• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 23
  • 12
  • 9
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Shear Strength and Strength Degradation of Concrete Bridge Decks with GFRP Top Mat Reinforcement

Amico, Ross Dominick 05 August 2005 (has links)
The primary objective of this research was to investigate the shear strength of concrete bridge decks with GFRP top-mat reinforcement. Several models currently exist to predict the shear strength during the design process; however, previous research at Virginia Tech indicates that the existing equations are overly conservative. For this research, a series of concrete decks with varying lengths were tested in a laboratory environment in a two-span continuous configuration, during which data was collected on deflections, rebar strain, crack widths, and ultimate load. It was concluded that the existing equations, particularly the guidelines of ACI 440, are grossly over-conservative for GFRP-reinforced concrete bridge decks continuous over multiple supports. It was suggested that this is due to multiple factors, including additional support provided by the typically-neglected steel reinforcement in the bottom mat and a higher shear strength of the uncracked portion of concrete due to higher compressive stresses in the section as a result of the continuous deck configuration. The second objective of this research was to investigate the effects of environmental exposure on the composite deck and the individual GFRP rebar. Three deck specimens were subjected to differing environmental conditions, including one that was placed into service at an interstate weigh station. All three decks were tested in the same manner as those in the shear investigation. Additionally, live load tests were conducted on the weigh station deck during the time it was in place and tensile tests were conducted on rebar that were extracted from the concrete decks. In the live load testing, the GFRP strains increased by more than 200% over the period of service, which was likely due to a combination of a reduction in GFRP stiffness and a greater amount of cracking. During the laboratory tests on the decks, no clear correlation between conditioning and deflections or cracking was found. The ultimate strength actually increased with conditioning, with the weigh station specimen exhibiting the highest shear strength. Finally, the results of the rebar tensile tests suggested a decrease in both modulus of elasticity and ultimate tensile strength of the GFRP with environmental exposure when compared to unconditioned bars. / Master of Science
12

Performance of a Bridge Deck with Glass Fiber Reinforced Polymer (GFRP) Bars as the Top Mat of Reinforcement

Phillips, Kimberly Ann 21 December 2004 (has links)
The purpose of this research was to investigate the effectiveness and durability of GFRP bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advantages of GFRP such as its high tensile strength, light weight, and resistance to corrosion make it an attractive alternative to steel. The first objective of this research was to perform live load testing on a bridge deck reinforced with GFRP in one span and steel in the other. The results were compared to the findings from the initial testing performed one year earlier. The strains and deflections of the bridge deck were recorded and the two spans compared. Transverse stresses in the GFRP bars, girder distribution factors, and dynamic load allowances were calculated for both spans. From the live load tests, it was concluded that the GFRP-reinforced span results were within design parameters. The only concern was the increased impact factor values. The second objective was to perform live load tests on a slab reinforced with GFRP installed at a weigh station. Two live load tests were performed approximately five months apart. Peak strains in the GFRP and steel bars were recorded and compared. The peak stresses had increased over time but were within design allowable stress limits. The third objective of this research was to investigate the long term behavior and durability of the GFRP reinforcing bars cast in a concrete deck. The strain gauges, vibrating wire gauges, and thermocouples in the bridge deck were monitored for approximately one year using a permanent data acquisition system. Daily, monthly, and long term fluctuations in temperature and stresses were examined. It was concluded that the vibrating wire gauges were more reliable than the electrical resistance strain gauges. It was further observed that the main influence over strain changes was temperature fluctuations. / Master of Science
13

Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders

Kassner, Bernard Leonard 23 September 2004 (has links)
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure. / Master of Science
14

Fatigue Life of Hybrid FRP Composite Beams

Senne, Jolyn Louise 17 July 2000 (has links)
As fiber reinforced polymer (FRP) structures find application in highway bridge structures, methodologies for describing their long-term performance under service loading will be a necessity for designers. The designer of FRP bridge structures is faced with out-of-plane damage and delamination at ply interfaces. The damage most often occurs between hybrid plys and dominates the life time response of a thick section FRP structure. The focus of this work is on the performance of the 20.3 cm (8 in) pultruded, hybrid double web I-beam structural shape. Experimental four-point bend fatigue results indicate that overall stiffness reduction of the structure is controlled by the degradation of the tensile flange. The loss of stiffness in the tensile flange results in the redistribution of the stresses and strains, until the initiation of failure by delamination in the compression flange. These observations become the basis of the assumptions used to develop an analytical life prediction model. In the model, the tensile flange stiffness is reduced based on coupon test data, and is used to determine the overall strength reduction of the beam in accordance the residual strength life prediction methodology. Delamination initiation is based on the out-of-plane stress sz at the free edge. The stresses are calculated using two different approximations, the Primitive Delamination Model and the Minimization of Complementary Energy. The model successfully describes the onset of delamination prior to fiber failure and suggests that out-of-plane failure controls the life of the structure. / Master of Science
15

Glass Fiber Reinforced Polymer Bars as the Top Mat Reinforcement for Bridge Decks

DeFreese, James Michael 20 December 2001 (has links)
The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. Tensile strength of the bars from the tensile testing ranged from 529 MPa to 859 MPa. The average modulus, taken from all the testing, for each type of bar was found to range from 40 GPa to 43.7 GPa. The maximum bond stress from the beam end bond tests ranged from 9.17 MPa to 25 MPa. From the tests, design values were found in areas where the properties investigated were related. These design values include design tensile strength, design modulus of elasticity, bond coefficient for deflection calculations, bond coefficient for crack width calculations, and development length. The results and conclusions address design concerns of the different types of FRP bars as applied in the top mat of reinforcement of a bridge deck. A secondary objective was to evaluate the disparity in results between direct pullout tests, and beam end bond tests. Results from the experimentally performed beam end bond test were compared to previous literature involving the direct pullout tests. Results from the performed beam end bond tests were higher than all of the literature using direct pullout results. No recommendations were given on the disparity between the two test methods. / Master of Science
16

Characterization and Modeling of a Fiber-Reinforced Polymeric Composite Structural Beam and Bridge Structure for Use in the Tom's Creek Bridge Rehabilitation Project

Hayes, Michael David 12 February 1998 (has links)
Fiber reinforced polymeric (FRP) composite materials are beginning to find use in construction and infrastructure applications. Composite members may potentially provide more durable replacements for steel and concrete in primary and secondary bridge structures, but the experience with composites in these applications is minimal. Recently, however, a number of groups in the United States have constructed short-span traffic bridges utilizing FRP members. These demonstration cases will facilitate the development of design guidelines and durability data for FRP materials. The Tom's Creek Bridge rehabilitation is one such project that utilizes a hybrid FRP composite beam in an actual field application. This thesis details much of the experimental work conducted in conjunction with the Tom's Creek Bridge rehabilitation. All of the composite beams used in the rehabilitation were first proof tested in four-point bending. A mock-up of the bridge was then constructed in the laboratory using the actual FRP beams and timber decking. The mock-up was tested in several static loading schemes to evaluate the bridge response under HS20 loading. The lab testing indicated a deflection criterion of nearly L/200; the actual field structure was stiffer at L/450. This was attributed to the difference in boundary conditions for the girders and timber panels. Finally, the bridge response was verified with an analytical model that treats the bridge structure as a wood beam resting upon discrete elastic springs. The model permits both bending and torsional stiffness in the composite beams, as well as shear deformation. A parametric study was conducted utilizing this model and a mechanics of laminated beam theory to provide recommendations for alternate bridge designs and modified composite beam designs. / Master of Science
17

Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars

Ge, W-J., Ashour, Ashraf, Yu, J., Gao, P., Cao, D-F., Cai, C., Ji, X. 09 November 2018 (has links)
Yes / This paper aims to investigate the flexural behavior of engineered cementitious composite (ECC)-concrete hybrid composite beams reinforced with fiber reinforced polymer (FRP) bars and steel bars. Thirty two hybrid reinforced composite beams having various ECC height replacement ratio and combinations of FRP and steel reinforcements were experimentally tested to failure in flexure. Test results showed that cracking, yield and ultimate moments as well as the stiffness of hybrid and ECC beams are improved compared with traditional concrete beams having the same reinforcement, owing to the excellent tensile properties of ECC materials. The average crack spacing and width decrease with the increase of ECC height replacement ratio. The ductility of hybrid reinforced composite beams is higher than that of traditional reinforced concrete beams while their practical reinforcement ratios are similar. Reinforced ECC beams show considerable energy dissipation capacity owing to ECC’s excellent deformation ability. Considering the constitutive models of materials, compatibility and equilibrium conditions, formulas for the prediction of cracking, yield and ultimate moments as well as deflections of hybrid reinforced ECC-concrete composite beams are developed. The proposed formulas are in good agreement with the experimental results. A comprehensive parametric analysis is, then, conducted to illustrate the effect of reinforcement, ECC and concrete properties on the moment capacity, curvature, ductility and energy dissipation of composite beams. / National Natural Science Foundation of China (51678514, 51308490), the Natural Science Foundation of Jiangsu Province, China (BK20130450), Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), Graduate Practice Innovation Project of Jiangsu Province (SJCX17-0625), the Jiangsu Government Scholarship for Overseas Studies and Top-level Talents Support Project of Yangzhou University
18

Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP bars

Ge, W., Zhang, F, Wang, Y., Ashour, Ashraf, Luo, L., Qiu, L., Fu, S., Cao, D. 31 August 2024 (has links)
Yes / This paper explores the development of the most suitable machine learning models for predicting the bending capacity of steel and FRP (Fiber Reinforced Ploymer) bars hybrid reinforced ECC (Engineered Cementitious Composites)-concrete composite beams. Five different machine learning models, namely Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest (RF), and Extremely Randomized Trees (ERT), were employed. To train and evaluate these predictive models, the study utilized a database comprising 150 experimental data points from the literature on steel and FRP bars hybrid reinforced ECC-concrete composite beams. Additionally, Shapley Additive Explanations (SHAP) analysis was employed to assess the impact of input features on the prediction outcomes. Furthermore, based on the optimal model identified in the research, a graphical user interface (GUI) was designed to facilitate the analysis of the bending capacity of hybrid reinforced ECC-concrete composite beams in practical applications. The results indicate that the XGBoost algorithm exhibits high accuracy in predicting bending capacity, demonstrating the lowest root mean square error, mean absolute error, and mean absolute percentage error, as well as the highest coefficient of determination on the testing dataset among all models. SHAP analysis indicates that the equivalent reinforcement ratio, design strength of FRP bars, and height of beam cross-section are significant feature parameters, while the influence of the compressive strength of concrete is minimal. The predictive models and graphical user interface (GUI) developed can offer engineers and researchers with a reliable predictive method for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams.
19

Development and structural testing of new basalt fiber-reinforced-polymer (BFRP) bars in RC beams and bridge-deck slabs / Étude du comportement structural de poutres et de dalles de ponts en béton armé d'une nouvelle armature à base de fibre de basalte sous charge statique

Elgabbas, Fareed Mahmoud January 2016 (has links)
L'avancée de la technologie des PRF a suscité l'intérêt de l'introduction de nouvelles fibres, comme la fibre de basalte, qui a un potentiel d'offrir une solution efficace, lorsqu’utilisée dans les structures en béton, soit sur la résistance à la corrosion, la durabilité et la rentabilité. En outre, les codes et les guides disponibles, ne fournissent pas de recommandations pour l'utilisation de barres en PRFB puisque les recherches passées dans ce domaine sont limitées. Donc, des travaux de recherche sont nécessaires pour caractériser et comprendre le comportement des barres de PRFB dans les éléments en béton armé. En conséquence, les objectifs principaux sont d'évaluer les caractéristiques à court et long terme des barres de PRFB nouvellement développées, ainsi que d'évaluer les performances structurales de ces nouvelles barres comme renforcement interne dans les poutres et les dalles de pont et d'introduire ce nouveau renforcement dans les codes et les guides de dimensionnement. Les tests expérimentaux ont été faits en trois parties. La première partie porte sur le développement de trois nouvelles barres et tendons en PRFB pour déterminer leurs propriétés physiques et mécaniques. Les performances à long terme et de durabilité ont été réalisées en conditionnant les barres de PRFB dans une solution alcaline simulant les conditions humides dans le béton pour déterminer la compatibilité comme renforcement interne dans les éléments en béton. Par la suite, les propriétés ont été déterminées et comparées avec des spécimens non conditionnés (référence). La seconde partie a porté sur sept dalles de pont en béton armé grandeur réelle avec les bords restreints, simulant les tabliers de pont les plus utilisés en Amérique du Nord, pour évaluer la performance des dalles renforcées de PRFB et d'acier. Les dalles mesurent 3000 mm de long × 2500 mm de large × 200 mm d'épaisseur. Les dalles ont été testées jusqu'à la rupture sous une charge concentrée au centre de celles-ci simulant l'empreinte d'une roue d'un camion. Les capacités en poinçonnement sont prédites en utilisant les exigences réglementaires disponibles, et sont comparées aux résultats expérimentaux. La troisième partie de cette étude portait sur les essais de 14 poutres en béton de 3100 mm de long × 200 mm de large × 300 mm de profond pour examiner le comportement en flexion et les performances en service des barres de PRFB avec deux états de surfaces: fini sablé et crénelé. Les poutres ont été testées en flexion en quatre points avec une portée libre de 2700 mm jusqu'à la rupture. Les résultats sont introduits et discutés en terme : du comportement de la fissuration, des flèches, de la capacité en flexion et des modes de ruptures. De plus, le coefficient d'adhérence (kb) des barres de PRFB est déterminé et comparé avec les recommandations des codes et guides actuels. Les résultats sont introduits et discutés en terme : du comportement de la fissuration, des flèches, de la capacité en flexion et des modes de ruptures. De plus, le coefficient d'adhérence des barres de PRFB est déterminé et comparé avec les recommandations des codes et guides actuels. Les résultats de l'étude concluent sur la viables pour la production des barres de PRFB pour respecter les exigences des codes actuelles. Également, les résultats d'essai indiquent que les barres de PRFB ont de bonnes propriétés mécaniques et peuvent être placées dans la même catégorie que les barres de PRFV, soit grade III. De plus, le comportement des poutres et des dalles de pont renforcées de PRFB est similaire que pour un renforcement en PRFV et PRFC et les exigences réglementaires sont applicables pour les barres de PRFB. / Abstract: The advances in fiber-reinforced-polymer (FRP) technology have spurred interest in introducing new fibers, such as basalt FRP (BFRP), which has the potential to offer an efficient solution when implemented in concrete structure, such as corrosion resistant, durable and cost-effective. Furthermore, the available design codes and guides do not provide any recommendations for the use of BFRP bars since fundamental studies and relevant applications are still limited. Therefore, investigations are needed to characterize and understand the behavior of BFRP bars in concrete members. Consequently, the main objectives of this experimental investigation are to evaluate the short- and long-term characteristics of newly developed BFRP bars, as well as evaluate the structural performance of these new bars as internal reinforcement for concrete beams and bridge-deck slabs to introduce these new reinforcing bars to the design codes and guides. The experimental tests were completed through three parts. The first part was conducted on three newly developed BFRP bars and tendons to investigate their physical and mechanical properties. Durability and long-term performance were assessed by conditioning the BFRP bars in an alkaline solution simulating the moist concrete environment to determine their suitability as internal reinforcement for concrete elements. Thereafter, the properties were assessed and compared with the unconditioned (reference) values. The second part of this study was conducted on seven full-scale edge-restrained concrete bridge-deck slabs simulating actual slab-on-girder bridge-deck that is commonly used in North America to evaluate the performance of concrete bridge-deck slabs reinforced with BFRP and steel bars. The deck slabs measured 3000 mm long × 2500 mm wide × 200 mm deep. The slabs were tested up to failure under single concentrated load acting on the center of each slab simulating the footprint of sustained truck wheel load. The punching shear capacities were predicted using the available provisions, and compared with the experimental results. The third part of this study included testing of fourteen concrete beams of 3100 mm long × 200 mm wide × 300 mm deep to investigate the flexural behavior and serviceability performance of sand-coated and ribbed BFRP bars in concrete beams. The beams were tested under four-point bending over a clear span of 2700 mm until failure. The results are introduced and discussed in terms of cracking behavior, deflection, flexure capacity, and failure modes. In addition, the bond-dependent coefficient (kb) of the BFRP bars was determined and compared with the recommendations of the current FRP design codes and guides. The findings of this study concluded the feasibility of producing BFRP bars meet the requirements of the current FRP standards. Also, the test results revealed that the BFRP bars had good mechanical behavior and could be placed in the same category as grade II and grade III GFRP bars. Moreover, the behavior of the concrete bridge-deck slabs and beams reinforced with BFRP bars was quite similar to the counterparts reinforced with glass- and carbon-FRP bars and the available FRP provisions are applicable for BFRP bars. The beam test results yielded an average bond-dependent coefficient (kb) of 0.76±0.03 and 0.83±0.03 for the sand-coated and ribbed BFRP bars, respectively.
20

EXPERIMENTAL INVESTIGATION OF REPAIR TECHNIQUES FOR DETERIORATED END REGIONS OF PRESTRESSED CONCRETE BRIDGE GIRDERS

William Rich (10713612) 06 May 2021 (has links)
<div> <p>Due to harsh environmental conditions, the deterioration of prestressed concrete bridge girders is a commonly observed phenomenon in Indiana and much of the Midwest. Concordantly, one widely observed damage scenario is deteriorated end regions of prestressed concrete girders. Damaged or failed expansion joints expose prestressed concrete girder end regions to chloride-laden water, resulting in a corrosive environment in which reinforcement section loss and concrete spalling can occur. For bridges experiencing this type of deterioration, action is needed to ensure the structure remains safe and serviceable. As such, an experimental program was developed to investigate the effectiveness of three repair techniques in restoring the structural behavior of prestressed concrete bridge girders with end region deterioration. The three examined repair techniques are (i) an externally bonded fiber reinforced polymer (FRP) system, (ii) a near-surface-mounted (NSM) FRP system, and (iii) a concrete supplemental diaphragm. Additionally, installation procedures for the three end region repair techniques were developed. Results, conclusions, and recommendations from the experimental program are presented to help advise best practices for implementing end region repair techniques in the field. </p> </div> <br>

Page generated in 0.0544 seconds