• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 11
  • 11
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors / Études optiques et de bruit pour Advanced Virgo et cavités de filtrage pour la réduction du bruit quantique dans les détecteurs interférométriques d’ondes gravitationnelles

Capocasa, Eleonora 13 November 2017 (has links)
L'astronomie gravitationnelle a débuté en septembre 2015 avec la première détection de la fusion de deux trous noirs par LIGO. Depuis lors, plusieurs fusions de trous noirs et une fusion d'étoiles à neutrons ont été observées. Advanced Virgo a rejoint les deux observatoires LIGO dans la prise de données en août 2017, augmentant fortement les capacités de localisation du réseau. Afin d'exploiter pleinement le potentiel scientifique de ce nouveau domaine, un énorme effort expérimental est nécessaire pour améliorer la sensibilité des interféromètres. Cette thèse, développée dans ce contexte, est composée de deux parties. La première concerne Advanced Virgo : nous avons développé un budget de bruit automatique pour le bruit de fréquence du laser et nous avons effectué des mesures de caractérisation optique pour les cavités de bras kilométriques. Des pertes aller-retour aussi faibles que 80 ppm ont été mesurées. Elles sont parmi les plus basses jamais mesurées avec un faisceau de cette taille. La deuxième partie concerne la conception et le développement d'une cavité de filtrage de 300 m, un prototype pour démontrer la production de lumière squeezing dépendante de la fréquence avec les propriétés nécessaires pour une réduction du bruit quantique à large bande dans KAGRA, Advanced Virgo et Advanced LIGO. Nous avons contribué à la fois aux phases de conception et d'intégration du projet. Nous avons d'abord fait le design optique de la cavité, y compris les spécifications pour l'optique de la cavité et une estimation détaillée des sources de dégradation pour le squeezing. Nous avons donc développé un système de contrôle pour les miroirs, assemblé les suspensions et finalement aligné et mis la cavité en résonance avec la lumière laser / Gravitational wave astronomy has started in September 2015 with the first detection of a binary black-hole merger by LIGO. Since then, several black-hole mergers and a binary neutron star merger have been observed. Advanced Virgo joined the two LIGO detector in the observation run, in August 2017, highly increasing the localization capabilities of the network. In order to fully exploit the scientific potential of this new-born field, a huge experimental effort is needed to bring the instruments at their design sensitivity and to further improve them. This thesis, developed in this context, it is composed of two parts. The first is about Advanced Virgo: we have developed an automatic noise budget for the laser frequency noise and we have performed optical characterization measurements for the kilometric arm cavities. Round trip Losses as low as 80 ppm have been measured. They are among the lowest ever measured for beams of these size. The second part is about the design and development of a 300 m filter cavity, a prototype to demonstrate the frequency dependent squeezing production with properties needed for a broadband quantum noise reduction in the future upgrades of KAGRA, Advanced Virgo and Advanced LIGO. We have contributed to the design and integration phases of the project. We have first made the optical design of the cavity, including the the specifications for the main cavity optics and a detailed estimation of the squeezing degradation sources. We have then developed a local control system for the mirrors, assembled the suspensions, and finally aligned and brought the cavity in resonance with the laser light
12

Laser-based Absorption Spectrometry : Development of NICE-OHMS Towards Ultra-sensitive Trace Species Detection

Schmidt, Florian January 2007 (has links)
<p>Laser-based absorption spectroscopy (AS) is a powerful technique for qualitative and quantitative studies of atoms and molecules. An important field of use of AS is the detection of species in trace concentrations, which has applications not only in physics and chemistry but also in biology and medicine, encompassing environmental monitoring, regulation of industrial processes and breath analysis. Although a large number of molecular species can successfully be detected with established AS techniques, there are some applications that require higher sensitivity, selectivity and accuracy, yet robust and compact instrumentation.</p><p>Various approaches have been made during the years to improve on the performance of AS, usually based on modulation spectrometry or external cavities. The most sensitive absorption technique of today is, however, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). This technique elegantly combines several approaches: external cavities (for optical path length enhancement), modulation techniques (for noise reduction) and saturation spectroscopy (for enhanced selectivity). However, due to its complexity, the technique has so far not been applied to practical trace species detection.</p><p>This thesis provides the background for an understanding of NICE-OHMS and describes the construction of a first compact NICE-OHMS spectrometer based on a narrowband fiber laser. Moreover, it gives theoretical expressions for NICE-OHMS signal lineshapes, measured in various modes of detection, which can be fitted to the experimental data and thereby facilitate the assessment of species concentration. The sensitivity of the instrumentation is demonstrated by detection of acetylene (C<sub>2</sub>H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) in the 1.5 μm region. A fractional absorption sensitivity of 3*10<sup>-9</sup> (integrated absorption of 5*10<sup>-11</sup> cm<sup>-1</sup>), could be achieved using a cavity with a finesse of 4800 and an acquisition time of 0.7 s. This results in a detection limit for C<sub>2</sub>H<sub>2</sub> of 4.5 ppt (4.5*10<sup>-12</sup> atm).</p><p>In addition, the thesis revives the idea of using an accurate (frequency) measurement of the free-spectral-range (FSR) of an external cavity for sensitive and calibration-free concentration assessment. A theoretical description of the expected signal lineshapes is given, and in a first experimental demonstration the FSR could be measured with a resolution of 5 Hz, resulting in a fractional absorption sensitivity of 1*10<sup>-7</sup>, and subsequently in a detection limit for C<sub>2</sub>H<sub>2</sub> of 180 ppt (12.5 s acquisition time).</p><p>The thesis, finally, also contributes to the continuously ongoing development of conventional AS and wavelength modulated AS by addressing concepts related to when the light optically saturates the transition.</p>
13

Laser-based absorption spectrometry : development of NICE-OHMS towards ultra-sensitive trace species detection

Schmidt, Florian January 2007 (has links)
Laser-based absorption spectroscopy (AS) is a powerful technique for qualitative and quantitative studies of atoms and molecules. An important field of use of AS is the detection of species in trace concentrations, which has applications not only in physics and chemistry but also in biology and medicine, encompassing environmental monitoring, regulation of industrial processes and breath analysis. Although a large number of molecular species can successfully be detected with established AS techniques, there are some applications that require higher sensitivity, selectivity and accuracy, yet robust and compact instrumentation. Various approaches have been made during the years to improve on the performance of AS, usually based on modulation spectrometry or external cavities. The most sensitive absorption technique of today is, however, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). This technique elegantly combines several approaches: external cavities (for optical path length enhancement), modulation techniques (for noise reduction) and saturation spectroscopy (for enhanced selectivity). However, due to its complexity, the technique has so far not been applied to practical trace species detection. This thesis provides the background for an understanding of NICE-OHMS and describes the construction of a first compact NICE-OHMS spectrometer based on a narrowband fiber laser. Moreover, it gives theoretical expressions for NICE-OHMS signal lineshapes, measured in various modes of detection, which can be fitted to the experimental data and thereby facilitate the assessment of species concentration. The sensitivity of the instrumentation is demonstrated by detection of acetylene (C2H2) and carbon dioxide (CO2) in the 1.5 μm region. A fractional absorption sensitivity of 3*10-9 (integrated absorption of 5*10-11 cm-1), could be achieved using a cavity with a finesse of 4800 and an acquisition time of 0.7 s. This results in a detection limit for C2H2 of 4.5 ppt (4.5*10-12 atm). In addition, the thesis revives the idea of using an accurate (frequency) measurement of the free-spectral-range (FSR) of an external cavity for sensitive and calibration-free concentration assessment. A theoretical description of the expected signal lineshapes is given, and in a first experimental demonstration the FSR could be measured with a resolution of 5 Hz, resulting in a fractional absorption sensitivity of 1*10-7, and subsequently in a detection limit for C2H2 of 180 ppt (12.5 s acquisition time). The thesis, finally, also contributes to the continuously ongoing development of conventional AS and wavelength modulated AS by addressing concepts related to when the light optically saturates the transition.
14

Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry

Foltynowicz, Aleksandra January 2009 (has links)
Noise-immune cavity-enhanced optical heterodyne molecular spectro-metry (NICE-OHMS) is one of the most sensitive laser-based absorption techniques. The high sensitivity of NICE-OHMS is obtained by a unique combination of cavity enhancement (for increased interaction length with a sample) with frequency modulation spectrometry (for reduction of noise). Moreover, sub-Doppler detection is possible due to the presence of high intensity counter-propagating waves inside an external resonator, which provides an excellent spectral selectivity. The high sensitivity and selectivity make NICE-OHMS particularly suitable for trace gas detection. Despite this, the technique has so far not been often used for practical applications due to its technical complexity, originating primarily from the requirement of an active stabilization of the laser frequency to a cavity mode. The main aim of the work presented in this thesis has been to develop a simpler and more robust NICE-OHMS instrumentation without compro-mising the high sensitivity and selectivity of the technique. A compact NICE-OHMS setup based on a fiber laser and a fiber-coupled electro-optic modulator has been constructed. The main advantage of the fiber laser is its narrow free-running linewidth, which significantly simplifies the frequency stabilization procedure. It has been demonstrated, using acetylene and carbon dioxide as pilot species, that the system is capable of detecting relative absorption down to 3 × 10-9 on a Doppler-broadened transition, and sub-Doppler optical phase shift down to 1.6 × 10-10, the latter corresponding to a detection limit of 1 × 10-12 atm of C2H2. Moreover, the potential of dual frequency modulation dispersion spectrometry (DFM-DS), an integral part of NICE-OHMS, for concentration measurements has been assessed. This thesis contributes also to the theoretical description of Doppler-broadened and sub-Doppler NICE-OHMS signals, as well as DFM-DS signals. It has been shown that the concentration of an analyte can be deduced from a Doppler-broadened NICE-OHMS signal detected at an arbitrary and unknown detection phase, provided that a fit of the theoretical lineshape to the experimental data is performed. The influence of optical saturation on Doppler-broadened NICE-OHMS signals has been described theoretically and demonstrated experimentally. In particular, it has been shown that the Doppler-broadened dispersion signal is unaffected by optical saturation in the Doppler limit. An expression for the sub-Doppler optical phase shift, valid for high degrees of saturation, has been derived and verified experimentally up to degrees of saturation of 100.
15

Travamento da freqüência de um diodo laser nas asas da ressonância de uma linha atômica.

SILVA, Cícero Moezio da. 10 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-10T17:10:14Z No. of bitstreams: 1 CICERO MOEZIO DA SILVA – DISSERTAÇÃO (PPGFísica) 2013.pdf: 1359216 bytes, checksum: 450c592c37b5fc9ef90ce40e270eaaae (MD5) / Made available in DSpace on 2018-10-10T17:10:14Z (GMT). No. of bitstreams: 1 CICERO MOEZIO DA SILVA – DISSERTAÇÃO (PPGFísica) 2013.pdf: 1359216 bytes, checksum: 450c592c37b5fc9ef90ce40e270eaaae (MD5) Previous issue date: 2013-08-16 / Capes / Este trabalho reporta o desenvolvimento experimental de um sistema de travamento da frequência de um diodo laser nas asas de uma linha atômica. Como sinal de erro, utilizamos a transmissão por uma célula com janelas paralelas (contendo vapor de césio) para o travamento da frequência. Mostramos que o sinal de erro é estável durante 1 hora e meia. Este sinal contemos citações nas asas da ressonância que podem ser usadas para a estabilização da frequência. Travamos a frequência entre 1860 a 2817 MHz fora da ressonância e obtemos uma estabilidade de 30MHz. A técnica descrita não necessita de campo magnético ou de detecção sensível a polarização,que simplifi ca substancialmente em relação às técnicas existentes. / In this work we demonstrate the experimental development of a system of frequency- locking of a diode laser on the wings of an atomic line. As an error signal, we use the transmission through a cell with parallel windows (containing cesium vapor) for the frequency-locking. We show that the error signalis stable for one hour and a half and has oscillations in the wings of the resonance that can be used tostabilize the frequency. We locked the frequency between 1860-2817 MHz out of resonance and obtained a stability of 30MHz. The described technique does not require a magnetic field or polarization-sensitive detection, whichs impli es substantially over existing techniques.
16

Développement d’un oscillateur paramétrique optique continu intense et à faible bruit pour des applications aux communications quantiques. / Development of a High Power and a Low Noise Continuous-Wave Optical Parametric Oscillator for Quantum Communications Applications

Ly, Aliou 08 December 2017 (has links)
La portée des communications quantiques est limitée à quelques dizaines de km en raison de l’atténuation dans les fibres. Les répéteurs quantiques (relais quantiques synchronisés par des mémoires quantiques photoniques) furent introduits afin d’accroître ces distances. Or, pour le moment, les mémoires les plus performantes fonctionnent à des longueurs d’onde n’appartenant pas à la bande C télécom. Afin de profiter de ces mémoires, l’utilisation d’interfaces quantiques (milieu non linéaire quadratique) fut proposée comme alternative. En ajoutant ainsi par somme de fréquences un photon de pompe de longueur d’onde appropriée au photon télécom portant l’information, on transfère l’information à une longueur d’onde compatible avec les mémoires, et ceci sans dégradation de l’information portée initialement par le photon télécom. Notre but est ainsi de construire un oscillateur paramétrique optique continu simplement résonant (SRO) qui fournira un faisceau à 1648 nm qui sera sommé en fréquence aux photons télécom à 1536 nm pour transférer l’information vers un photon stockable dans une mémoire à base d’atomes alcalins. Pour transférer efficacement l’information, le SRO doit satisfaire quelques critères : une haute finesse spectrale (largeur de raie ~kHz), une forte puissance (~1W) et une longueur d’onde plus grande que celle du photon télécom à convertir. Pour ce faire, nous utilisons le faisceau non-résonant d’un SRO continu. Le premier travail réalisé dans cette thèse a été de faire la démonstration de la possibilité d’avoir un faisceau à la fois intense et pur spectralement en sortie d’un SRO continu. En réutilisant un SRO déjà développé durant nos travaux antérieurs, nous avons pu stabiliser au niveau du kHz la fréquence du faisceau non résonant à 947 nm (onde signal) de ce SRO, tout en émettant une puissance de plus d’un watt. Ensuite, nous avons conçu le SRO dont le faisceau non résonant à 1648 nm (onde complémentaire) a été stabilisé à court terme en-dessous du kHz avec une puissance de l’ordre du watt. Nous avons ensuite étudié la stabilité à long terme de la longueur d’onde du complémentaire à 1648 nm. Nous avons mesuré des dérives de fréquences de l’ordre de 10 MHz/mn. Ces dérives, venant essentiellement de la cavité de référence sur laquelle le SRO est asservi, peuvent être réduites en contrôlant activement la cavité d’une part, et en utilisant des techniques de stabilisation en fréquence robustes, d’autre part. / Long distance quantum communications are limited to few tens of km due to the attenuation of light in telecom fibres. Quantum repeaters (quantum relays synchronized by photonic quantum memories) were introduced in order to increase distances. Or, currently, the most efficient memories do not operate at wavelengths in the telecom C band. In order to take advantage of these memories, the use of quantum interfaces (second order nonlinear medium) was proposed as an alternative. Thus, by adding by sum frequency generation a pump photon at an appropriate wavelength to the telecom photon carrying the information, one transfers the information to a wavelength compatible with these memories, and this with a preservation of the information initially carried by the telecom photon. Our aim is thus to build a continuous-wave singly resonant optical parametric oscillator (cw SRO) which will provide a wave at 1648 nm that will be frequency summed to telecom photons at 1536 nm to transfer the information to a photon storable into alkali atoms based memory. To efficiently transfer the information, the cw SRO has to fulfill some requirements: a high spectral purity (linewidth ~kHz), a high output power (~1 W) and a wavelength longer than that of the telecom photon to be converted. To this aim, we use the non-resonant wave of a cw SRO. The first work done during this thesis was to experimentally prove the possibility to have both high output power and high spectral purity from a cw SRO. By reusing a cw SRO already built during our previous works, we were able to stabilize at the kHz level the frequency of the non-resonant wave at 947 nm (signal wave) of this SRO, with an output power of more than one watt. Then, we built the cw SRO of which non-resonant wave at 1648 nm (idler wave) has been frequency stabilized below the kHz level along with an output power of the order of one watt. We next studied the long term stability of the idler wavelength at 1648 nm. We have measured frequency drifts of the order of 10 MHz/mn. These drifts originating mainly from the reference cavity to which the SRO is locked, can be reduced by, firstly, an active control of the cavity and by, secondly, the use of robust frequency stabilization techniques.
17

Metody stabilizace frekvence polovodičových laserů / Methods of frequency stabilization of semicondutor lasers

Kozelský, Adam January 2011 (has links)
The main aim of the thesis is a frequency stabilization of the DFB semiconductor laser diodes. The temperature stability of the laser diode chip, the stability and the noise of the injection current and the backward reflections are the crucial parameters which affects the frequency stability. These influences are described and the resolution is proposed. The theory of the external methods of the frequency stabilization and the comparison of these methods is presented. One method was choosed and this method was realized for 760 and 1540 nm wavelength laser diodes. In this method was used the frequency stabilization based on the linear absorption to the spectral lines of the gases. The diploma work is closed by the measured results of the frequency stability of the used laser diodes and by the comparison of level of stability achieved by the other methods.
18

Détection non-destructive pour l’interférométrie atomique et Condensation de Bose-Einstein dans une cavité optique de haute finesse / Nondestructive detection for atom interferometry and Bose-Einstein condensation in a high finesse optical cavity

Vanderbruggen, Thomas 13 April 2012 (has links)
Ce mémoire de thèse étudie diverses méthodes d'amélioration des interféromètres atomiques. Dans la première partie du manuscrit, nous analysons comment une détection non-destructive, au sens où elle préserve la cohérence entre les états internes de l'ensemble atomique, permet d'améliorer la sensibilité des interféromètres. Nous montrons tout d'abord, grâce à une étude théorique, que la projection du vecteur d'onde engendrée par la mesure permet de préparer des états comprimés de spin. Nous présentons ensuite la mise en œuvre de cette méthode à l'aide d'une détection reposant sur la spectroscopie par modulation de fréquence. Finalement, nous exposons quelques premières applications de cette détection non-destructive, plus précisément nous présentons la réalisation du rétroaction quantique qui protège l'état atomique contre la décohérence induite par un basculement du spin collectif, nous montrons aussi comment réaliser une boucle à verrouillage de phase où les atomes servent de référence de phase. Dans la seconde partie du manuscrit, nous présentons la réalisation tout-optique d'un condensat de Bose-Einstein dans une cavité de haute finesse, exploitant les technologies développées pour les télécommunications optiques. Nous commençons par une analyse du résonateur et des méthodes d'asservissement, nous introduisons notamment une méthode d'asservissement originale exploitant la modulation serrodyne. Enfin, nous montrons comment un condensat est obtenu par évaporation dans le mode optique de la cavité. / In this thesis, we study several methods to improve atom interferometers. In the first part of the manuscript, we analyze how a nondestructive detection, that preserves the coherence between the internal degrees of freedom in an atomic ensemble, can be used to increase the sensitivity of interferometers. We first theoretically show how the projection of the wave-function induced by the measurement prepares spin-squeezed states. We then present the implementation of this method with a detection based on the frequency modulation spectroscopy. Finally, some first applications are described, more explicitly we show how to implement a quantum feedback that preserve the atomic state against the decoherence induced by a random collective flip, we also introduce a phase-locked loop where the atomic sample is used as the phase reference. In the second part of the manuscript, we present the all-optical realization of a Bose-Einstein condensate in a high-finesse cavity using a laser system based on standard telecoms technologies. We first describe the resonator and the frequency lock of the laser on the resonance, in particular, we introduce a new stabilization method based of the serrodyne modulation. Finally, we show how the condensate is obtained from the evaporation in the cavity mode.
19

Optical frequency references based on hyperfine transitions in molecular iodine

Döringshoff, Klaus 14 May 2018 (has links)
Diese Arbeit beschäftigt sich mit der Entwicklung und Untersuchung von optischen Absolutfrequenzreferenzen basierend auf rovibronischen Übergängen in molekularen Jod. Dabei werden Methoden der Doppler-freien Sättigungsspektroskopie angewendet, um einzelne Übergänge der Hyperfeinstruktur mit Linienbreiten unterhalb von 1 MHz im B-X System von molekularem Iod bei 532 nm, der zweiten harmonischen des Nd:YAG-Laser, aufzulösen. Elektronische Regelungstechniken ermöglichen eine präzise Stabilisierung der optischen Frequenz auf die Linienmitte der Übergänge mit einer Auflösung von Teilen in 10^5. Mit dem Ziel einer weltraumtauglichen Absolutfrequenzreferenz für zukünftige Weltraummissionen, wurden zwei Spektroskopiemodule konzipiert und in quasi-monolithischen Glaskeramik-Aufbauten, als sogenanntes elegant breadboard model und engineering model, realisiert. Diese Jodfrequenzreferenzen wurden im Detail in Bezug auf ihre Frequenzstabilität und Reproduzierbarkeit untersucht und Letzteres wurde für die angestrebte Weltraumqualifizierung ersten Umwelttests, sowohl vibrations- als auch thermischen Belastungstests, unterzogen. Für die Untersuchung der Frequenzstabilität dieser Jodreferenzen wurde ein auf einen optischen Resonator hoher Güte stabilisiertes Lasersystem für direkte Frequenzvergleiche bei 1064 nm realisiert. Die Analyse der Frequenzstabilität der Jod Referenzen zeigt eine Frequenzstabilität von 6x10^−15 bei 1 s, und weniger als 2x10^−15 bei 100 s Integrationszeit, was der bis heute besten veröffentlichten Frequenzstabilität entspricht die mit Jod Referenzen erreicht wurde. Mit der erreichten Frequenzstabilität ermöglichen diese Absolutfrequenzreferenzen präzise Lasersysteme für zukünftige Weltraummissionen wie z.B. zur Detektion von Gravitationswellen, zur Vermessung des Gravitationsfelds der Erde oder für Präzisionstest fundamentaler Theorien der Physik. / This thesis deals with the development and investigation of optical absolute frequency references based on rovibronic transitions in molecular iodine. Doppler-free saturation spectroscopy methods are employed to resolve individual transitions of the hyperfine structure with linewidths below 1 MHz in the B-X system of molecular iodine at 532 nm with the second harmonic of Nd:YAG lasers. Electronic feedback control systems are employed for laser frequency stabilization to the line center of the optical transitions with a line splitting of 10^5. With the goal of a space qualified optical absolute frequency reference for future laser-interferometric space missions, two spectroscopy setups were designed and realized in quasi-monolithic, glass-ceramic setups as so called elegant bread board model and engineering model. These iodine references were characterized in detail with respect to their frequency stability and reproducibility and the engineering model was subject to environmental tests, including vibrations and thermal cycling to verify its applicability in future space missions. For the investigation of the frequency instability of these iodine references, a frequency stabilized laser system was realized based on a temperature controlled high Finesse ULE cavity for direct frequency comparisons at 1064 nm. Analysis of the frequency stability of the iodine references revealed exceptionally low fractional frequency instability of 6x10^−15 at 1 s, averaging down to less than 2×10^−15 at 100 s integration time, constituting the best reported stability achieved with iodine references to date. With the demonstrated performance, these absolute frequency references enable precision laser systems required for future space missions that are dedicated to, e.g., the detection of gravitational waves, mapping of the Earth’s gravitational field or precision test of fundamental physics.
20

Maintien du couplage optique entre une ECDL et une cavité de haute finesse : application à la mesure ultrasensible de biréfringence induite par effet Kerr / Maintenance of the optical coupling between an External Cavity Diode Laser and a high finesse cavity : application to ultrasensitive measurement of birefringence induced by Kerr effect

Durand, Mathieu 23 July 2009 (has links)
Ce travail se place dans le cadre de la mesure ultrasensible d’anisotropie de phase optique que permet l’emploi adapté des cavités de très haute finesse. Pour stabiliser la fréquence laser sur une résonance de la cavité, un schéma d’asservissement reposant sur la rétroaction optique est utilisé.Une première partie décrit le couplage optique entre le laser et la cavité à travers l’analyse du comportement de la fréquence d’émission du laser auto-réinjecté. Une comparaison analytique théorie expérience a permis d’identifier les signaux d’erreur nécessaires au maintien durable de la fréquence du laser à l’exacte résonance d’un mode de la cavité. Après une description détaillée du dispositif d’asservissement, sa réalisation expérimentale sur une cavité de finesse de quelques milliers (F = 3 000)a démontré la possibilité de stabiliser la fréquence laser sur plus de dix heures avec une excursion résiduelle à la seconde de 375 Hz.Dans la deuxième partie, le développement précédent a été mis en œuvre sur une cavité de très haute finesse (F = 250 000) et a permis la mesure ultrasensible de biréfringence induite dans des gaz par effet Kerr. L’originalité du dispositif repose sur la mise à profit de la biréfringence résiduelle des miroirs de haute réflectivité.Elle est utilisée d’une part comme source à la rétroaction optique, et d’autre part comme biais optique à la mesure de la biréfringence du gaz. Une étude théorique et expérimentale détaillée des sources de bruit présent dans la chaîne de détection en fonction de la valeur du biais optique a permis de réaliser la mesure de déphasage au niveau du bruit de photons avec quelques mW de puissance laser. Ainsi, une sensibilité référence sur la mesure de déphasage Kerr de 3.10−13 rad a été démontrée pour un temps de mesure de 800 sec. Cette valeur record améliore de trois ordres de grandeur les déphasages Kerr précédemment mesurés. Le dispositif a été de plus mis à profit pour la mesure à faible champ électrique (< 40 V /mm) et à pression atmosphérique, des constantes de Kerr de différents gaz moléculaires et atomiques jusqu’à l’He. / The context of the work is the ultra-sensitive measurement of phase anisotropy permits by well-used of very high finesse cavity. To stabilize the laser frequency at the exact resonance of one cavity mode, a servo control based on optical feedback is used.In the first part, the optical coupling between laser and cavity is described through the comportment of the frequency of the self-locked laser. A comparison between experience and theory has permitted to identify the error signals in order to keep enduringly the laser frequency at the exact resonance. The experimental realization of the servo control into a 3 000 finesse cavity had demonstrated the stabilization of the laser frequency during more than ten hours with a residual one second excursion of 375 Hz.In the second part, the previous development has been used with a very high finesse cavity (F=250 000) to measure static Kerr birefringence in gases. The originality of the set-up is the use of the residual high reflectivity mirrors birefringence, firstly as the source of the optical feedback and secondly as an optical bias to measure the weak gas birefringence. An experimental and theoretical study of the noise according to the value of the optical bias has permitted a photon noise limited measurement (laser intensity of few mW). A record sensitivity of the phase shift induced by Kerr effect has been demonstrated at 3.10-13 rad with 800 s integration time. The scheme has been used to measure, in weak electric field (<40 V/mm) and in standard condition of pressure and temperature, the Kerr constant of molecular and atomic gases, even He gas

Page generated in 6.2509 seconds