Spelling suggestions: "subject:"deneral mathematics"" "subject:"deneral amathematics""
381 |
Méthodes de reconstruction d'images à partir d'un faible nombre de projections en tomographie par rayons xWang, Han 24 October 2011 (has links) (PDF)
Afin d'améliorer la sûreté (dose plus faible) et la productivité (acquisition plus rapide) du système de la tomographie par rayons X (CT), nous cherchons à reconstruire une image de haute qualitée avec un faible nombre de projections. Les algorithmes classiques ne sont pas adaptés à cette situation et la reconstruction est instable et perturbée par des artefacts. L'approche "Compressed Sensing" (CS) fait l'hypothèse que l'image inconnue est "parcimonieuse" ou "compressible", et la reconstruit via un problème d'optimisation (minimisation de la norme TV/L1) en promouvant la parcimonie. Pour appliquer le CS en CT, en utilisant le pixel/voxel comme base de representation, nous avons besoin d'une transformée parcimonieuse, et nous devons la combiner avec le "projecteur du rayon X" appliqué sur une image pixelisée. Dans cette thèse, nous avons adapté une base radiale de famille Gaussienne nommée "blob" à la reconstruction CT par CS. Elle a une meilleure localisation espace-fréquentielle que le pixel, et des opérations comme la transformée en rayons-X, peuvent être évaluées analytiquement et sont facilement parallélisables (sur plateforme GPU par exemple). Comparé au blob classique de Kaisser-Bessel, la nouvelle base a une structure multi-échelle : une image est la somme des fonctions translatées et dilatées de chapeau Mexicain radiale. Les images médicales typiques sont compressibles sous cette base. Ainsi le système de representation parcimonieuse dans les algorithmes ordinaires de CS n'est plus nécessaire. Des simulations (2D) ont montré que les algorithmes TV/L1 existants sont plus efficaces et les reconstructions ont des meilleures qualités visuelles que par l'approche équivalente basée sur la base de pixel-ondelettes. Cette nouvelle approche a également été validée sur des données expérimentales (2D), où nous avons observé que le nombre de projections en général peut être réduit jusqu'à 50%, sans compromettre la qualité de l'image.
|
382 |
Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveauLaadhari, Aymen 06 April 2011 (has links) (PDF)
Ce travail, à l'interface entre les mathématiques appliquées et la physique, s'articule autour de la modélisation numérique des vésicules biologiques, un modéle pour les globules rouges du sang. Pour cela, le modéle de Canham et Helfrich est adopté pour décrire le comportement des vésicules. La modélisation numérique utilise la méthode des fonctions de niveau dans un cadre éléments finis. Un nouvel algorithme de résolution numérique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de dépasser une limitation cruciale actuelle de la méthode des fonctions de niveau, à savoir les pertes de masse couramment observées dans ce type de problémes. De plus, les propriétés de convergence de la méthode des fonctions de niveau se trouvent ainsi grandement améliorées, comme l'indiquent de nombreux tests numériques. Ces tests comprennent notamment des problémes d'advection élémentaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'équilibre statique des vésicules, une condition générale d'équilibre d'Euler-Lagrange est obtenue à l'aide d'outils de dérivation de forme. En dynamique, le mouvement d'une vésicule sous l'action d'un écoulement de cisaillement est étudié dans le cadre des nombres de Reynolds élevés. L'effet du confinement est considéré, et les régimes classiques de chenille de char et de basculement sont retrouvés. Finalement, pour la premiére fois, l'effet des termes inertiels est étudié et on montre qu'au delà d'une valeur critique du nombre de Reynolds, la vésicule passe d'un mouvement de basculement à un mouvement de chenille de char.
|
383 |
Multiplication matricielle efficace et conception logicielle pour la bibliothèque de calcul exact LinBoxBoyer, Brice 21 June 2012 (has links) (PDF)
Dans ce mémoire de thèse, nous développons d'abord des multiplications matricielles efficaces. Nous créons de nouveaux ordonnancements qui permettent de réduire la taille de la mémoire supplémentaire nécessaire lors d'une multiplication du type Winograd tout en gardant une bonne complexité, grâce au développement d'outils externes ad hoc (jeu de galets), à des calculs fins de complexité et à de nouveaux algorithmes hybrides. Nous utilisons ensuite des technologies parallèles (multicœurs et GPU) pour accélérer efficacement la multiplication entre matrice creuse et vecteur dense (SpMV), essentielles aux algorithmes dits /boîte noire/, et créons de nouveaux formats hybrides adéquats. Enfin, nous établissons des méthodes de /design/ générique orientées vers l'efficacité, notamment par conception par briques de base, et via des auto-optimisations. Nous proposons aussi des méthodes pour améliorer et standardiser la qualité du code de manière à pérenniser et rendre plus robuste le code produit. Cela permet de pérenniser de rendre plus robuste le code produit. Ces méthodes sont appliquées en particulier à la bibliothèque de calcul exact LinBox.
|
384 |
Polynomial root separation and applicationsPejkovic, Tomislav 20 January 2012 (has links) (PDF)
We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.
|
385 |
Raréfaction dans les suites b-multiplicativesAksenov, Alexandre 16 January 2014 (has links) (PDF)
On étudie une sous-classe des suites b-multiplicatives rarefiées avec un pas de raréfaction p premier, et on trouve une structure asymptotique avec un exposant alphain]0,1[ et une fonction de raréfaction continue périodique. Cette structure vaut pour les suites qui contiennent des nombres complexes du disque unité (section 1.1), et aussi pour des systèmes de numération avec b chiffres successifs positifs et négatifs (section 1.2). Ce formalisme est analogue à celui décrit (pour le cas particuler de la suite de Thue-Morse) par Gelfond; Dekking; Goldstein, Kelly, Speer; Grabner; Drmota, Skalba et autres. Dans la deuxième partie, largement indépendante, on étudie la raréfaction dans les suites composées de -1,0 et +1. On se restreint davantage au cas où b engendre le groupe multiplicatif modulo p. Cette hypothèse est conjecturée (Artin) d'être vraie pour une infinité de nombres premiers. Les constantes qui apparaissent s'expriment alors comme polynômes symétriques des P(zeta^j) où P est un polynôme à coefficients entiers, zeta est une racine primitive p-ième de l'unité, $j$ parcourt les entiers de 1 à p-1 (ce lien est explicité dans la section 1.3). On définit une méthode pour étudier les valeurs de ces polynômes symétriques, basée sur la combinatoire, notamment sur le problème de comptage des solutions des congruences et des systèmes linéaires modulo p avec deux conditions supplémentaires: les résidus modulo p utilisés doivent être non nuls et différents deux à deux. L'importance est donnée à la différence entre les nombres de soluions de deux congruences qui ne diffèrent que du terme sans variable. Le cas des congruences de la forme $x_1+x_2+...+x_n=i mod p$ équivaut à un résultat connu. Le mémoire (section 2.2) lui donne une nouvelle preuve qui en fait une application originale de la formule d'inversion de Möbius dans le p.o.set des partitions d'un ensemble fini. Si au moins deux coefficients distincts sont présents, on peut classer les réponses associées à toutes les congruences possibles qui ont un ensemble fixe de coefficients (de taille d), dans un tableau qu'on va appeler un "simplexe de Pascal fini". Ce tableau est une fonction delta:N^d->Z restreinte aux points de somme des coordonnées inférieure à p (un simplexe), avec deux propriétés: l'équation récursive de Pascal y est vérifiée partout sauf les points où la somme des coefficients est multiple de p (qui seront appelés les "sources" et forment un sous-réseau de l'ensemble des points entiers), et les valeurs en-dehors du simplexe induites par l'équation sont nulles (c'est démontré, en réutilisant la méthode précédente, dans la section 2.3 et en partie 2.4). On décrit un algorithme (section 2.4) qui consiste en applications successives de l'équation dans un ordre précis, qui permet de trouver l'unique fonction delta qui vérifie les deux conditions. On applique ces résultats aux suites b-multiplicatives (dans la section 2.5). On montre aussi que le nombre de sources ne dépend que de la dimension du simplexe d et de la longueur de son côté p. On formule la conjecture (partie 2.6) qu'il serait le plus petit possible parmi les tableaux de forme d'un simplexe de la dimention fixe et taille fixe qui vérifient les mêmes conditions. On montre un premier résultat sur les systèmes de deux congruences linéaires (section 2.5.4), et on montre (section 1.4) un lien avec une méthode de Drmota et Skalba pour prouver l'absence de phénomène de Newman (dans un sens précis), décrit initialement pour la suite de Thue-Morse et tout p tel que b engendre le groupe multiplicatif modulo p, et généralisé (section 1.4) à la suite (-1)^{nombre de chiffres 2 dans l'écriture en base 3 de n} appelée "++-". Cette problématique est riche en problèmes d'algorithmique et de programmation. Différentes sections du mémoire sont illustrées dans l'Annexe. La plupart de ces figures sont inédites.
|
386 |
Relations structure-activité pour le métabolisme et la toxicitéMuller, Christophe 24 January 2013 (has links) (PDF)
Prédire à l'avance quels composés seront toxiques chez l'homme ou non représente un réel challenge dans le monde pharmaceutique. En effet, les mécanismes à l'origine de la toxicité ne sont pas toujours bien connus, et à cela s'ajoute le fait qu'un composé peut devenir néfaste seulement après qu'il ait été métabolisé. Nous proposons ici une approche originale utilisant les graphes condensés de réactions afin de modéliser les réactions métaboliques et prédire le devenir des xénobiotiques dans l'organisme humain. Différentes formes de toxicité sont aussi prédites : la mutagénicité et l'hépatotoxicité. Pour cette seconde toxicité, l'approche utilisée est la première à notre connaissance à prédire avec succès les molécules toxiques décrites par des données autres que résultant d'observations in vivo.
|
387 |
Semi-groupes de matrices et applicationsMercat, Paul 11 December 2012 (has links) (PDF)
Nous étudions les semi-groupes de matrices avec des points de vue variés qui se re-coupent. Le point de vue de la croissance s'avère relié à un point de vue géométrique : nous avons partiellement généralisé aux semi-groupes un théorème de Patterson-Sullivan-Paulin sur les groupes, qui donne l'égalité entre exposant critique et dimension de Hausdorff de l'ensemble limite. Nous obtenons cela dans le cadre général des semi-groupes d'isométries d'un espace Gromov-hyperbolique, et notre preuve nous a permis d'obtenir également d'autres résultats nouveaux. Le point de vue informatique s'avère également relié à la croissance, puisque la notion de semi-groupe fortement automatique, que nous avons introduit, permet de calculer les exposants critiques exactes de semi-groupes de développement en base β. Et ce point de vue donne également beaucoup d'autres informations sur ces semi-groupes. Cette notion de croissance s'avère aussi reliée à des conjectures sur les fractions continues telles que celle de Zaremba. Et c'est en étudiant certains semi-groupes de matrices que nous avons pu démontrer des résultats sur les fractions continues périodiques bornées qui permettent de petites avancées dans la résolution d'une conjecture de McMullen.
|
388 |
Modélisation de l'imagerie biomédicale hybride par perturbations mécaniquesSeppecher, Laurent 20 June 2014 (has links) (PDF)
Dans cette thèse, nous introduisons et développons une approche mathématiques originale des techniques d'imagerie biomédicales dites "hybrides". L'idée et d'appliquer une méthode d'imagerie mal posée, tout en perturbant le milieu à imager par des déplacements mécaniques. Ces déplacements provenant d'une équation de type onde élastique perturbent les mesures effectuées. En utilisant ces mesures perturbées, et profitant du caractère local des perturbations mécaniques, il est possible d'augmenter considérablement la résolution de la méthode de base. Le problème direct est donc un couplage d'une EDP décrivant la propagation utilisée pour la méthode de base et d'une seconde décrivant les champs de déplacement mécaniques. Dans toutes cette thèse, on fait l'hypothèse d'un milieu mécaniquement homogène afin d'assurer le contrôle et la géométrie des ondes perturbatrices utilisées. A partir des mesures perturbées, une étape d'interprétation permet de construire une donnée interne au domaine considéré. Cette étape nécessite en général l'inversion d'opérateurs géométriques intégraux de type Radon, afin d'utiliser le caractère localisant des perturbations utilisées. A partir de cette donnée interne, il est possible d'initier une procédure de reconstruction du paramètre physique recherché. Dans le chapitre 1, il est question d'un couplage entre micro-ondes et perturbations sphériques. Dans les chapitres 2, 3 et 4, nous étudions l'imagerie optique diffuse toujours couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une méthode originale de reconstruction de la conductivité électrique par un couplage entre champs magnétique et perturbations acoustiques focalisées.
|
389 |
Champs aléatoires de Markov cachés pour la cartographie du risque en épidémiologieAzizi, Lamiae 13 December 2011 (has links) (PDF)
La cartographie du risque en épidémiologie permet de mettre en évidence des régionshomogènes en terme du risque afin de mieux comprendre l'étiologie des maladies. Nousabordons la cartographie automatique d'unités géographiques en classes de risque commeun problème de classification à l'aide de modèles de Markov cachés discrets et de modèlesde mélange de Poisson. Le modèle de Markov caché proposé est une variante du modèle dePotts, où le paramètre d'interaction dépend des classes de risque.Afin d'estimer les paramètres du modèle, nous utilisons l'algorithme EM combiné à une approche variationnelle champ-moyen. Cette approche nous permet d'appliquer l'algorithmeEM dans un cadre spatial et présente une alternative efficace aux méthodes d'estimation deMonte Carlo par chaîne de Markov (MCMC).Nous abordons également les problèmes d'initialisation, spécialement quand les taux de risquesont petits (cas des maladies animales). Nous proposons une nouvelle stratégie d'initialisationappropriée aux modèles de mélange de Poisson quand les classes sont mal séparées. Pourillustrer ces solutions proposées, nous présentons des résultats d'application sur des jeux dedonnées épidémiologiques animales fournis par l'INRA.
|
390 |
Analyse fréquencielle du transport de la lumière : de la théorie aux applicationsBelcour, Laurent 30 October 2012 (has links) (PDF)
Cette thèse présente une extension de l'analyse fréquentielle des light-fields locaux de Durand et al. [2005]. Nous proposons l'étude de phénomènes de transport radiatif tels que la réfraction par des surfaces non-spéculaires, les effets de flou de bougé et la diffusion de la lumière dans les volumes tels que les nuages. Nous proposons de plus une extension de l'état de l'art en analyse fréquentielle avec l'ajout de l'étude de l'occlusion non-planaire, des SVBRDFs anisotropes ainsi que les systèmes de lentilles. Dans ce cadre, nous présentons l'analyse de la matrice covariance de l'amplitude du spectre, un outil compact d'analyse et compatible avec les méthodes statistiques d'intégrations. Nous montrons l'utilité de cet outil avec différentes applications: le sampling adaptatif avec reconstruction des effets de flou de profondeur et de bougé, l'estimation de noyaux de reconstructions pour l'algorithme de photon mapping et le sampling adaptatif des effets volumiques.
|
Page generated in 0.0836 seconds