• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 1
  • Tagged with
  • 20
  • 20
  • 16
  • 16
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Selectivity at the Dopamine D2 Receptor

Peterson, Sean Michael January 2015 (has links)
<p>The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G protein and β-arrestin pathways and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased interactions for either G protein or β-arrestin. Additionally, various permutations of these mutants were used to identify critical determinants of D2R functional selectivity. D2R interactions with the two major downstream signal transducers were effectively dissociated and G protein signaling accounts for D2R canonical MAP kinase signaling cascade activation. Nevertheless, when expressed in mice, the β-arrestin biased D2R caused a significant potentiation of amphetamine-induced locomotion, while the G protein biased D2R had minimal effects. The mutant receptors generated here provide a new molecular tool set that enable a better definition of the individual roles of G protein and β-arrestin signaling in D2R pharmacology, neurobiology and associated pathologies.</p> / Dissertation
2

Etude des bases structurales de l’efficacité et de la sélectivité fonctionnelle des récepteurs couplés aux protéines G : cas du récepteur V2 de la vasopressine / Study of structural bases of efficacy and functional selectivity of G protein-coupled receptors : a case study with vasopressin V2 receptor

Rahmeh, Rita 26 November 2010 (has links)
Les récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de protéines membranaires. Ils sont activés par une grande variété d'hormones, de neurotransmetteurs, et par des stimuli sensoriels. Ces récepteurs jouent un rôle central dans le contrôle de la grande majorité des fonctions physiologiques et constituent une cible thérapeutique majeure. Plusieurs études supportent l'existence de plusieurs états conformationnels de ces récepteurs stabilisés par les ligands. Le caractère dynamique des RCPG est essentiel dans leur fonctionnement. Une question majeure est de déterminer comment un ligand modifie la structure et la fonction de son récepteur. Pour cela, nous avons analysé les changements conformationnels d'un récepteur prototype de la famille des récepteurs à ligands peptidiques, le sous-type V2 de la vasopressine (V2R). Le V2R présente un large éventail de ligands ayant des efficacités différentes (agoniste partiels et complets, agonistes inverses et antagonistes) ainsi que des agonistes biaisés vis-à-vis des voies de signalisation dépendantes de Gs et des arrestines. Afin de déterminer les bases structurales de l'efficacité (amplitude de la réponse biologique) et de la sélectivité fonctionnelle (la capacité d'un RCPG à activer ou à inactiver préférentiellement une voie de signalisation parmi l'ensemble des voies de transduction auxquelles il est couplé), nous avons purifié et stabilisé le V2R par reconstitution en amphipols neutres (Napols). La fonctionnalité du récepteur a été vérifiée par mesure de son interaction directe avec la protéine Gs et les arrestines purifiés. Les profils d'efficacité des ligands vis-à-vis des deux voies de signalisation sont cohérents avec ceux décrits dans des cellules vivantes. Afin d'aborder directement les changements conformationnels dépendants des ligands, nous avons développé deux approches de fluorescence, la fluorescence intrinsèque des tryptophanes et le LRET (Lanthanide Resonance Energy Transfer). La liaison des ligands ayant des efficacités opposées pour la voie Gs ont induit des variations opposées de la fluorescence intrinsèque des tryptophanes, suggèrant l'existence d'états conformationnels distincts. En parallèle, l'analyse des changements des signaux de LRET entre deux domaines fonctionnels du récepteur marqués par deux fluorophores compatibles, le domaine transmembranaire 6 (TM6) côté cytoplasme et l'extrémité C-terminale distale, a permis de calculer une distance moyenne de 33 Å. En accord avec les variations de fluorescence intrinsèque des tryptophanes, les ligands ayant des efficacités opposées pour la voie Gs ont induit un mouvement opposé de ces deux domaines. Les agonistes complets entraînent un éloignement de la boucle i3 et de l'extrémité C-terminale (+2.4 Å) alors qu'un rapprochement des deux domaines est associé à la liaison de l'agoniste inverse (-0.9 Å). Nos résultats démontrent qu'un récepteur à ligands peptidiques répond à la liaison de ses ligands spécifiques par des changements conformationnels dynamiques. Chaque ligand est caractérisé par un ou plusieurs états conformationnels distincts. De plus, les changements conformationnels du V2R jouant un rôle dans le couplage à Gs sont différents de ceux impliqués dans le recrutement des arrestines. Ces données apportent des éléments essentiels de compréhension des mécanismes moléculaires et structuraux de l'activation des RCPG. A plus long terme, une étude plus extensive de la dynamique des RCPG devrait guider le développement de molécules thérapeutiques possédant des propriétés de sélectivité fonctionnelle. / G protein-coupled receptors (GPCR) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Several studies support the existence of multiple ligand-specific conformational states of GPCR. The dynamic character of GPCR is likely to be essential for their functioning, and a better understanding of this molecular plasticity might facilitate structure-based drug discovery. A major question is to determine how ligands modify receptor structure and function. To this end, we have been studying the structural dynamics of the human vasopressin type 2 receptor (V2R), a prototypical peptide-activated class A GPCR. The V2R is coupled to Gs protein and to β-arrestins, and it has been well characterized pharmacologically using a large panel of ligands with different efficacies. Several display functional selectivity (Gs activation and concomitant β-arrestin inhibition). To demonstrate that ligand efficacy and functional selectivity are achieved through the stabilization of multiple conformational states, we have purified and reconstituted the V2R in amphipathic polymers (amphipol) and developed fluorescence-based approaches. The functionality of the V2R was monitored by direct activation of the purified Gs protein and interaction with purified β-arrestin 1. In these two assays, the effect of ligands correlated well with their known efficacy in cellular systems. Binding of V2R ligands with opposite efficacies toward Gs pathway led to opposite variations in the tryptophan intrinsic fluorescence of the receptor, suggesting the presence of different conformational states of the receptor. In parallel, we used Lanthanide-based resonance energy transfer (LRET) to directly analyze dynamics of the V2R and more particularly conformational changes between fluorophore-labeled extreme C-terminus and transmembrane domain 6. We calculated a basal mean distance of 33 Å between these domains. Interestingly, ligands with different efficacies towards Gs protein elicited opposite LRET changes as for tryptophan fluorescence spectroscopy. Indeed, the two labeled domains moved away upon full agonist binding (+2.4 Å), and closer in presence of inverse agonist (-0.9 Å). These data provide the first evidence of ligand-specific conformational changes in a peptide-activated receptor, and demonstrate that receptor conformational changes involved in Gs coupling are different from those responsible for arrestin recruitment. The results shed some light into the molecular and structural mechanisms of GPCR activation that may be relevant to the design of signaling pathway-selective drugs.
3

Atypical Opioid Interactions – Development of Selective Mu-Delta Heterodimer Antagonists, Clinical Opioids at Non-Mu Pain Targets and Endogenous Biased Signaling

Olson, Keith Mathew, Olson, Keith Mathew January 2017 (has links)
Most clinical opioids produce analgesia through the Mu Opioid Receptor (MOR) providing the only effective treatment for chronic pain patients. These studies explore three pre-clinical strategies to improve MOR analgesia and minimize side effects: 1) compounds that target G-protein Coupled Receptors (GPCRs) heterodimers, such as heterodimerization between the Delta Opioid Receptor (DOR) and MOR (MDOR); 2) multi-functional compounds that target multiple receptor systems for synergistic effects, such as a MOR agonist and a the serotonin reuptake transporter (SERT) inhibitor; or 3) biased agonists that preferentially activate one signaling pathway associated with analgesia over another associated with side effects at the same receptor. First, several indirect lines of evidence indicate the MOR-DOR heterodimer (MDOR) can regulate MOR opioid tolerance and withdrawal. However, studying MDOR remains difficult because no selective MDOR antagonists are available. To address this need, we created a novel series of bivalent MDOR antagonists by connecting a low affinity MOR antagonist (H-Tyr-Pro-Phe-D1Nal-NH2) to a moderate affinity DOR (H- Tyr-Tic-OH) antagonist with variable length polyamide spacers (15-41 atoms). In vitro radioligand binding and [35S]-GTPγS coupling assays in MOR, DOR, and MDOR expressing cell lines show bivalent ligands produce a clear length dependence in MDOR but not MOR or DOR cell lines. The lead compound – D24M with a 24-atom spacer – displayed high potency (IC50MDOR = 0.84 nM) with 91-fold selectivity for MDOR:DOR and 1,000-fold MDOR:MOR selectivity. Second, clinicians have long appreciated subtle but distinct differences in analgesia and side effects of MOR opioids. A variety of non-MOR targets including DOR, Kappa Opioid Receptor (KOR), the Cannabinoid Receptor-1 (CB1), the Sigma-1 Receptor (σ1R), the Dopamine- (DAT), Serotonin- (SERT) and Norepinephrine- Reuptake Transporters (NET) induce analgesia and/or modulate MOR mediated side effects. To determine if different opioid profiles arise from non-MOR interactions, we evaluated the binding and function of nine clinical analgesics at the nine aforementioned targets revealing several clinical opioids contain previously unidentified affinity’s or activity’s. Hydrocodone displayed low affinity at the MOR (KI = 1800 nM) and only ~2 fold less affinity at the σ1R (KI = 4000 nM). Second buprenorphine promoted monoamine influx at DAT, SERT and NET with EC50 > 1,000 nM. These novel interactions suggest the nuanced differences of clinical opioids may arise from previously unappreciated off-target effects. Future studies will assess whether these in vitro results predict hydrocodone and buprenorphine activity in vivo. Finally, the unique function of the numerous endogenous opioid peptides at a given receptor remains unclear. How endogenous ligands interact with ORs produces obvious drug design consequences. These studies show two endogenous Dynorphin analogues – Dynorphin A and Dynorphin B – differentially regulate two ubiquitous signaling modules – βarrestin2 and Gαi/o– at the DOR. Dynorphin A and Dynorphin B swap potency rank orders for β-arrestin2 recruitment and [35S]-GTPγS signaling, indicating two distinct signaling platforms are formed. Dynorphin A but not Dynorphin B treatment simulated AC super activation, while Dynoprhin B internalized DOR better than Dynorphin A. These in vitro assays suggest endogenous Dynorphin analogues differentially regulate signals at the DOR in vitro. Future work includes further characterizing signaling differences in vitro and testing these changes in vivo.
4

Differential regulation of serotonin 2A receptor responsiveness by agonist-directed interactions with beta-arrestin2

Schmid, Cullen L. 31 March 2011 (has links)
No description available.
5

P90 Ribosomal S6 Kinase 2 (RSK2) Directly Phosphorylates the 5-HT2A Serotonin Receptor thereby Modulating Signaling

Strachan, Ryan Thomas 07 October 2009 (has links)
No description available.
6

Étude des déterminants structuraux de l'activation des voies de signalisation de la protéine G[indice inférieur q/11] et des β-arrestines par le récepteur de type 1 à l'angiotensine II / Study of the structural determinants involved in the activation of the G[subscript q/11] pathway and the β-arrestin pathway by the angiotensin-II type 1 receptor

Cabana, Jérôme January 2015 (has links)
Résumé : La signalisation biaisée représente la capacité des récepteurs couplés aux protéines G (RCPG) d'engager des voies de signalisation distinctes avec des efficacités variables selon le ligand utilisé ou la mutation dans le récepteur. Un meilleur contrôle des voies activées ou inhibées par des médicaments pourrait permettre de réduire leurs effets indésirables. Malheureusement, les mécanismes structuraux impliqués dans la transmission du signal à travers la membrane plasmique par l'entremise des RCPG sont peu connus, ce qui limite le développement rationnel de nouvelles molécules ciblant des voies de signalisation particulières. Le récepteur de type 1 à l'angiotensine II (AT[indice inférieur 1]), un RCPG de classe A prototypique, peut activer différents effecteurs suite à sa stimulation par le ligand endogène angiotensine II (AngII), incluant la protéine G[indice inférieur q/11] et les β-arrestines. Il est suggéré que l'activation de ces deux voies de signalisation peut être associée à des conformations différentes du récepteur AT[indice inférieur 1]. Pour vérifier cette hypothèse, nous avons utilisé des simulations de dynamique moléculaire afin d'explorer les interactions et les mouvements qui définissent le paysage conformationnel du récepteur AT[indice inférieur 1]. De plus, nous avons vérifié comment était modifié le paysage conformationnel par des mutations (N111G, N111W et D74N) et des ligands (AngII et [Sar[indice supérieur 1], Ile[indice supérieur 8]]AngII) ayant des profils signalétiques différents pour la voie de la protéine G[indice inférieur q/11] et la voie des β-arrestines. Les résultats obtenus nous éclairent sur le rôle d'un réseau de ponts hydrogène entre des résidus polaires conservés au coeur du récepteur dont font partie les résidus N111[indice supérieur 3.35] et D74[indice supérieur 2.50]. Les résultats révèlent la présence d'un groupe de résidus hydrophobes juste au-dessus du réseau de ponts hydrogène et adjacent à la pochette de liaison du récepteur qui semble important pour la stabilisation de l'état inactif du récepteur ainsi que pour son activation par un ligand. Dans l'ensemble, les résultats suggèrent que l'activation de la voie de la protéine G[indice inférieur q/11] est associée avec une transition conformationnelle spécifique stabilisée par l'agoniste alors que l'activation de la voie des β-arrestines est associée à une stabilisation de l'état de repos du récepteur. / Abstract: Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. Having better control over the signaling pathways activated or inhibited by drugs could lead to fewer undesirable effects. Unfortunately, the structural mechanisms involved in the transmission of signal across the cell membrane through the receptors are poorly understood, which limits the rational development of new molecules targetting specific signaling pathways. The angiotensin-II type 1 (AT[subscript 1]) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the G[subscript q/11] protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT[subscript 1] receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore interactions and movements that define the conformational landscape of the AT[subscript 1] receptor. We have also verified how this conformational landscape is modified by mutations (N111G, N111W, D74N) and ligands (AngII, [Sar[superscript 1]Ile[superscript 8]]AngII) that have different signaling properties on the G[subscript q/11] pathway and the β-arrestin pathway. The results provide a better understanding of the role of a hydrogen bond network formed of conserved polar residues in the receptor core which include residues N111[superscript 3.35] and D74[superscript 2.50]. The results also reveal the existence of a cluster of hydrophobic residues located right above the hydrogen bonds network and adjacent to the binding pocket that appears important for the stabilization of the ground state of the receptor as well as its ligand-induced activation. As a whole, the results suggest that activation of the G[supbscript q/11] pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor.
7

Développement d'un biosenseur BRET permettant le criblage de drogues qui causent l'activation de canaux Kir3 via les récepteurs couplés aux protéines G

Richard-Lalonde, Mélissa 08 1900 (has links)
Les récepteurs couplés aux protéines G forment des complexes multimériques comprenant protéines G et effecteurs. Nous cherchons à caractériser de tels complexes comprenant les récepteurs opioïdes delta (DOR) et les canaux Kir3, qui nous sont d’intérêt vu leur implication dans l’analgésie des opioïdes. Des expériences d’immunopurification, de BRET et de liaison GTPgS ont été réalisées à l’intérieur de cellules HEK293 transfectées. Les canaux Kir3 ont été co-immunopurifiés avec les DOR, suggérant une interaction spontanée entre récepteur et effecteur. Des essais BRET ont corroboré que l’interaction était présente dans des cellules vivantes et nous ont permis d’identifier une interaction spontanée et spécifique entre DOR/Gg et Gg/Kir3, indiquant leur coexistence en un même complexe. Puisque l’activation du récepteur implique la présence de changements conformationnels à l’intérieur de celui-ci, nous étions intéressés à vérifier si l’information conformationnelle circule à partir du récepteur lié au ligand jusqu’à l’effecteur en aval. Ainsi, nous avons déterminé l’effet de différents ligands sur le signal BRET généré par les paires suivantes : DOR/Gbg, DOR/Kir3 et Kir3/Gbg. Nous avons constaté une modulation de l’interaction DOR/Gbg et Gbg/Kir3 suivant l’ordre d’efficacité des ligands à stimuler la protéine G, ce que nous n’avons pas observé entre DOR et Kir3. Donc, nous concluons que l’information conformationnelle circule du récepteur au canal Kir3 via la protéine Gbg. Ces résultats nous ont permis de développer un biosenseur BRET (EYFP-Gg2/Kir3.1-Rluc) qui pourrait être utilisé dans le criblage à haut débit afin de détecter de nouvelles molécules ayant une grande efficacité à activer les canaux Kir3. / G protein-coupled receptors form multimeric complexes comprising G protein and effectors. We want to characterize such complexes comprising delta opioid receptors (DOR) and Kir3 channels, which interest us due to their involvement in opioid analgesia. Immunopurification, BRET and GTPgS binding experiments were done in transfected HEK293 cells. Kir3 channels were co-immunopurified with DOR, implying a spontaneous interaction between the receptor and effector. BRET assays corroborated the presence of this interaction in living cells and allowed us to identify a spontaneous and specific interaction between DOR/Gg and Gg/Kir3, indicating their co-existence within the same complex. Since the activation of the receptor implies it undergoes conformational changes, we were interested in evaluating if the conformational information flows from the ligand-bound receptor until the downstream effector. Hence, we determined the effect of different ligands on the BRET signal that was generated by the following pairs: DOR/Gbg, DOR/Kir3 and Kir3/Gbg. We noticed a modulation of the DOR/Gbg and Gbg/Kir3 interactions that followed the order of efficacy of the ligands to activate the G protein, which we did not observe between DOR and Kir3. Therefore, we concluded that the conformational information flows from the receptor to the Kir3 channel via the Gbg protein. These results allowed us to develop a BRET biosensor (EYFP-Gg2/Kir3.1-Rluc), which could be used in high throughput screening to detect new molecules that activate Kir3 channels with high efficacy.
8

Étude du trafic du récepteur delta-opiacé suite à sa stimulation par différents agonistes

Charfi, Iness 06 1900 (has links)
Les opiacés figurent parmi les analgésiques les plus puissants pour le traitement des douleurs sévères. Les agonistes du DOR (récepteur delta opiacé) induisent moins d'effets secondaires que ceux du mu, ce qui les rend une cible d'intérêt pour le traitement des douleurs chroniques. Cependant, ils induisent la tolérance à l'analgésie. Des hypothèses récentes proposent que le potentiel des drogues à induire la tolérance soit la conséquence de la stabilisation de différentes conformations du récepteur induites par la liaison avec différents ligands, chacune ayant différentes propriétés de trafic. Dans ce contexte, nous avons déterminé si différents ligands du DOR différaient dans leur capacité à induire la signalisation et le trafic du récepteur. Nos résultats indiquent que DPDPE et SNC-80 sont les drogues les plus efficaces à inhiber la production d’AMPc, suivis par UFP-512, morphine et TIPP. DPDPE et SNC-80 induisent à eux seuls l’internalisation du DOR dans les cellules HEK-293 de façon dépendante de la β-arrestine mais pas de la GRK2 ni PKC. Ces deux drogues induisent également l’internalisation du DOR dans les neurones corticaux et c’est seulement le DPDPE qui permet au DOR de regagner la membrane des cellules HEK-293 et des neurones après récupération. Cette capacité de recyclage était suggérée comme un mécanisme protégeant contre la survenue de la tolérance. Ces observations indiquent que le DOR peut subir différentes régulations en fonction du ligand lui étant associé. Cette propriété de sélectivité fonctionnelle des ligands pourrait être utile pour le développement de nouveaux opiacés ayant une activité analgésique plus durable. / Opiates are among the most powerful painkillers to treat severe pain. Delta opioid receptor (DOR) agonists induce fewer side effects than mu opioid receptor agonists, which makes them a target of interest for the treatment of chronic pain. However, they induce tolerance to analgesia. Recent hypotheses suggest that drugs tolerance is the result of stabilization of ligand-specific conformations of the receptor, with distinct traffic properties such as internalization and/or recycling. In this context, we determined whether different DOR ligands differed with respect to their ability to induce signaling and receptor trafficking. Our results indicate that DPDPE and SNC-80 are the most effective drugs to inhibit the production of cAMP, followed by UFP-512, morphine and TIPP. Only DPDPE and SNC-80 manage to induce DOR internalization in HEK-293 cells. This effect is dependent on β-arrestin but not on GRK2 or PKC. Of these two internalizing agonists, only DPDPE allows the DOR to recycle back to the membrane of HEK-293 cells after recovery. DPDPE and SNC-80 also trigger similar DOR internalization in cortical neurons, and as observed in HEK293 cells only DPDPE allowed the receptor to recycle back to the membrane. This recycling capacity was suggested as a mechanism to protect against the onset of tolerance. These observations indicate that the DOR can undergo different regulations depending on the ligand bound to it. This property of functional selectivity of DOR ligands could be useful for the development of new opiates with longer lasting analgesic properties.
9

Étude du trafic du récepteur delta-opiacé suite à sa stimulation par différents agonistes

Charfi, Iness 06 1900 (has links)
Les opiacés figurent parmi les analgésiques les plus puissants pour le traitement des douleurs sévères. Les agonistes du DOR (récepteur delta opiacé) induisent moins d'effets secondaires que ceux du mu, ce qui les rend une cible d'intérêt pour le traitement des douleurs chroniques. Cependant, ils induisent la tolérance à l'analgésie. Des hypothèses récentes proposent que le potentiel des drogues à induire la tolérance soit la conséquence de la stabilisation de différentes conformations du récepteur induites par la liaison avec différents ligands, chacune ayant différentes propriétés de trafic. Dans ce contexte, nous avons déterminé si différents ligands du DOR différaient dans leur capacité à induire la signalisation et le trafic du récepteur. Nos résultats indiquent que DPDPE et SNC-80 sont les drogues les plus efficaces à inhiber la production d’AMPc, suivis par UFP-512, morphine et TIPP. DPDPE et SNC-80 induisent à eux seuls l’internalisation du DOR dans les cellules HEK-293 de façon dépendante de la β-arrestine mais pas de la GRK2 ni PKC. Ces deux drogues induisent également l’internalisation du DOR dans les neurones corticaux et c’est seulement le DPDPE qui permet au DOR de regagner la membrane des cellules HEK-293 et des neurones après récupération. Cette capacité de recyclage était suggérée comme un mécanisme protégeant contre la survenue de la tolérance. Ces observations indiquent que le DOR peut subir différentes régulations en fonction du ligand lui étant associé. Cette propriété de sélectivité fonctionnelle des ligands pourrait être utile pour le développement de nouveaux opiacés ayant une activité analgésique plus durable. / Opiates are among the most powerful painkillers to treat severe pain. Delta opioid receptor (DOR) agonists induce fewer side effects than mu opioid receptor agonists, which makes them a target of interest for the treatment of chronic pain. However, they induce tolerance to analgesia. Recent hypotheses suggest that drugs tolerance is the result of stabilization of ligand-specific conformations of the receptor, with distinct traffic properties such as internalization and/or recycling. In this context, we determined whether different DOR ligands differed with respect to their ability to induce signaling and receptor trafficking. Our results indicate that DPDPE and SNC-80 are the most effective drugs to inhibit the production of cAMP, followed by UFP-512, morphine and TIPP. Only DPDPE and SNC-80 manage to induce DOR internalization in HEK-293 cells. This effect is dependent on β-arrestin but not on GRK2 or PKC. Of these two internalizing agonists, only DPDPE allows the DOR to recycle back to the membrane of HEK-293 cells after recovery. DPDPE and SNC-80 also trigger similar DOR internalization in cortical neurons, and as observed in HEK293 cells only DPDPE allowed the receptor to recycle back to the membrane. This recycling capacity was suggested as a mechanism to protect against the onset of tolerance. These observations indicate that the DOR can undergo different regulations depending on the ligand bound to it. This property of functional selectivity of DOR ligands could be useful for the development of new opiates with longer lasting analgesic properties.
10

Développement d'un biosenseur BRET permettant le criblage de drogues qui causent l'activation de canaux Kir3 via les récepteurs couplés aux protéines G

Richard-Lalonde, Mélissa 08 1900 (has links)
Les récepteurs couplés aux protéines G forment des complexes multimériques comprenant protéines G et effecteurs. Nous cherchons à caractériser de tels complexes comprenant les récepteurs opioïdes delta (DOR) et les canaux Kir3, qui nous sont d’intérêt vu leur implication dans l’analgésie des opioïdes. Des expériences d’immunopurification, de BRET et de liaison GTPgS ont été réalisées à l’intérieur de cellules HEK293 transfectées. Les canaux Kir3 ont été co-immunopurifiés avec les DOR, suggérant une interaction spontanée entre récepteur et effecteur. Des essais BRET ont corroboré que l’interaction était présente dans des cellules vivantes et nous ont permis d’identifier une interaction spontanée et spécifique entre DOR/Gg et Gg/Kir3, indiquant leur coexistence en un même complexe. Puisque l’activation du récepteur implique la présence de changements conformationnels à l’intérieur de celui-ci, nous étions intéressés à vérifier si l’information conformationnelle circule à partir du récepteur lié au ligand jusqu’à l’effecteur en aval. Ainsi, nous avons déterminé l’effet de différents ligands sur le signal BRET généré par les paires suivantes : DOR/Gbg, DOR/Kir3 et Kir3/Gbg. Nous avons constaté une modulation de l’interaction DOR/Gbg et Gbg/Kir3 suivant l’ordre d’efficacité des ligands à stimuler la protéine G, ce que nous n’avons pas observé entre DOR et Kir3. Donc, nous concluons que l’information conformationnelle circule du récepteur au canal Kir3 via la protéine Gbg. Ces résultats nous ont permis de développer un biosenseur BRET (EYFP-Gg2/Kir3.1-Rluc) qui pourrait être utilisé dans le criblage à haut débit afin de détecter de nouvelles molécules ayant une grande efficacité à activer les canaux Kir3. / G protein-coupled receptors form multimeric complexes comprising G protein and effectors. We want to characterize such complexes comprising delta opioid receptors (DOR) and Kir3 channels, which interest us due to their involvement in opioid analgesia. Immunopurification, BRET and GTPgS binding experiments were done in transfected HEK293 cells. Kir3 channels were co-immunopurified with DOR, implying a spontaneous interaction between the receptor and effector. BRET assays corroborated the presence of this interaction in living cells and allowed us to identify a spontaneous and specific interaction between DOR/Gg and Gg/Kir3, indicating their co-existence within the same complex. Since the activation of the receptor implies it undergoes conformational changes, we were interested in evaluating if the conformational information flows from the ligand-bound receptor until the downstream effector. Hence, we determined the effect of different ligands on the BRET signal that was generated by the following pairs: DOR/Gbg, DOR/Kir3 and Kir3/Gbg. We noticed a modulation of the DOR/Gbg and Gbg/Kir3 interactions that followed the order of efficacy of the ligands to activate the G protein, which we did not observe between DOR and Kir3. Therefore, we concluded that the conformational information flows from the receptor to the Kir3 channel via the Gbg protein. These results allowed us to develop a BRET biosensor (EYFP-Gg2/Kir3.1-Rluc), which could be used in high throughput screening to detect new molecules that activate Kir3 channels with high efficacy.

Page generated in 0.1884 seconds