• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 61
  • 26
  • 26
  • 21
  • 15
  • 11
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 378
  • 69
  • 69
  • 47
  • 44
  • 41
  • 40
  • 34
  • 34
  • 31
  • 30
  • 29
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Vytváření nanostruktur na površích pevných látek hybridními metodami / CREATION OF NANOSTRUCTURES ON SURFACES OF SOLID MATTER USING HYBRID METHODS

Rudolfová, Zdena January 2018 (has links)
This thesis deals with the study of GaAs surface properties and with methodology of metal (mainly gold) nanoparticles deposition on GaAs substrate. GaAs has complicated surface oxides structure, which are very reactive when exposed to various chemicals (both acids and alkalines) and therefore they change GaAs surface properties. That is why the study of this properties is crucial for understanding of GaAs surface reactions on metal particles colloidal solution, from which the nanoparticles are deposited on the surface. The possibilites of GaAs surface etching and passivation are discussed. These should lead to surface stability enhancement during colloidal nanoparticles deposition. There was also studied the influence of adhesive polymer monolayer grown on GaAs substrate to the amount of nanoparticles deposited to the surface after substrate immersion into colloidal solution. This thesis concentrates on analyzing of methods, how the gold colloidal nanoparticles can be deposited selectivelly, only to defined areas. The areas were defined using charged particle beam.
262

THz pump-probe spectroscopy of the intersubband AC-Stark effect in a GaAs quantum well

Schmidt, Johannes 05 February 2020 (has links)
In this thesis we present a study about strong light-matter interaction in a broad single GaAs/AlGaAs quantum well representing a 3-level system. In particular we investigate the AC-Stark effect, where we observe in THz absorption spectra an Autler-Townes splitting as well as a Mollow-triplet. Compared to previous work, we showed for the first time an all-THz pump-probe experiment in the THz regime below the Reststrahlenband. Furthermore, we observe a strong frequency shift in the absorption energy of the first intersubband transition depending on the charge carrier density in the quantum well. The Autler-Townes splitting as well as the absorption frequency shift can be potentially exploited for THz-modulation applications. Beyond nonlinear optics many interesting effects occur in the strong light-matter interaction regime such as Rabi oscillations, coherent population trapping, lasing without inversion, electromagnetically induced transparency (EIT) and the AC-Stark effect. Our quantum well represents a 3-level system in which we investigate a splitting behaviour in the absorption spectrum of the first and second intersubband transition. Especially a splitting for the first intersubband transition is predicted also for electromagnetically induced transparency, while the second intersubband transition is pumped with a strong varying electric field. Naturally, a fundamental question is, how to distinguish EIT and an Autler-Townes duplet since both result in a spectrally transparent window. The method of choice for investigations combines narrowband pulses in the THz range provided by a free-electron laser and broadband THz pulses generated in a GaP crystl within a THz time-domain spectroscopy setup. In this unique configuration we perform time-resolved pump and probe spectroscopy experiments by pumping resonantly the second intersubband transition at 3.4 THz to induce a splitting of the second and third subband. Broadband THz pulses then probe an absorption splitting of about 0.2 THz related to the first intersubband transition at ≈ 2.3 THz as well as a splitting of the second intersubband transition (Mollow triplet). Analyzing experiments and using a theoretical criteria to distinguish EIT and Autler-Townes splitting, we conclude to observe an Autler-Townes doublet instead of an EIT effect. / In dieser Arbeit berichten wir über die starke Licht-Materie Wechselwirkung in 3-Niveau system anhand eines einzelnen, breiten GaAs/AlGaAs Quantentopfes. Insbesondere untersuchen wir den AC-Stark Effekt und beobachten eine Aufspaltung des Absorptionsspektrums durch das Autler-Townes Dublett und das Mollow Triplett. Im direkten Vergleich mit vorangegangenen Arbeiten zeigen wir zum ersten Mal ein reines THz Anrege-Abfrage Experiment mit Frequenzen unterhalb des Reststrahlenbandes. Weiterhin beobachten wir eine starke Frequenzverschiebung der Absorptionsenergie des ersten Intersubbandübergangs in Abhängigkeit von der Ladungsträgerdichte im Quantentopf. Sowohl das Autler-Townes Dublett als auch die Verschiebung der Absorptionsfrequenz ermöglichen potentielle Anwendung im Bereich der THz-Modulation. Im Bereich der starken Licht-Materie Wechselwirkung sind viele interessante Effekte beobachtbar wie Rabi Oszillationen, coherent population trapping, Lasern ohne Inversion, elektromagnetisch induzierte Transparenz (EIT) und der AC-Stark Effekt. Unser Quantentopf stellt ein 3-Niveau System dar, in welchem wir eine Aufspaltung der Absorption bezüglich des ersten und zweiten Intersubbandübergangs beobachten. Insbesondere für den ersten Intersubbandübergang ist auch eine Absorptionsaufspaltung durch den EIT Effekt vorhergesagt, während der zweite Intersubbandübergang durch ein starkes, elektrisches Wechselfeld angeregt wird. Es stellt sich dann die Frage, wodurch sich die Effekte EIT und Autler-Townes splitting unterscheiden, weil beide durch ein spektrales transparentes Fenster gekennzeichnet sind. Die von uns gewählte Methode verknüpft schmalbandige, starke elecktrische Wechselfelder im THz-Bereich eines freien Elektronen Lasers und breitbandigen THz-Pulsen, welche durch nichtlineare optische Effekte in einem THz Zeit-Bereichs Spektroskopie Aufbaus erzeugt werden. In dieser einzigartigen Konfiguration führen wir zeitaufgelöste Anrege-Abfrage Spektroskopie Experimente durch, in dem wir den zweiten Intersubbandübergang bei 3, 4 THz nahezu resonant anregen und das zweite und dritte Subband aufspalten. Mit breitbandigen THz Pulsen fragen wir dann die Absorptionsaufspaltung von ca. 0, 2 THz des ersten Intersubbandübergangs bei ≈ 2, 3 THz und des zweiten Intersubbandübergangs (Mollow-Triplett) ab. Nach Auswerten der Experimente und theoretischer Kriterien für die Unterscheidung zwischen EIT und Autler-Townes splitting schlussfolgern wir, ein Autler-Townes Dublett zu beobachten.
263

Monte Carlo Simulation Of Hole Transport And Terahertz Amplification In Multilayer Delta Doped Semiconductor Structures

Dolguikh, Maxim 01 January 2005 (has links)
Monte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical or in-plane hole transport in the presence of a perpendicular in-plane magnetic field. Inversion population on intersubband transitions arises due to light hole accumulation in E B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77 K. Test structures grown by chemical vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions. The same device structure is considered in GaAs. The case of Si is much more complicated due to strong anisotropy of the valence band. The primary new result for Si is the first consideration of the anisotropy of optical phonon scattering for hot holes.
264

InGaAsP/GaAs Quantum Well Lasers: Material Properties, Laser Design and Fabrication, Ultrashort-Pulse External-Cavity Operation

Wallace, Steven 04 1900 (has links)
A detailed characterization of the Ini-xGaxAsyP1-j, quaternary material system lattice matched to GaAs, grown by gas source Molecular Beam Epitixy (MBE) has been performed. Photoluminescence, X-ray diffraction and Transmission Electron Microscopy (TEM) were used to study the lateral composition modulation (LCM) which was observed in this material system. Optimization of the growth process and the substrate orientation resulted in a significant reduction of the LCM. Additionally, a comprehensive analysis of the optical constants was performed which resulted in the first publication of wavelength and composition dependent index of refraction data for this material system. The combination of growth optimization and index of refraction data lead to the demonstration of efficient, low threshold operation of InGaAsP/GaAs based multiple quantum well lasers. In order to efficiently couple the above laser diodes to an external cavity to facilitate the generation of ultrashort pulses, antireflection facet coatings were required. As such, optical interference filters have been fabricated using a plasma enhanced chemical vapor deposition system, based on the SiOxNy material system. High quality antireflection facet coatings, suitable for application to the InGaAsP/GaAs diode lasers have been designed and fabricated, resulting in modal reflectivities of 1-2 x 10-4. Finally, an ultrashort-pulse external-cavity diode laser system was designed and manufactured which allowed the laser diode to be wavelength tuned and emit mode-locked ultrashort optical pulses. Pulses with sub 2 ps duration and greater than 1 mW average output power have been achieved. A study of the novel application of an asymmetric quantum well structure to the generation of ultrashort optical pulses has been proposed and initiated. / Thesis / Doctor of Philosophy (PhD)
265

A Linear RF Power Amplifier with High Efficiency for Wireless Handsets

Refai, Wael Yahia 13 March 2014 (has links)
This research presents design techniques for a linear power amplifier with high efficiency in wireless handsets. The power amplifier operates with high efficiency at the saturated output power, maintains high linearity with enhanced efficiency at back-off power levels, and covers a broadband frequency response. The amplifier is thus able to operate in multiple modes (2G/2.5G/3G/4G). The design techniques provide contributions to current research in handset power amplifiers, especially to the converged power amplifier architecture, to reduce the number of power amplifiers within the handset while covering all standards and frequency bands around the globe. Three main areas of interest in power amplifier design are investigated: high power efficiency; high linearity; and broadband frequency response. Multiple techniques for improving the efficiency are investigated with the focus on maintaining linear operation. The research applies a new technique to the handset industry, class-J, to improve the power efficiency while avoiding the practical issues that hinder the typical techniques (class-AB and class-F). Class-J has been implemented using GaN FET in high power applications. To our knowledge, this work provides the first implementation of class-J using GaAs HBT in a handset power amplifier. The research investigates the linearity, and the nature and causes of nonlinearities. Multiple concepts for improving the linearity are presented, such as avoiding odd-degree harmonics, and linearizing the relationship between the output current and the input voltage of the amplifier at the fundamental frequency. The concept of bias depression in HBT transistors is introduced with a bias circuit that reduces the bias-offset effect to improve linearity at high output power. A design methodology is presented for broadband matching networks, including the component loss. The methodology offers a quick and accurate estimation of component values, giving more degrees of freedom to meet the design specifications. It enables a trade-off among high out-of-band attenuation, number/size of components, and power loss within the network. Although the main focus is handset power amplifiers, most of the developed techniques can be applied to a wide range of power amplifiers. / Ph. D.
266

Heterogeneous Integration of III-V Multijunction Solar Cells on Si Substrate: Cell Design and Modeling, Epitaxial Growth and Fabrication

Jain, Nikhil 07 May 2015 (has links)
Achieving high efficiency solar cells and concurrently driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III-V compound semiconductor based solar cells have steadily shown performance improvement at approximately 1% (absolute) increase per year, with a recent record efficiency of 46%. However, the expensive cost has made it challenging for the high efficiency III-V solar cells to compete with the mainstream Si technology. Novel approaches to lower down the cost per watt for III-V solar cells will position them to be among the key contenders in the renewable energy sector. Integration of such high-efficiency III-V multijunction solar cells on significantly cheaper and large area Si substrate has the potential to address the future LCOE roadmaps by unifying the high-efficiency merits of III-V materials with low-cost and abundance of Si. However, the 4% lattice mismatch, thermal mismatch polar-on-nonpolar epitaxy makes the direct growth of GaAs on Si challenging, rendering the metamorphic cell sensitive to dislocations. The focus of this dissertation is to systematically investigate heterogeneously integrated III-V multijunction solar cells on Si substrate. Utilizing a combination of comprehensive solar cell modeling and experimental techniques, we seek to better understand the material properties and correlate them to improve the device performance, with simulation providing a very valuable feedback loop. Key technical design considerations and optimal performance projections are discussed for integrating metamorphic III-V multijunction solar cells on Si substrates for 1-sun and concentrated photovoltaics. Key factors limiting the “GaAs-on-Si” cell performance are identified, and novel approaches focused on minimizing threading dislocation density are discussed. Finally, we discuss a novel epitaxial growth path utilizing high-quality and thin epitaxial Ge layers directly grown on Si substrate to create virtual “Ge-on-Si” substrate for III-V-on-Si multijunction photovoltaics. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III-V solar cell efficiencies, the future prospects for successful integration of III-V solar cell technology with Si substrate looks very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics. / Ph. D.
267

Molecular Beam Epitaxy Growth and Enhancement of Device Stability for Characterizing Mesoscopic Physics in GaAs/AlGaAs heterostructures

Shuang Liang (19193335) 25 July 2024 (has links)
<p dir="ltr">Improvement in state-of-the-art molecular beam epitaxy has led to the growth of ultra-high-quality GaAs/AlGaAs heterostructures. Two-dimensional electron systems in GaAs/AlGaAs heterostructures have provided a platform for investigating numerous phenomena in condensed matter physics.</p><p dir="ltr">In Chapter 2, we study low-frequency charge noise in shallow GaAs/AlGaAs heterostructures using quantum point contacts as charge sensors. We observe that devices with an Al$_2$O$_33$ dielectric between the metal gates and semiconductor exhibit significantly lower charge noise than devices with only Schottky gates and no dielectric. The improvement in device stability allows the application of shallow structures for spin qubit projects, making gate potential sharply defined.</p><p dir="ltr">In Chapter 3, we investigated the impact of edge-edge interaction on an electronic Fabry-P\'erot interferometer in the quantum Hall regime. Recently, experimental observations of periodicity $\phi_0/2$ in the integer</p><p dir="ltr">quantum Hall regime has been attributed to an exotic electron pairing mechanism. We present measurements of a Fabry-P\'erot interferometer operated in the integer quantum Hall regime at filling factor $1\leq \nu \leq 3$. Like previous experimental reports, under specific conditions we observe oscillations with flux periodicity $\phi_{0}/2$. However, our data and analysis indicate that period-halving is not driven by electron pairing, as has previously been claimed in the literature, but rather, is the result of electrostatic coupling between multiple independent edge modes.</p><p dir="ltr">In Chapter 4, we demonstrated our attempts in realizing stable {\it in-situ} gating for probing the possible non-Abelian state $\nu=5/2$. Utilizing a trench gate technique on a doped AlGaAs sample exhibits reasonable gating in a standard experiment time scale. Introducing AlAs screening wells further enhances the stability; it also significantly improves the coherence of interference at both integer and fractional states. In the future work section, we propose possible heterostructure modifications to improve contact performance, 2DEG quality, and the coherence of the interference.</p>
268

Charge transport study of InGaAs two-color QWIPs

Hoang, Vu Dinh 06 1900 (has links)
Approved for public release, distribution is unlimited / In this thesis, a series of experiments were performed to characterize the material properties of InGaAs/GaAs for use in a two-color quantum-well IR photodetector (QWIP) design. Results from room temperature studies using cathodoluminescence and photoluminescence indicated light emission at 858 nm and 1019 nm from GaAs and InGaAs, respectively. Using a direct transport imaging technique, an edge dislocation pattern was observed and shown to be confined to the InGaAs layer of the material. A dislocation density measurement was performed and was shown to be less than 2000 lines/cm. Quantitative intensity level measurements indicated fluctuation in the region of dislocations to be less than 30% of the signal to background level. Finally, a spot mode study using the direct transport imaging method was performed to evaluate the feasibility of using this technique for contact-less diffusion length measurements. / Civilian, Department of Air Force
269

Polarization Rotation Study of Microwave Induced Magnetoresistance Oscillations in the GaAs/AlGaAs 2D System

Liu, Han-Chun 15 December 2016 (has links)
Previous studies have demonstrated the sensitivity of the amplitude of the microwave radiation-induced magnetoresistance oscillations to the microwave polarization. These studies have also shown that there exists a phase shift in the linear polarization angle dependence. But the physical origin of this phase shift is still unclear. Therefore, the first part of this dissertation analyzes the phase shift by averaging over other small contributions, when those contributions are smaller than experimental uncertainties. The analysis indicates nontrivial frequency dependence of the phase shift. The second part of the dissertation continues the study of the phase shift and the results suggest that the specimen exhibits only one preferred radiation orientation for different Hall-bar sections. The third part of the dissertation summarizes our study of the Hall and longitudinal resistance oscillations induced by microwave frequency and dc bias at low filling factors. Here, the phase of these resistance oscillations depends on the contact pair on the device, and the period of oscillations appears to be inversely proportional to radiation frequency.
270

Acoustically induced spin transport in (110) GaAs quantum wells

Junior, Odilon Divino Damasceno Couto 27 November 2008 (has links)
Im Mittelpunkt dieser Arbeit stehen der Transport und die Manipulation optisch angeregter Elektronen-Spins in (110) Quantenfilmen (quantum wells, QWs) mittels akustischer Oberflächenwellen (surface acoustic waves, SAWs). Der starke räumliche Einschluss der Ladungsträger im akustisch erzeugten Potenzial erlaubt spinerhaltenden Ladungsträgertransport mit der akustischen Geschwindigkeit. Auf diese Weise wird langreichweitiger Spintransport über Distanzen > 60 microns demonstriert, welche Spinlebenszeiten von mehr als 20 ns entsprechen. Erreicht werden diese extrem langen Spinlebenszeiten durch drei Effekte: (i) Der D''yakonov-Perel''-Mechanismus ist für Spins in Wachstumsrichtung von (110)-QWs in III-V-Halbleitern unterdrückt. (ii) Aufgrund des Typ-II piezoelektrischen Potenzials der akustischen Oberflächenwelle ist der Bir-Aronov-Pikus Spinrelaxations-Mechanismus sehr schwach. (iii) Der starke Einschluss der Ladungsträger in mesoskopische Bereiche stabilisiert den Spin zusätzlich. In der vorliegenden Arbeit wird erstmals eine Anisotropie des Spintransports in einem externen Magnetfeld (Bext) nachgewiesen. Hierzu wurde die elektronische Spindynamik während des akustischen Transports entlang der [001]- bzw. [1-10]-Richtung untersucht. Während des Transports entlang der [001]-Richtung führt die Präzession der Elektronenspins um das fluktuierende interne Magnetfeld (Bint), das vom Fehlen eines Inversionszentrums im GaAs-Kristallgitter herrührt, zu Spinkohärenzzeiten von etwa 2 ns. Im Gegensatz hierzu ist beim Transport entlang der [1-10]-Richtung die Spinrelaxation für Spins in Wachstumsrichtung um eine Größenordnung langsamer. Grund hierfür ist die endliche mittlere Größe des internen effektiven Magnetfeldes Bint für Transport entlang dieser Richtung. Die beobachtete Anisotropie in der Spindynamik für die beiden Transportrichtungen wird vollständig im Rahmen der Spin-Bahn-Kopplung und des D''yakonov-Perel''-Mechanismus beschrieben und quantitativ erklärt. / In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 microns is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D''yakonov-Perel'' spin relaxation mechanism for z-oriented spins in (110) III-V QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (Bext) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1-10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (Bint), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around Bext. In contrast, for transport along the [1-10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of Bint. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D''yakonov-Perel'' mechanism for the (110) system.

Page generated in 0.0198 seconds