• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 284
  • 102
  • 10
  • 1
  • Tagged with
  • 714
  • 714
  • 714
  • 421
  • 226
  • 226
  • 226
  • 179
  • 169
  • 160
  • 140
  • 92
  • 90
  • 58
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Gefüge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften / Structure simulations on non-oxide ceramics: correlation between microstructure and macroscopic properties

Brockmann, Dorothea E. R. January 2018 (has links) (PDF)
Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken. Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist. / Experimental improvement of macroscopic properties (e. g. thermal or mechanical properties) of ceramics require countless experiments and are therefore costly in terms of time and money. However, simulations use the correlation of microstructure and macroscopic properties to calculate properties of any microstructure. Until now, simulations usually use oversimplified models, which only roughly reproduce a ceramics' microstructure and therefore do not give reasonable results. In the paper on hand, the microstructure-property-correlation of the three most important non-oxide-ceramics (AlN, Si3N4, SiC) is analysed. These three types of ceramic represent the most important types of microstructures, which exist for nonoxidic ceramics. For each type of ceramic, two different samples are examined. All three ceramic types used are two-phase-ceramics. The primary phase of AlN and Si3N4 is built of the ceramic grains and the secondary phase solidifies from the added sinter additives. The remaining porosity of AlN and Si3N4 is regarded to be negligible and is therefore not considered in the simulations. The SiC-samples are ceramics with a bimodal grain size distribution. The spaces in between the grains are filled by infiltration with liquid silicon to get Si-SiC-samples free of pores. At first, by employing simulations, microstructures are generated, which are close to the samples' microstructures. These models are verified by comparing them with two-dimensional scanning electron micrographs. Macroscopic properties (thermal conductivity, Young's modulus, Poisson's Ratio) of the ceramics are calculated by finite element simulations and then compared to experimental measurements on the samples. Analyzing the microstructures of the computer-generated models and the samples shows good agreement in the pattern matching as well as quantitatively in the microstructures parameters. Also for the macroscopic properties good comparison between measured and simulated properties was reached, based on an elaborate literature research on material parameters of all phases involved. Occurring discrepancies between experiment and simulations are assumed to be due to impurities in the sample. From literature it is known that impurities lead to a decline in thermal conductivity. As the models are validated, the influence of characteristic microstructure parameters and material properties of the phases on the thermal conductivity, Young's modulus and Poisson's ratio of ceramics are analysed. Therefore some microstructure parameters of the models of AlN and Si3N4 are deviated from the parameters of the samples. For both ceramic types the volume fractions of both phases and the average chord length of the grains are varied. At the AlN models, the dihedral angle is varied as well, which provides information about the wetting behaviour of the secondary phase; at the Si3N4 models, the aspect ratio of the elongated Si3N4 grains are of importance and hence analysed. It turns out that the volume fractions of the phases have the most significant influence on the ceramics' properties, whereas the other microstructure parameters are less important. To check the quality of the simulations, the simulation data of AlN with different volume fractions is compared to established models from literature ("rule of mixture" and model according to Ondracek). All results from the simulations are within the upper and lower bounds of both models. In comparison with these models, an improvement was achieved. For all three ceramic types, the influence of the material properties of the main and the secondary phase on the ceramics' properties is investigated. Therefore, the phases' thermal conductivity, Young's modulus and Poisson's ratio are separately from each other varied over a large range. It turns out that the influence of a component's property on the property of the ceramic depends on the ceramic type and the volume fraction of the secondary phase. On models of all three ceramic types, the influence of the components' material properties on the macroscopic properties of the ceramic is analysed. Based on these simulations, the architecture of microstructures can be simulated and properties of random ceramics for individual purposes can by calculated. By this, it is possible to produce customised ceramics. Additionally, with the validated microstructure models, the properties of unknown mixed phases can be calculated, which is usually not possible in experiments.
232

Gemischte und einfache Parameteridentifikation mittels der Finiten-Elemente-Methode an Nanoindentationsmessungen

Lösch, Sören 25 January 2013 (has links) (PDF)
Die Anwendung des Verfahrens der inversen Parameteridentifikation auf die Nanoindentation mit einer neuen Materialklasse (amorphe Legierungen) ist Hauptgegenstand der vorliegenden Arbeit. Um die Methode auf ihre Zuverlässigkeit hin zu überprüfen, werden darüber hinaus die drei Härtevergleichsplatten HV240, HV400 und HV720 sowie das oxidische Glas BK7, deren Nanoindentationsmessungen von Dipl.-Ing. André Clausner schon zu einem früheren Zeitpunkt vorgenommen wurden, zur Berechnung herangezogen. Die Auswahl der Materialien erfolgte so, dass diese einen möglichst großen Bereich von Y abdecken, von BK7 bis hin zu HV240. Damit soll gezeigt werden, dass das Verfahren der inversen Parameteridentifikation für einen großen Bereich von natürlich vorkommenden Materialien genutzt werden kann. Der Schwerpunkt liegt dabei auf der Bestimmung des Fließverhaltens, das durch die Parameter Fließgrenze1 Y und Verfestigungsexponent n erfolgt. Ziel ist es, in Zukunft auf weitere Experimente, die bisher zur Bestimmung der mechanischen Materialeigenschaften genutzt wurden und häufig zur Zerstörung der Proben führten, verzichten zu können. Für viele Gläser, z.B. BK7, sind derartige zerstörende Versuche nicht anwendbar, weil spröde Materialien splittern statt plastisch zu fließen. Dieser Arbeit liegt die Methode der Finiten-Elemente zugrunde, um eine inverse Parameteridentifikation zu realisieren. Sie wird hier eingesetzt, weil es sich bei plastischer Verformung um einen nichtlinearen Prozess2 handelt, der analytisch nicht mehr geschlossen gelöst werden kann. Die Simulationssoftware ANSYS R und ein Optimierungsmodul (SPC-OPT) der Fakultät für Maschinenbau dienen zur Berechnung. Bei der Simulation werden dabei ein zweidimensionales Modell und ein realitätsnahes dreidimensionales Modell eingesetzt.
233

Betrachtungen zur Wärmebilanz von Nickel-Metall-Hydrid Batterien

Harmel, Joachim 14 November 2005 (has links) (PDF)
Heat generation plays an important role for energy storage systems like batteries in electric and hybrid vehicles. In order to investigate the thermal and electrical behaviour the nickel metal hydride batteries were exposed to cycling programs including various methods of battery cooling by flowing air. The second part of the paper describes the simulation of the temperature distribution by using finite element methods (FEM). The electric-thermal battery model was compared with results obtained from temperature measurements at four selected points during battery cycling. The results serve environmentalcareful battery employment for the general, system-oriented viewpoint of the battery condition and form the basis for energy and enviroment save used. / Die Wärmeerzeugung spielt bei dem Einsatz von Batterien in Elektro- und Hybridfahrzeugen eine wichtige Rolle. In der Arbeit wird das thermische und elektrische Verhalten der Batterien bei der Belastung mit schnell aufeinander folgenden Höchststromladeimpulsen und -entladeimpulsen untersucht. Die Kühlung der Batterie erfolgte mit verschiedenen Methoden der Luftkühlung. Im zweiten Teil der Arbeit wird die Simulation der Temperaturverteilung mittels Finiter Element Methoden (FEM) beschrieben. Die mit einem elektrisch-thermischen Batteriemodell simulierten Temperaturen werden mit den an verschiedenen Punkten experimentell gemessenen Zelltemperaturen verglichen. Die Ergebnisse dienen zur ganzheitlichen, systemorientierten Betrachtungsweise des Batteriezustandes und bilden die Grundlage für einen energie- und umweltschonenden Batterieeinsatz.
234

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links) (PDF)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.
235

Verbesserte numerische Simulation von Indenter-Versuchen durch die Fourier-Finite-Elemente-Methode

Meszmer, Peter 22 October 2007 (has links)
Partial differential equations describe a number of processes in the physical-technical environment. The equations of the elasticity theory, which can be used to describe the deformations of a sample under application of an outer load, may serve as an example. Among other things, such deformations appear at so-called indentation tests, which are used to determine mechanical properties of thin layers. Since most partial differential equations can not, or only with great difficulty, be solved in an analytical way, numeric attempts to obtain an approximate solution are common. For the solution of elliptical partial differential equations with boundary conditions, the finite element method (FEM) is widely used. A problematic aspect is the growing numeric effort when increasing the accuracy of the approximation. This issue intensifies at higher dimensions. Since the scope of this work is the three-dimensional case, we will investigate possibilities of dimension reduction. Two Fourier approaches, which allow a dimension diminution from three to two, are being examined. If combined with a cylindrical parametrization of the three-dimensional space, the solution can be calculated without loss of information. The application of these approaches is illustrated exemplarily by the modeling of an indentation test with a rotationally symmetric structur and loads without rotational symmetry. / Partielle Differentialgleichungen beschreiben im physikalisch-technischen Umfeld eine Reihe von Prozessen. Ein Beispiel hierfür sind die Gleichungen der Elastizitätstheorie, die genutzt werden können, um die Verformungen einer Probe unter Aufbringung einer äußeren Last zu beschreiben. Solche Verformungen treten unter anderem bei sogenannten Indenterversuchen auf, die eingesetzt werden, um mechanische Größen dünner Schichten zu ermitteln. Da die meisten partiellen Differentialgleichungen auf analytischem Wege nicht, oder nur sehr schwer zu lösen sind, existieren numerischen Ansätze, um eine Lösung auf approximativem Wege zu erzielen. Für die Lösung elliptischer partieller Differentialgleichungen mit Randbedingungen existiert das Verfahren der Finiten-Elemente-Methode (FEM). Ein problematischer Aspekt besteht im wachsenden numerischen Aufwand mit genauer werdender Approximation der Lösung. Mit dem Ansteigen der Dimension der beschriebenen Prozesse verschärft sich dieses Problem. Der Fokus dieser Arbeit liegt auf dreidimensionalen Aufgabenstellungen. Daher ist es ihr Ziel, Möglichkeiten der Dimensionsreduktion zu untersuchen. Betrachtet werden zwei Fourieransätze, die bei einer Parametrisierung eines dreidimensionalen Gebietes mittels Zylinderkoordinaten eine Reduktion von drei auf zwei Freiheiten in der Berechnung der Lösung ermöglichen, ohne dass dabei Informationen verloren gehen. Die Anwendung dieser Ansätze soll beispielhaft durch die Modellierung eines Indenterversuches mit rotationssymmetrischer Anordnung und nichtrotationssymmetrischen Lasten veranschaulicht werden.
236

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.:Introduction FEM-Simulation The FloSim Model Computation of the Workpiece length Results Conclusion
237

Homogenisierung und Modellierung des Materialverhaltens kurzfaserverstärkter Thermoplaste

Goldberg, Niels 20 August 2018 (has links)
Im Spritzguss hergestellte Bauteile mit Kurzfaserverstärkung weisen ein niedriges Gewicht bei hoher Steifigkeit auf und bieten damit beispielsweise in der Automobilbranche eine Alternative zu Bauteilen aus konventionellen Werkstoffen wie Stahl. Die Eigenschaften der Kunststoffbauteile sind das Resultat einer vielschichtigen Prozessgeschichte. Dabei erfährt das Material einen hohen Wärmeaustausch, wechselt seine Phase von flüssig zu fest, kühlt lokal unterschiedlich schnell ab und wird von den Orientierungen der eingebetteten Kurzfasern geprägt. Da die Bauteileigenschaften eine hohe Sensitivität gegenüber Variationen der Prozessparameter besitzen, sollen Simulationen des Fertigungsprozesses kostengünstige Vorhersagen zur Güte des Endproduktes ermöglichen. Den Simulationen liegen mathematische Gleichungen zu Grunde, die das effektive Materialverhalten beschreiben. Die vorliegende Arbeit beschäftigt sich mit der Formulierung eines solchen Materialmodells. Mit Hilfe von Homogenisierungen repräsentativer Volumenelemente wird zunächst der Einfluss der Faserorientierungsverteilung auf die mechanischen und thermischen Eigenschaften analysiert. Die daraus gewonnenen Erkenntnisse fließen anschließend in die Modellierung des Materialverhaltens ein. Der in dieser Arbeit verwendete Modellierungsrahmen ist für große Deformationen ausgelegt, berücksichtigt den Phasenübergang sowie Temperaturabhängigkeiten in den viskoelastischen Steifigkeitsanteilen und stützt sich auf eine effektive Integrationsregel, um die Faserorientierungsverteilung einzubeziehen. Die Identifikation der Materialparameter geschieht mit Hilfe von Experimenten an Proben mit unidirektionaler Faserausrichtung. Das identifizierte Materialmodell wird schließlich in die kommerzielle Finite-Elemente-Umgebung Abaqus implementiert und steht damit Simulationen der Abkühlung und der Beanspruchung eines spritzgegossenen Kettenglieds zur Verfügung.
238

Vom CAD-Modell über die Simulation zum 3D-Druck und zurück : Simulationsansätze in einer, durch den 3D-Druck entfesselten, neuen Gestaltungsfreiheit

Prinz, Ralf 22 July 2016 (has links) (PDF)
War bisher die Gestalt von Bauteilen und Baugruppen in Konstruktionen sehr stark durch ihre Fertigungsverfahren beeinflusst, so ändern sich diese Vorgaben durch die Verwendung von 3D- Druck auf beinahe revolutionäre Art und Weise. Und somit werden Ansätze salonfähig, die bisher doch eher selten in Anwendung waren, wie z.B. Gitterstrukturen oder Topologieoptimierung. Diese finden nun wieder häufiger ihren Weg in die Bauteil- und Baugruppenstrukturen. Die Verwendung birgt aber auch damit einhergehende Herausforderungen, da sich z.B. die Bauteilgrößen nach einer Topologieoptimierung drastisch vergrößern und z.B. auch die Glättung der Teile für den Druck, sowie die Rückführung in die CAD-Systeme, häufig noch eine ungelöste Aufgabe darstellen. Diese Ansätze müssen bezogen auf den PLM Gedanken, prozesstechnisch durchdacht und entsprechend implementiert werden. Der Vortrag beschäftigt sich mit der dafür notwendigen Prozesskette vom CAD-Model über die Simulationsverfahren wie Topologieoptimierung oder Gitterstrukturen, Glättung von Strukturen u.v.m. sowie deren Rückführung ins CAD/PLM.
239

Einfluss des Materialzustandes einer EN-AW 6.xxx-Legierung auf das Umformverhalten und die FE-Berechnung

Graf, Marcel, Ullmann, Madlen 22 July 2016 (has links) (PDF)
Eine effiziente und effektive Technologieentwicklung und –optimierungen im Bereich der Umform- und Fertigungstechnik erfolgt heutzutage fast ausschließlich rechnergestützt auf Basis der Finiten Elemente Methode (FEM) oder der Finiten Differenzen Methode (FDM). Die aktuellen Umformsimulationssysteme sind in der Lage die notwendige Energie der Anlagen, den prozessbedingten Stofffluss des Umformgutes inkl. der resultierenden Temperaturen und die Spannungen des Halbzeuges bzw. Bauteiles als auch der Werkzeuge vorauszuberechnen. Allerdingssind bereits dafür die sehr sensitiven Materialdaten, wie z. B. temperatur- und umformgeschwindigkeitsabhängige Fließkurven, Wärmeleitfähigkeit usw., notwendig. Momentane Forschungsaktivitäten beschäftigen sich damit, den nächsten Schritt der FE-Simulation zu bewältigen, in dem die Gefügeentwicklung und die daraus resultierenden mechanischen Eigenschaften (Zugfestigkeit, Bruchdehnung etc.) numerisch ermittelt werden können. Auch dafür müssen sehr aufwendige und materialspezifische Materialdaten generiert und modelliert und abschließend in Simulationssysteme über Schnittstellen implementiert werden. Die Vorhersage zu Verschleiß und Versagen von Werkzeugen wird in Zukunft immer mehr in das Interesse von Anwendern von FE-Software rücken, um die kompletten Einflussgrößen der Prozesse abzubilden. Dieser Beitrag soll am Beispiel einer aushärtbaren Aluminiumlegierung (EN AW 6.xxx) verdeutlichen, wie unterschiedlich das Materialverhalten in Abhängigkeit des Ausgangszustandes (stranggepresst, stranggegossen) und der Erwärmungsmodi (konvektiv, induktiv) sein kann und wie sich diese Variationen für ein und denselben Werkstoff auf die Berechnungsgenauigkeit ausgewählter Warmmassivumformprozesse (Reckwalzen, Gesenkschmieden) auswirkt.
240

FEA to Tackle Damage and Cracking Risks in BEoL Structures under Copper Wire Bonding Impact

Auersperg, Jürgen, Breuer, D., Machani, K.V., Rzepka, Sven, Michel, Bernd 22 July 2016 (has links) (PDF)
With the recent increase in Gold (Au) wire cost Copper (Cu) wire becomes an attractive way to manage overall package cost. On the other hand, Copper wire bonding introduces much higher mechanical impact to underlying BEoL structures and actives because of the higher stiffness and lower ductility of Copper compared to Gold. These trends are accompanied by the application of new porous or nano-particle filled materials like low-k and ultra low-k materials for Back-end of Line (BEoL) layers of advanced CMOS technologies. As a result, higher delamination and cracking risks in BEoL structures underneath bonded areas represent an increasing challenge for the thermo-mechanical reliability requirements. To overcome the related reliability issues the authors performed a two level nonlinear FEM-simulation approach. Initially nonlinear axi-symmetric modeling and simulation of the copper bonding process are coupled with a spatial simulation model of the whole BeoL and bond pad structure. Cracking and delamination risks are estimated by a surface based cohesive contact approach and the utilization of a crushing foam constitutive material model for ultra low-k materials.

Page generated in 0.0621 seconds