databases. We demonstrated the ability of homologues identified in environmental contexts unrelated to human activities to catalyze dihydrofolate reduction in the same manner as DfrB. Finally, a broad search for sequence homologues, followed by experimental and computational characterization, allowed us to identify distant DfrB homologues, some capable of conferring resistance to trimethoprim and others lacking this ability. These results have allowed us to propose a model that explains the emergence of catalytic activity within the DfrB domain. In summary, this thesis presents a multidisciplinary approach to explore and characterize the sequence space of a protein family. This approach, which includes genomic, enzymatic, biophysical and bioinformatic analyses, has enabled us to identify the structural and sequence features necessary for the formation of a functional DfrB enzyme. We have also proposed a model to explain the evolution of this primitive enzyme. Overall, our results suggest that the catalytic capacity of DfrB evolved independently of the introduction of the antibiotic trimethoprim, and thus that this resistance mechanism existed in the environment prior to its genomic recruitment in a clinical context. This work contributes to our fundamental understanding of the mechanisms underlying the emergence of catalytic activity within a non-catalytic protein domain, and informs studies of the mechanisms developed by bacteria to proliferate in the presence of antibiotics.
262

Étude de la polymérisation enzymatique de la malolactonates en présence de lipases / Study of the lipase-catalyzed polymerization of malolactonates

Casajus, Hubert 11 December 2017 (has links)
Les polyesters aliphatiques, comme le poly(acide malique) et ses dérivés, sont une famille de polymères aux propriétés de bio(comptabilité) et de bio(dégradabilité) remarquables, qui en font des candidats de choix pour l'élaboration de systèmes de vectorisation de principes actifs. Généralement, ces polymères sont synthétisés via des réactions de polymérisation utilisant des amorceurs, voir des catalyseurs, organiques, organométalliques ou métalliques. La présence de ces molécules, même à l'état de traces, peut être à l'origine d'une toxicité non souhaitée. Par conséquent, l'utilisation de biocatalyseurs, comme les lipases, se développe pour apporter une solution à cet inconvénient. Cependant, cette voie de synthèse enzymatique fait face à d'autres problèmes, tels qu'une polymérisation moins bien maîtrisée et des polymères de masses molaires faibles. Cette thèse a donc pour objectif de mettre au point une voie de polymérisation du malolactonate de benzyle utilisant la lipase de pancréas de porc (PPL) comme amorceur. Dans un premier temps, nous avons optimisé certains paramètres réactionnels permettant d'obtenir des poly(malate de benzyle) , PMLABe, de masses molaires suffisamment élevées pour que ces polymères puissent être utilisés dans la formulation de vecteurs de principes actifs, grâce à l'utilisation et l'extrapolation d'un plan d'expérience. Nous nous sommes ensuite intéressés à la compréhension du mécanisme réactionnel de la polymérisation enzymatique du malolactonate de benzyle, une β-lactone β-substituée. Les différentes études menées ont permis d'approfondir notre connaissance dans ce domaine. Deux mécanismes ont été proposés et des expériences sont en cours pour confirmer l'un d'entre eux. Finalement, comme l'objectif initial est de proposer une méthode de synthèse de dérivés du PMLA plus biocompatibles conduisant à des polymères sans résidus d'amorceurs chimiques toxiques, nous avons comparé les activités biologiques de nanoparticules préparées à partir de PMLABe synthétisés par voie chimique et par voie enzymatique. Pour cela, nous avons mesuré la captation de ces nanoparticules, encapsulant une sonde de fluorescence, par des cellules hépatiques HepaRG. Puis, nous avons évalué la toxicité aiguë et la toxicité chronique de ces nanoparticules vis-à-vis des cellules HepaRG. Ces études ont permis de mettre en évidence certaines propriétés des nanoparticules ayant une influence sur la survie cellulaire et le métabolisme des cellules HepaRG. De la compréhension théorique aux applications potentielles, cette thèse apporte des connaissances sur la polymérisation enzymatique des lactones substituées, un domaine peu décrit dans la littérature. / Aliphatic polyesters, like poly(malic acid)and its derivatives, are a family of polymers with outstanding properties, such as bio(degradability) and bio(compatibility). Therefore, these polyesters can be considered as excellent candidates for the design of drug carriers. These kinds of polymers are usually synthesized thanks to polymerization reactions using organic, organometallic or metallic initiators or catalysts. The presence of such molecules, even in trace amounts, can cause undesired toxicities. Therefore, the use of biocatalysts, like lipases, is attracting more and more interest and research work to circumvent this problem. However, this enzymatic polymerization method has to face to other issues, such as a lower controlled of the polymerization process and polymers with lower molar masses. Therefore, this PhD research work aimed at setting up the enzymatic polymerization of benzyl malolactonate, using porcine pancreatic lipase (PPL). Firstly, we have optimized some reactional parameters allowing to obtain poly(benzyl malate), PMLABe, with molar masses adapted to their uses for the design of drug carriers, thanks to a Design of Experiments (DoE) and its extrapolation. We were then interested by the comprehension of the enzymatic polymerization mechanism of the benzyl malolactonate. The different studies we carried out allowed us to deepen our knowledges of such enzymatic polymerization. Two non-canonical mechanisms were proposed and further experiments are in progress to confirm the one which is the more probable. Finally, because our initial goal was to propose a more biocompatible polymerization method to obtain PMLABe free of traces of chemical initiator, we compared biologic activities of different nanoparticles prepared from PMLABe synthesized using chemical or enzymatic pathway. For that, we have first measured the uptake of these nanoparticles encapsulating a fluorescent dye, by the hepatic cells HepaRG. Then, we have studied the acute and chronic toxicity of the nanoparticles on the HepaRG cells. Results of these studies have highlighted that certain properties of the nanoparticles and/or of the polymers which constituted them have an influence on the cells viability and on the cells metabolism. From the theoretical mechanism to the probable applications, this thesis brings knowledge about the enzymatic polymerization of substituted lactone, a field poorly described in the literature.

Page generated in 0.037 seconds