Spelling suggestions: "subject:"error estimation"" "subject:"arror estimation""
101 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13
|
102 |
Quantification 3D d’une surface dynamique par lumière structurée en impulsion nanoseconde. Application à la physique des chocs, du millimètre au décimètre / 3D measurement of a dynamic surface by structured light in nanosecond regime. Application to shock physics, from millimeters to decimetersFrugier, Pierre Antoine 29 June 2015 (has links)
La technique de reconstruction de forme par lumière structurée (ou projection de motifs) permet d’acquérir la topographie d’une surface objet avec une précision et un échantillonnage de points dense, de manière strictement non invasive. Pour ces raisons, elle fait depuis plusieurs années l’objet d’un fort intérêt. Les travaux présentés ici ont pour objectif d’adapter cette technique aux conditions sévères des expériences de physique des chocs : aspect monocoup, grande brièveté des phénomènes, diversité des échelles d’observation (de quelques millimètres au décimètre). Pour répondre à ces exigences, nous proposons de réaliser un dispositif autour d’un système d’imagerie rapide par éclairage laser nanoseconde, présentant des performances éprouvées et bien adaptées. La première partie des travaux s’intéresse à analyser les phénomènes prépondérants pour la qualité des images. Nous montrons quels sont les contributeurs principaux à la dégradation des signaux, et une technique efficace de lissage du speckle par fibrage est présentée. La deuxième partie donne une formulation projective de la reconstruction de forme ; celle-ci est rigoureuse, ne nécessitant pas de travailler dans l’approximation de faible perspective, ou de contraindre la géométrie de l’instrument. Un protocole d’étalonnage étendant la technique DLT (Direct Linear Transformation) aux systèmes à lumière structurée est proposé. Le modèle permet aussi, pour une expérience donnée, de prédire les performances de l’instrument par l’évaluation a priori des incertitudes de reconstruction. Nous montrons comment elles dépendent des paramètres du positionnement des sous-ensembles et de la forme-même de l’objet. Une démarche d’optimisation de la configuration de l’instrument pour une reconstruction donnée est introduite. La profondeur de champ limitant le champ objet minimal observable, la troisième partie propose de l’étendre par codage pupillaire : une démarche de conception originale est exposée. L’optimisation des composants est réalisée par algorithme génétique, sur la base de critères et de métriques définis dans l’espace de Fourier. Afin d’illustrer les performances de cette approche, un masque binaire annulaire a été conçu, réalisé et testé expérimentalement. Il corrige des défauts de mise au point très significatifs (Ψ≥±40 radians) sans impératif de filtrage de l’image. Nous montrons aussi que ce procédé donne accès à des composants tolérant des défauts de mise au point extrêmes (Ψ≈±100 radians , après filtrage). La dernière partie présente une validation expérimentale de l’instrument dans différents régimes, et à différentes échelles. Il a notamment été mis en œuvre sur l’installation LULI2000, où il a permis de mesurer dynamiquement la déformation et la fragmentation d’un matériau à base de carbone (champs millimétriques). Nous présentons également les mesures obtenues sous sollicitation pyrotechnique sur un revêtement de cuivre cylindrique de dimensions décimétriques. L’apparition et la croissance rapide de déformations radiales submillimétriques est mesurée à la surface du revêtement. / A Structured Light System (SLS) is an efficient means to measure a surface topography, as it features both high accuracy and dense spatial sampling in a strict non-invasive way. For these reasons, it became in the past years a technique of reference. The aim of the PhD is to bring this technique to the field of shock physics. Experiments involving shocks are indeed very specific: they only allow single-shot acquisition of extremely short phenomena occurring under a large range of spatial extensions (from a few mm to decimeters). In order to address these difficulties, we have envisioned the use of a well-known high-speed technique: pulsed laser illumination. The first part of the work deals with the evaluation of the key-parameters that have to be taken into account if one wants to get sharp acquisitions. The extensive study demonstrates that speckle effect and depth of field limitation are of particular importance. In this part, we provide an effective way to smooth speckle in nanosecond regime, leaving 14% of residual contrast. Second part introduces an original projective formulation for object-points reconstruction. This geometric approach is rigorous; it doesn’t involve any weak-perspective assumptions or geometric constraints (like camera-projector crossing of optical axis in object space). From this formulation, a calibration procedure is derived; we demonstrate that calibrating any structured-light system can be done by extending the Direct Linear Transformation (DLT) photogrammetric approach to SLS. Finally, we demonstrate that reconstruction uncertainties can be derived from the proposed model in an a priori manner; the accuracy of the reconstruction depends both on the configuration of the instrument and on the object shape itself. We finally introduce a procedure for optimizing the configuration of the instrument in order to lower the uncertainties for a given object. Since depth of field puts a limitation on the lowest measurable field extension, the third part focuses on extending it through pupil coding. We present an original way of designing phase components, based on criteria and metrics defined in Fourier space. The design of a binary annular phase mask is exhibited theoretically and experimentally. This one tolerates a defocus as high as Ψ≥±40 radians, without the need for image processing. We also demonstrate that masks designed with our method can restore extremely high defoci (Ψ≈±100 radians) after processing, hence extending depth of focus by amounts unseen yet. Finally, the fourth part exhibits experimental measurements obtained with the setup in different high-speed regimes and for different scales. It was embedded on LULI2000 high energy laser facility, and allowed measurements of the deformation and dynamic fragmentation of a sample of carbon. Finally, sub-millimetric deformations measured in ultra-high speed regime, on a cylinder of copper under pyrotechnic solicitation are presented.
|
103 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
104 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 25 August 1977 (has links)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
105 |
Beiträge zur expliziten Fehlerabschätzung im zentralen GrenzwertsatzPaditz, Ludwig 04 June 2013 (has links) (PDF)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten.
Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet.
Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen.
Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht.
Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet.
Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten.
Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system.
In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions.
It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem.
The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm.
In addition, in the case of independent random variables the local limit theorem for densities is considered.
By means of electronic data processing new numerical results are obtained.
The work is finished by various references to practical applications.
|
106 |
Beiträge zur expliziten Fehlerabschätzung im zentralen GrenzwertsatzPaditz, Ludwig 27 April 1989 (has links)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten.
Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet.
Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen.
Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht.
Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet.
Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten.
Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system.
In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions.
It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem.
The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm.
In addition, in the case of independent random variables the local limit theorem for densities is considered.
By means of electronic data processing new numerical results are obtained.
The work is finished by various references to practical applications.
|
Page generated in 0.0977 seconds