Spelling suggestions: "subject:"geometria plant"" "subject:"geometria plans""
111 |
Argumentação e prova na matemática escolar do ensino básico: a soma das medidas dos ângulos internos de um triânguloAlmeida, Julio Cesar Porfirio de 08 May 2007 (has links)
Made available in DSpace on 2016-04-27T17:13:00Z (GMT). No. of bitstreams: 1
Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5)
Previous issue date: 2007-05-08 / Made available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2
Julio Cesar Porfirio de Almeida.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5)
Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5)
Previous issue date: 2007-05-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study is about the demonstration of amount of measure the internal angles of triangles made by 8th grade from Fundamental School and the First year of High School, from of resolution of two specified questions. This work intends to contribute with the Argumentation and Proof in School Mathematics project (AprovaME), that has as one of objectives the mapping of conceptions about teenager s argumentation and proofs in public and private schools of São Paulo (state) For this was made a questionnaire in two books, five questions of Algebra and with five questions of Geometry. They were given to 1998 pupils aged between 14 and 16 years. The two analyzed questions are in the Geometry notebook.
After checking the given information, took out 50 pupils as sample, that answers were classified in four progressive levels according their form of argument used in evolution of the Pragmatic proof (first principles methods of verification) to the Intellectual proof (elaborations of reasoning from logical-deduction nature and the production of explanation characterized as mathematics demonstration). In the following phase these pupils were put in groups according with the types of answers presented, to do the individual interviews aiming explanations about their choose. Finish the work a conclusive survey based in the results of the analysis, where are suggested forms of approach of subject Proofs and Demonstrations in the classroom, contemplating the execution of dynamic activities that give privilege the construction of mathematically consistent argument based in the expression of generalized reasoning / Este estudo trata da demonstração da soma da medida dos ângulos internos de um triângulo por alunos da oitava série do Ensino Fundamental e da primeira série do Ensino Médio, a partir da resolução de duas questões específicas. Procura contribuir com o Projeto Argumentação e Prova na Matemática Escolar (AprovaME), que tem como um de seus objetivos o mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas públicas e particulares do Estado de São Paulo. Para esse levantamento foi elaborado um questionário contendo, em dois cadernos, cinco questões de Álgebra e cinco de Geometria, aplicados a 1998 alunos na faixa etária entre 14 e 16 anos. As duas questões analisadas estão inseridas no caderno de Geometria.
Após a tabulação das informações coletadas, extraiu-se dessa população uma amostra de 50 alunos, cujas respostas foram classificadas em quatro níveis progressivos quanto às formas de validação dos argumentos empregados numa evolução da categoria Prova Pragmática (métodos rudimentares de verificação) à Prova Intelectual (elaboração de raciocínios de natureza lógico-dedutiva e produção de explicações caracterizadas como demonstrações matemáticas). Na etapa seguinte, esses alunos foram agrupados de acordo com os tipos de resposta apresentados para a realização de entrevistas individuais visando à obtenção de esclarecimentos adicionais sobre suas escolhas. Encerra o trabalho um panorama conclusivo baseado no resultado da análise em que são sugeridas formas de abordagem do tema Provas e Demonstrações em sala de aula, contemplando a realização de atividades dinâmicas que privilegiem a construção de argumentos matematicamente consistentes, fundamentados na expressão de raciocínios generalizadores
|
112 |
Pontos notáveis do triângulo: quantos você conhece?Magalhães, Elton Jones da Silva 12 April 2013 (has links)
This thesis aims to show that the notable points of the triangles are not limited to Incentro, circumcenter, Baricentro and Orthocenter which are the best known. In fact, the Encyclopedia of Triangle Centers (ETC), see [5], features over five thousand notable points. Are points with several interesting properties as we will see throughout this work. In addition to the points already mentioned will also present the points of Feuerbach, the Lemoine point, the point Gergonne, the Nagel point, the Spieker point and the points of Fermat. Will be also presented some important theorems, among them we highlight the Ceva theorem that will be used to prove the existence of several points mentioned. We realize that it is a matter of understanding that can be easily inserted into the basic education. / A presente dissertação tem como objetivo mostrar que os pontos notáveis dos triângulos não se resumem ao Incentro, Circuncentro, Baricentro e ao Ortocentro que são os mais conhecidos. Na verdade, a Encyclopedia of Triangle Centers (ETC), ver [5], apresenta mais de cinco mil pontos notáveis. São pontos com várias propriedades interessantes como veremos ao longo deste trabalho. Além dos pontos já citados apresentaremos também os pontos de Feuerbach, o ponto de Lemoine, o ponto de Gergonne, o ponto de Nagel, o ponto de Spieker e os pontos de Fermat. Serão apresentados também alguns teoremas importantes, entre eles podemos destacar o Teorema de Ceva que será usado para provar a existência de vários pontos citados. Podemos perceber que é um assunto de fácil compreensão que pode ser inserido no ensino básico.
|
Page generated in 0.0607 seconds