• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 34
  • 15
  • Tagged with
  • 196
  • 152
  • 86
  • 84
  • 47
  • 44
  • 35
  • 34
  • 31
  • 31
  • 28
  • 27
  • 26
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Etude et optimisation du procédé de gravure par laser à fibre femtoseconde dédié aux applications industrielles et médicales / Study and optimization of femtosecond fiber laser etching technique dedicated to industrial and medical applications

Zelgowski, Julien 17 December 2014 (has links)
L’avènement des technologies lasers femtoseconde utilisant une fibre optique comme milieu amplificateur incite les industriels à se renseigner sur cette technologie. Dans ce contexte, et dans le cadre du projet Futures et Ruptures, cette thèse se propose de caractériser une nouvelle source femtoseconde, le Tangerine d’Amplitude Systèmes. Utilisant les capacités de ce laser, et avec la collaboration d’IREPA LASER, nous feront une étude comparative avec les lasers femtoseconde déjà existant en s’appuyant sur l’état de l’art, l’optique non-linéaire et quelques simulations d’ablation. L’amélioration des procédés d’usinage pour des applications industrielles nous permettra de modifier et compléter nos connaissances dans l’usinage de différents matériaux tout en montrant les qualités de cette nouvelle technologie. Enfin, une application de miniaturisation de dispositifs électronique pour le domaine du biomédical nous permettra d’utiliser toutes les connaissances acquises et de mener à bien ce projet. / Surgical procedures are moving increasingly toward minimally invasive techniques because these techniques offer great comfort to the patient, a short recovery time and are reasonably-priced. As part of this thesis, it is proposed to study the integration of micrometer-sized sensors directly into needles for example. The PhD student will study the process of laser-matter interaction for new nano and femtosecond sources which should be optimized in order to develop a machining technique of surgical instruments in order to incorporate the sensors. The aim of the thesis is the demonstration of the feasibility of developing the technique of laser etching for the integration of sensors into millimeter-sized needles as well as tests in real conditions. Multiple lasers will be used; The Tangerine laser from ‘Amplitude Systèmes’ with the well know Ti:Sa laser. His work there will be to upgrade the laser up to its best capacity both in terms of fluence or accuracy and in terms of software and its ease of use. The ablation of the silicon from the rear of the electronic chip to the edge of the photodetector in order to carry the light and energy supply all 3D Hall effects micro-magnetors will be the main purpose of the PhD student. He will highlight differences between two femtosecond laser as thermally affected area or ablation rate and will choose which one is able to achieve our goal.
82

Physique, chimie et biologie de la filamentation d’impulsions laser femtosecondes en solutions aqueuses / Physics, chemitry and biology of femtosecond laser pulses filamentation in aqueous solutions

Belmouaddine, Hakim January 2017 (has links)
La propagation d’une impulsion laser femtoseconde dans un milieu condensé trans- parent tel que l’eau conduit, dans les conditions appropriées, à la manifestation de phénomènes d’optiques non linéaires regroupés sous le terme de filamentation laser. Le faisceau laser correspondant voit alors sa propagation métamorphosée sous la forme de filaments de lumière intense. Au coeur de ces filaments, l’irradiance considérable provoque l’ionisation des atomes du milieu et la génération de plasmas. Produit de manière spontanée et auto-régulée, ces plasmas ont la particularité de combiner une densité importante d’événements d’ionisation avec des effets thermo-mécaniques minimisés. Leurs propriétés intrinsèques font de ces plasma une source d’ionisation singulière tout particulièrement en ce qui concerne les sciences qui s’intéressent à l’étude des effets des radiations ionisantes. Entre autres, les sciences des radiations étudient la physique, la chimie et la biologie de l’action des rayonnements ionisants sur des systèmes d’intérêt biologique. Dans ce contexte, cette dissertation s’intéresse à la filamentation d’impulsions laser femtosecondes proches infrarouges en solution aqueuse. L’eau représentant la compo- sante majeure des systèmes d’intérêt biologique, une solution aqueuse constitue une approximation satisfaisante d’un échantillon biologique plus concret. Tout d’abord, l’étude de la physique de la filamentation laser a permis de mieux appréhender l’interaction des impulsions assujetties au processus de filamentation dans l’eau, primordiale pour l’identification des conditions d’irradiation propices à une meilleure maîtrise des conséquences de la génération des plasmas photo-induits. Les effets d’un rayonnement ionisant en solution aqueuse sont notamment véhiculés au travers de la chimie déclenchée par l’ionisation de l’eau, qui implique une interaction entre les espèces réactives produites et les solutés dilués en solutions. L’étude des conséquences de l’irradiation laser sur des solutés inorganiques a permis d’élucider la nature de cette chimie sous rayonnements. De surcroît, il a été démontré comment la malléabilité qu’offre l’utilisation d’un laser se répercute sur la capacité à moduler les conséquences de l’irradiation. Enfin, l’étude a été étendue à l’irradiation de molécules d’ADN diluées en solution aqueuse. L’analyse détaillée des dommages occasionnés à l’ADN a permis de mettre en exergue la présence de lésions complexes caractéristiques d’une irradiation par un faisceau intense de rayonnements ionisants. / Abstract : The present study is part in a new framework in radiobiology, introduced a decade ago: femtosecond laser-induced "cold" low density plasmas for the highly localized deposition of energy at sub-cellular scales in systems of biological interest. Since in aqueous solutions the action of such plasmas is equivalent to the deposition of a dose by ionizing radiation, plasma-mediated effects on solutes involve the radiation chemistry of water. This chemistry corresponds to the interaction of solutes with radical oxygen species as well as with secondary low energy electrons, produced by the plasma. Here, to better understand the radiation chemistry underlying the generation of low density plasmas in aqueous environments, we harnessed the multi-filamentation of powerful femtosecond laser pulses as a way to achieve a self-regulated production of spatially homogeneous low density plasma foci in water. The "cold" low density plasma micro-channels generated by the filamentation of the femtosecond laser pulses in aqueous solutions constitute a source of dense ionization. We studied the femtosecond laser filamentation in inorganic solutions to account for the radiation-assisted chemistry triggered by laser ionization in aqueous environment. We highlighted that the trivial optical control of the spatio-temporal distribution of light filaments in the irradiated sample resulted in the modulation of the corresponding radical chemistry. We concluded that these spatially and temporally resolved plasmas could be developed as a tool for the unprecedented control of chemistry under ionizing radiation. The addition of a spatial light modulator to control the filamentation process improves significantly our control on the spatio-temporal distribution of the laser-induced plasma channels. From a bundle of entangled random low density plasma channels, usually produced by the non-linear propagation of the powerful laser beam, we were able to obtain a programmable matrix of mono-filaments to achieve a more pervasive and homogeneous energy deposition. This method of irradiation allowed us to perform a detailed analysis to determine, quantify and compare the consequences of the laser irradiation with those of a conventional source of ionizing radiation (Gamma-Rays) on organic molecules (e.g. DNA) desolved in aqueous solutions. We showed that each filament behaves as an independent intense micro beam of ionizing radiation, that is capable of inducing complex DNA damage. We believe that a better understanding of the laser-induced plasma-mediated effects in aqueous solutions of biological interest will further the adoption of such laser-based ionisation sources, and that this unorthodox approach to radiation sciences will open new fields of investigation at the frontiers of radiation and laser-driven chemistry. Moreover, one of the principal conclusions of this thesis argues in favour of a shift of paradigm in radiation sciences, shuch that the consequences of ionising radiation would not only be considered for their injurious effects but also for the fine modulation of the functions of systems of biological interest. This sentiment paves the way for new emerging techniques and applications in biomedical fields.
83

Nano-structuration de matériaux optiques par lasers ultra-brefs

Mezel, Candice 18 November 2010 (has links)
La structuration de matériaux transparents (verre, eau, ...) irradiés par des impulsions lasers intenses brèves (nanoseconde) et ultra-brèves (femtoseconde) trouve de nombreuses applications dans les domaines de la biomédecine, des nano-optiques ou encore de l'endommagement d'optiques par des lasers de puissance. Dans un premier temps, nous avons modélisé le processus d'éjection qui se produit lors du transfert d'un matériau liquide (eau, hydrogel) lorsque la cible est irradiée par un laser nanoseconde. Le matériau est ici chauffé par conduction thermique via un ablateur métallique, et l'éjection est réalisée via un processus purement hydrodynamique. Si l'on considère maintenant cette même technique réalisée avec un laser femtoseconde, on peut envisager de transférer des volumes de matière nanométriques, ce qui correspond à la taille typique d'une molécule. En régime femtoseconde, les processus d'absorption de l'énergie sont différents, de même que les échelles de temps sur lesquels ils se produisent. Si l'impulsion laser est suffisamment focalisée dans le matériau, un plasma se forme dans la zone d'absorption, où la densité d'énergie atteinte est supérieure à l'énergie de liaison des matériaux considérés (eau, silice, mica). Un modèle d'ionisation et de chauffage des électrons a été mis en place et a été couplé à un code de propagation instantanée des ondes électromagnétiques. Trois applications ont été étudiées, correspondant à trois configurations laser/cible différentes : (1) un processus de formation de jets liquides et solides prometteur pour la réalisation de nano-optiques, (2) la formation de nanocavités à l'intérieur d'un volume de silice pouvant servir comme stockage d'information, (3) l'étude des seuils d'endommagement et d'ablation de la silice en surface. Dans chaque cas, la densité d'énergie absorbée a été utilisé comme donné initiale pour le code d'hydrodynamique CHIC qui a permis de suivre l'évolution du matériau après l'irradiation : ondes de compression, changements de phase, etc... La résolution couplée de la propagation du laser et de son absorption dans la matière nous a permis de mener une étude à la fois qualitative et quantitative de l'interaction. La comparaison avec les données expérimentales a aboutit à l'amélioration du modèle d'absorption et de chauffage. / Abstract
84

Micro-texturation de surface du PEEK par laser femtoseconde : étude locale de l'interaction laser-polymère et apport de la texturation de surface aux propriétés tribologiques d'un contact PEEK/PEEK

Hammouti, Sabrina 30 November 2015 (has links)
Au cours des dernières années, l'élaboration de surfaces fonctionnelles par voie chimique et/ou topographique a connu un intérêt croissant. Des avancées significatives ont été réalisées pour l'optimisation des propriétés de surface, notamment tribologiques, via l'introduction de traitement visant à structurer à l'échelle nano- et micrométrique la surface de certains composants mécaniques. Différentes approches, chimiques, mécaniques ou énergétiques, peuvent être employées pour l'amélioration ou la maîtrise du frottement et de l'usure, néanmoins le traitement de surface par laser femtoseconde se distingue comme un des meilleurs procédés d'ablation, capable dans certaines conditions de générer des morphologies de surface auto-organisées périodiques, parfois multi-échelles, et appelées ripples. Cette technique appelée Laser Surface Texturing (LST), désormais couramment utilisée en tribologie et applicable à une grande variété de matériaux, présente de nombreux avantages parmi lesquels peuvent être mentionnés les vitesses de texturation atteintes ainsi que la qualité des structures de surface obtenues. De nombreux domaines ont actuellement recours à la texturation de surface par laser comme voie d'amélioration des propriétés tribologiques, comme l'automobile, et d'autres dont la filière du biomédical incarnent progressivement un nouveau champ d'expérimentations. Récemment, une nouvelle génération de prothèses tout en polymère poly(éther éther cétone) (PEEK) a vu le jour, suscitant un intérêt pour des études tribologiques. Ainsi, la texturation de surface par laser femtoseconde du PEEK comme matériau biomédical, en vue d'améliorer ses performances tribologiques, constitue le contexte général de ce travail de thèse. Cette étude traite d'une part, à l'échelle d’un impact laser, du phénomène d'interaction laser-PEEK en mode ultrabref et d'autre part, à l'échelle d’un contact mécanique, de l'optimisation d'une texturation de surface pour la maîtrise du frottement et la réduction de l'usure d'un couple PEEK/PEEK. / Over the past few years, the development of functional surfaces by chemical and/or topographical ways has shown an increasing interest. Significant advances have been made to optimize surface properties, including tribological properties, through the introduction of processes for the surface texturing at micro and nano scales. Chemical, mechanical and energetic approaches can be used to improve or control the friction and the wear of materials. The femtosecond laser stands out as one of the best methods for ablation, being able, under certain conditions, to generate periodic self-organized surface morphologies (sometimes multiscales) and called ripples. This technique known as laser surface texturing (LST), nowadays commonly used in tribology and applicable to a wide variety of materials, has many advantages including the texturing speeds and the quality of surface structures obtained. Currently, many fields such as the automobile industry and the biomedical sector use the laser surface texturing as a means of improving the tribological properties. Recently, a new generation of poly(ether ether ketone) (PEEK) polymer prostheses has emerged, arousing interest for tribological studies. The surface texturing of PEEK, as a biomedical material, by femtosecond laser, in order to improve its tribological performance, provides the general context of this thesis. This thesis first deals with the laser-PEEK interaction at the scale of a laser impact and then it focuses on the optimization of the surface texturing in order to control friction and reduce wear of a PEEK/PEEK tribosystem.
85

Ablation laser femtoseconde pour le contrôle de la micro et nano structuration / Femtosecond laser ablation for controlling micro and nano structruration

Bruneel, David 22 December 2010 (has links)
Le développement actuel de la technologie induit une constante nécessité d’obtenir des tailles de plus en plus petites pouvant descendre jusqu’à des dimensions micrométriques et sub -micrométriques. L’ablation laser, qui a le grand avantage d’un enlèvement de matière très précis, est un candidat prometteur. Dans cette thèse on démontre la faisabilité de tirer avantage des impulsions laser femtosecondes avec la matière pour la micro et nano structuration, et ceci en ayant développé une machine compacte de grande précision et flexibilité. Une approche théorique comparant les régimes d’interaction à haute et basse cadence est présentée. Des investigations de l’efficacité du temps de procédé aussi bien que l’effet de la cadence pendant l’ablation de métaux ont été effectuées. Le potentiel de l’outil multifonctionnel couplé avec un oscillateur laser femtoseconde à haute cadence est montré pour différentes applications en biotechnologie. Les résultats sur la cartographie d’une large zone aussi bien que la nano découpe de précision de tissus biologiques et de matériaux variés sont présentés. Cet outil polyvalent couvre de larges domaines de recherche de la nano découpe d’échantillons biologiques aussi bien que la nanostructuration de différents types de matériaux. C’est d’un grand intérêt pour de nombreuses applications en science des matériaux, nanobiotechnologie et nanomédecine / The current development of technology makes constant the necessity of getting smaller and smaller features sizes down to micrometer and sub micrometer scales. Laser ablation, which has the great advantage of precise material removal, is a promising candidate. In this dissertation we have demonstrated the feasibility to take advantage of the interaction of femtosecond laser pulses with matter for micro- and nano-structuration and this by having developed a compact and high accurate and flexible apparatus. An analyse of the specific physical mechanisms of laser-matter interaction in the femtosecond regime is presented. Investigations on processing time efficiency as well as the effect of the repetition rate during ablation of metals have been performed. The potential of the multifunctional tool coupled with a compact high repetition rate femtosecond oscillator is shown for different applications in biotechnology. Results on large area mapping as well as accurate nanoprocessing of biological tissue and various materials are presented. This versatile tool covers wide research fields from the nanoprocessing of biological samples as well as the nanostructuring of different type of materials. It is of great interest for many applications in material science, nanobiotechnology and nanomedicine
86

Dynamiques ultrarapides de molécules chirales en phase gazeuse / Ultrafast dynamics of chiral molecules in gas phase

Comby, Antoine 14 November 2019 (has links)
La chiralité est une propriété géométrique caractérisant les objets qui ne sont pas superposables à leur image dans un miroir. Nos mains en sont un exemple emblématique, puisqu’elles existent sous deux formes différentes droite et gauche. Si la chiralité s'observe à toutes les échelles de l'univers, elle joue un rôle particulièrement important en chimie. Une molécule chirale et son image miroir peuvent réagir différemment avec leur environnement et être thérapeutiques ou toxiques. Ces effets ont évidemment d'immenses répercussions sur le règne animal et végétal. Il apparaît alors clairement qu'il est essentiel d’étudier précisément les dynamiques des réactions chimiques chirales.Dans cette thèse, nous avons étudié les dynamiques ultrarapides de molécules chirales par des sources lasers de durée femtosecondes).($10^{-15}$ s). La chiralité moléculaire étant généralement difficile à détecter, nous avons ici utilisé une technique récente, le dichroïsme circulaire de photoélectrons (PECD) qui permet de générer un signal chiral très important. Nous avons ainsi observé des dynamiques moléculaires ultrarapides jusqu'à l'échelle attoseconde ($10^{-18}$ s), et mis en avant des dynamiques de relaxation et d'ionisation encore jamais observées.Parallèlement à ces études résolues en temps, nous avons développé plusieurs expériences employant une nouvelle source laser Yb fibrée à haute cadence et grande puissance moyenne. Nous avons développé une nouvelle méthode, par extension du PECD, qui nous a permis de mesurer la compositions d'échantillons chiraux rapidement avec une grande précision. Enfin, nous avons développé une ligne de lumière XUV ultrabrève de très haute brillance ($sim 2$ mW). Cette source, couplée à un détecteur de photoélectrons et photoions en coïncidence, servira à étudier les mécanismes de reconnaissance chirale. / Chirality is a geometric property that characterizes objects that cannot be superposed on their mirror image. Our hands are an emblematic example of this, since they exist in two different forms, right and left. While chirality is observed at all scales in the universe, it plays a particularly important role in chemistry. A chiral molecule and its mirror image can react differently with their environment and be therapeutic or toxic. These effects obviously have immense repercussions on the animal and plant kingdom. It then becomes clear that it is essential to study precisely the dynamics of chiral chemical reactions.In this thesis, we studied the ultrafast dynamics of chiral molecules by laser sources of femtosecond duration ($10^{-15}$ s). Molecular chirality is generally difficult to detect, so we have used a recent technique, circular photoelectron dichroism (PECD), to generate a very important chiral signal. We have thus observed ultrafast molecular dynamics at the attosecond scale ($10^{-18}$ s), and highlighted relaxation and ionization dynamics never observed before.In parallel to these time-resolved studies, we have developed several experiments using a new high repetition rate, high mean power Yb fiber laser. We have developed a new method, by extending the PECD, that has allowed us to measure the composition of chiral samples quickly and accurately. Finally, we have developed an ultra-short XUV beamline with very high brightness ($sim 2$ mW). This source, coupled with a photoelectron and photoion coincidence detector, will be used to study chiral recognition mechanisms.
87

Source laser à fibre dopée Yb de haute énergie délivrant des impulsions de quelques cycles optiques / Few-cycles high energy fYb-doped fiber amplifier system

Lavenu, Loïc 25 March 2019 (has links)
Les lasers femtoseconde à fibre dopée Yb sont aujourd'hui largement utilisés dans le domaine industriel parce que leur puissance moyenne est élevée. Cela permet d'accélérer les processus de fabrication. Cependant, les lasers à cristaux dopés Ti-Sa dominent dans les applications scientifiques parce que la durée d'impulsion est souvent le critère principal. Ces derniers produisent des impulsions d'une durée inférieure à 30 fs alors que les lasers à fibre dopée Yb, limités par la bande de gain du milieu amplificateur, ne génèrent que des durées de 300 fs.Cette thèse a permis de démontrer la génération, en sortie d'amplificateur à fibre dopée ytterbium, d'impulsion à haute énergie de quelques cycles optiques. Pour ce faire, la durée des impulsions est d'abord réduite en sortie d'amplificateur grâce à l'optimisation de l'architecture laser par façonnage spectral avant amplificateur de puissance afin de limiter l'impact du rétrécissement spectral par le gain. Cette technique permet de générer des impulsions de 130 fs.Afin d'obtenir des durées encore plus courte, une seconde technique de réduction de la durée des impulsions est utilisée après le laser utilisant l'auto-modulation de phase. Le milieu non-linéaire le plus courant utilisé pour des lasers de haute énergie est le capillaire rempli de gaz. L'utilisation de ce milieu nous permet de générer des durées d'impulsions de 15 fs mais est limité par son encombrement et sa transmission.Un deuxième schéma de compression non-linéaire est étudié afin de dépasser cette limitation : la Cellule Multi-Passage. L'utilisation de ce type d'architecture permet effectivement d'atteindre des transmission très élevées mais la contrainte sur le traitement des miroirs de la cellule limite le facteur de compression.Pour générer des durée d'impulsions de quelques cycles optiques, nous avons donc proposé de combiner les deux architectures étudiées en utilisant les avantages de chacune, permettant ainsi générer des impulsions de 2 cycles optiques (6.8 fs). Cette architecture globale permet la création de sources d'impulsions de haute énergie et de très courtes durées compactes et efficaces. / Femtosecond Yb–doped fiber lasers are commonly used in industry because of their high average power. This permits to increase the speed of fabrication processes. However, in scientific applications, the vast majority of high-intensity physics experiments are nowadays driven using Ti:Sapphire lasers. The key point in these applications is often the pulse duration and Ti:Sapphire lasers typically generate 30 fs pulses whereas Yb-doped fiber lasers generate only 300 fs pulses because of gain narrowing.In this thesis, we have sought to generate few-cycle pulses (< 10fs) from Yb-doped fiber lasers. First, we optimize the laser architecture by using spectral amplitude shaping in order to counterbalance gain narrowing. This allows to generate 130 fs pulse duration.To obtain even shorter pulses we added a nonlinear compression set-up after the laser, based on self-phase modulation. For high energy, the most commonly used nonlinear medium is gas-filled capillaries. This set-up allows us to generate 15 fs pulse duration. Nevertheless the transmission of the set-up is limited to 50 %.A second scheme is studied which overcomes this limitation: the gas-filled Multi-Pass Cell. We experimentally demonstrate for the first time nonlinear compression of a high-energy Yb-doped fiber source in this novel implementation. The use of this architecture permits to reach high transmission but the compression factor at the output of the set-up is limited by the mirror coatings.To produce few-cycles pulse duration, we combine the two aforementionned schemes, allowing the generation of two-cycle (6.8 fs) pulse duration with a high overall transmission. This global architecture will enable a new generation of high-energy compact few-cycle laser sources.
88

Harmoniques cohérentes du Laser à Electrons Libres générées à partir d'harmoniques produites dans les gaz sur le prototype de l'accélérateur SCSS

Lambert, Guillaume 19 February 2008 (has links) (PDF)
Aujourd'hui, les Lasers à Electrons Libres (LELs) en simple passage permettent d'étudier la structure de la matière dans le domaine de la femtoseconde. Cependant, le rayonnement produit, l'émission spontanée auto-amplifiée (SASE), bien que hautement brillante, possède une cohérence longitudinale partielle ; les profils temporel et spectral sont composés d'une série de pics, appelés « spikes », et présentent d'importantes fluctuations statistiques. Nous démontrons ici la forte amplification cohérente de la 5ème harmonique d'un laser Ti: Sa (800 nm, 10 Hz, 100 fs) générée dans une cellule de gaz, i.e. 160 nm, puis injectée dans un LEL. Ce phénomène spectaculaire s'accompagne de la génération d'Harmoniques Non Linéaires LELs (HNL) intenses et cohérentes à 54 nm et 32 nm. L'expérience a été réalisée sur le prototype de l'accélérateur SCSS (source SASE compacte de SPring-8, Japon). Cette installation est principalement constituée d'un canon à électrons à cathode thermo-ionique, d'un LINAC et d'un onduleur sous vide (2 sections de 4,5 m de long), au niveau duquel la source externe harmonique est superposée transversalement, spectralement et temporellement avec le faisceau d'électrons (150 MeV, 10 Hz, 1 ps). Avec une seule section d'onduleur, le rayonnement à 160 nm en mode injecté atteint une intensité de trois ordres de grandeur supérieure à celle obtenue sans injection, et présente une distribution spectrale quasi-Gaussienne. De plus, la longueur de saturation du LEL est deux fois plus courte. Vu le faible niveau d'injection requis, une telle amplification couplée à des schémas HNL permettrait de générer des rayonnements X-mous totalement cohérents jusqu'à la « fenêtre de l'eau ».
89

Ionisation nonlinéaire dans les matériaux diélectriques et semiconducteurs par laser femtoseconde accordable dans le proche infrarouge

Leyder, Stéphanie 17 December 2013 (has links) (PDF)
La microfabrication 3D par laser dans les matériaux à faible bande interdite nécessitera l'utilisation d'impulsions intenses dans l'infrarouge proche et moyen. Cette étude expérimentale se concentre sur les spécificités de la physique d'ionisation nonlinéaire dans la gamme de longueur d'onde de 1300-2200 nm. Contrairement aux semiconducteurs, l'absorption nonlinéaire mesurée dans les diélectriques est indépendante de la longueur d'onde révélant ainsi l'importance accrue de l'ionisation par effet tunnel avec ces longueurs d'onde. Nous étudions également les rendements et les seuils d'ionisation multiphotonique et avalanche dans le silicium intrinsèque et dopé N. Les résultats couplés à l'observation des matériaux irradiés montrent que les propriétés intrinsèques des semiconducteurs empêchent un dépôt d'énergie suffisamment confiné pour viser directement des applications de modification locale. Ce travail illustre les possibilités de micro-usinage laser 3D dans les diélectriques et les défis de l'extension de cette technique aux semiconducteurs.
90

Lasers femtoseconde de forte puissance moyenne à base de cristaux dopés à l'ytterbium

Ricaud, Sandrine 04 December 2012 (has links) (PDF)
Ce travail de thèse concerne le développement de sources femtoseconde de forte puissance moyenne ou de forte énergie avec des matériaux pompés par diodes laser, dopés à l'ytterbium. Plus particulièrement au cours de cette thèse deux types de matrices ont été utilisés, le CALGO (CaGdAlO4) et les fluorures, possédant le potentiel de générer des impulsions courtes (100aine de femtoseconde). Les caractéristiques spectroscopiques et thermiques du CALGO dopés à l'ytterbium permettent d'envisager le développement d'oscillateur femtoseconde court de forte puissance moyenne. Dans ce contexte, la technologie des disques minces permet d'obtenir avec d'autres matrices, des résultats très intéressants. C'est pourquoi durant cette thèse le choix de maitriser cette nouvelle technologie, avec l'utilisation de ce cristal, a été fait. Dans ce cadre, des résultats très prometteurs ont été obtenus. L'oscillateur femtoseconde Yb :CALGO de plus forte puissance moyenne a en effet été développé (28 W), pour une énergie non négligeable, supérieure au µJ et une durée d'impulsions de 300 fs. Des améliorations sont à prévoir avec l'utilisation de nouveaux cristaux plus dopés et plus fins, mais d'hors et déjà les résultats obtenus sont au niveau de l'état de l'art des oscillateurs femtoseconde de forte puissance moyenne.Le cristal de CaF2 quant à lui, possède un grand intérêt pour le développement d'amplificateurs énergétiques courts, puisqu'il a la capacité de stocker beaucoup d'énergie. Deux types d'amplificateurs ont alors été développés, avec des objectifs bien différents. Le premier permet d'obtenir un fort gain (~106), avec une énergie extraite proche du mJ (amplificateur régénératif), alors que le second a pour but d'extraire le maximum d'énergie (amplificateur multipassage), dans notre cas jusqu'à 160 mJ, avec un gain plus faible (~10).Le potentiel de ces matériaux pour la génération d'impulsions courtes et/ou de forte puissance moyenne a alors été démontré.

Page generated in 0.0553 seconds