Spelling suggestions: "subject:"green¡¦s actionfunction"" "subject:"green¡¦s functionaction""
1 |
The Impact of Tsunamigenic Earthquake on the Southeast Coast of TaiwanLien, Cheng-chia 17 January 2012 (has links)
The main topic of this research is the impact to the tsunami-inundated area of the southeast coast of Taiwan caused by earthquakes. According to regression relationship (G-R relation) between the earthquake magnitude and frequency proposed by Gutenberg and Richter (1944), the expected number of tsunamigenic earthquake is estimated. Using the linear shallow water equations of COMCOT (COrnell Multigrid COupled Tsunami model), the propagation of tsunami in the ocean is simulated, and the reciprocal Green's function was applied to save the computing time of COMCOT model. Then, the seismic solution parameters are substituted to acquire a water level distribution of tsunami. Solitary waves of different wave height are used to compute the range and the probability of tsunami inundation at the southeast coast of Taiwan.
|
2 |
Bounds for Green's functions on hyperbolic Riemann surfaces of finite volumeAryasomayajula, Naga Venkata Anilatmaja 21 October 2013 (has links)
Im Jahr 2006, in einem Papier in Compositio Titel "Bounds auf kanonische Green-Funktionen" J. Jorgenson und J. Kramer, haben optimale Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem kompakten hyperbolischen Riemannschen Fläche definiert abgeleitet. Diese Schätzungen wurden im Hinblick auf abgeleitete Invarianten aus hyperbolischen Geometrie der Riemannschen Fläche. Als Anwendung abgeleitet sie Schranken für die kanonische Green-Funktionen durch Abdeckungen und für Familien von Modulkurven. In dieser Arbeit erweitern wir ihre Methoden nichtkompakten hyperbolischen Riemann Oberflächen und leiten ähnliche Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem nichtkompakten hyperbolischen Riemannschen Fläche definiert. / In 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
|
3 |
Generalização do Ansatz de Kadanoff-Baym em teorias quânticas de campos à temperatura finita / Generalization of the Kadanoff-Baym Ansatz in Quantum Field Theory at Finite Temperature.Britto, André Luiz Moura 18 December 2018 (has links)
No âmbito da teoria quântica de campos (TQC) foram estudados modelos de quench exatamente solúveis. Nestes modelos, obteve-se uma generalização do ansatz de Kadanoff-Baym que se mantém em todos intervalos de tempo. Algumas hipóteses sobre fenômenos de não-equilíbrio em TQC em temperaturas finitas foram analisadas e estendidas neste contexto. Para tanto, examinamos as funções de Green nesses modelos e os comparamos com os resultados aproximados que são frequentemente usados na literatura. Um dos modelos descreve sistemas de não-equilíbrio do tipo vítreo. Esses sistemas exibem um comportamento que é compatível com o esperado do teorema de flutuação-dissipação. As propriedades básicas foram consistentemente deduzidas e resultados explícitos para a temperatura efetiva e frequências características foram obtidas. / We have studied exactly quenched models in the context of Quantum Field Theory(QFT). In these models, a generalization of the Kadanoff-Baym ansatz was obtained which holds at all times. Some assumptions concerning non-equilibrium phenomena in QFT at finite temperatures were analysed and extended in this framework. To this end, we have examined the Green\'s functions in these models and compared them with the approximated results which are often used in the literature. One of the models describes non-equilibrium systems of the glassy-kind. Such systems exhibit a behaviour which is compatible with that expected from the fluctuation-dissipation theorem. The basic properties were consistently deduced and explicit results for the effective temperature and characteristic frequencies were obtained.
|
4 |
A theoretical framework for waveguide quantum electrodynamics and its application in disordered systemsSchneider, Michael Peter 18 January 2016 (has links)
Wellenleiter Quantenelektrodynamik (Wellenleiter QED) ist ein wichtiger Baustein in vielen zukünftigen, auf Quantenmechanik basierenden Technologien wie z.B. Quantencomputer. Ein typisches Modellsystem besteht aus einem Zwei-Niveau-System (two level system, TLS), das an einen eindimensionalen Wellenleiter gekoppelt wurde. Der Wellenleiter ist dabei durch eine Dispersionsrelation charakterisiert und kann unter anderem Bandkanten enthalten. Wir haben in der Dissertation einen neuartigen Zugang zur Wellenleiter QED präsentiert. Dieser Zugang basiert auf der Quantenfeldtheorie und ermöglicht die Berechnung Greenscher Funktionen im ein- und zwei-Anregungs Unterraum. Diese Greenschen Funktionen wurden benutzt um die Streumatrix und die spektrale Dichte in beiden Unterräumen zu berechnen. Desweiteren konnten wir mit Hilfe von Feynman-Diagrammen die physikalischen Prozesse in der Störungsreihe der Greenschen Funktionen identifizieren. Dies war besonders im zwei-Anregungs-Unterraum von Nutzen. In diesem Fall verhält sich das System nichtlinear, da das TLS nur eine Anregung absorbieren kann. Dadurch werden Effekte induziert wie photon bunching und die effiziente Anregung eines gebundenen Atom-Photon Zustandes. Es war uns möglich diese Effekte in der Störungsreihe der Greenschen Funktion wieder zu finden. Desweiteren haben wir die Greenschen Funktionen im Orts-Zeit-Raum benutzt um ein- und zwei-Photon-Wellenpakete zu propagieren. Es hat sich herausgestellt dass das Verhältnis von Pulsbreite zur spontanten Emissions-zeit sowohl das Streuverhalten als auch die maximale Anregung des TLS bestimmt. Letztendlich haben wir den Einfluss von Unordnung im Wellenleiter auf das Zerfallsverhalten des TLS untersucht. Wir haben entdeckt dass der gebundene Atom-Photon Zustand instabil wird sobald die Unordnung einen kritischen Wert erreicht. Darüberhinaus haben wir eine spezielle Klasse Feynman Diagramme identifiziert, die dem Zerfall eine nichtmarkovsche Dynamik verleihen. / Waveguide quantum electrodynamics (waveguide QED) can be considered as a building block for many prospective technologies like quantum computing. A prototypical system consists of a two-level system (TLS) coupled to a one-dimensional waveguide. The waveguide is characterized by its dispersion relation and can also feature a band edge/slow-light regime. In this thesis we have presented a new theoretical framework for waveguide QED, based on quantum field theory. The framework provides the Green''s functions of the system in the single- and two-excitation sectors for an arbitrary dispersion relation. We have calculated the scattering matrix and the spectral density in both sectors. Furthermore, we have also represented the Green''s functions in the form of Feynman diagrams, from which we can identify the underlying physical processes. A special property of the system is that it behaves nonlinear in the case of two or more photons. This is rooted in the structure of the TLS, which can at most absorb one excitation. The nonlinearity leads to two effects: photon bunching and the efficient excitation of an atom-photon bound state. We have found both effects within our framework and we were able to assign them individual terms in the perturbation series of the Green''s function. Furthermore, we have used the Green''s function in space-time domain to propagate Gaussian one- and two-photon wavepackets. Here, we have identified the ratio of the pulsewidth and the spontaneous emission time as the parameter which governs both the scattering behavior of the photons and the maximal TLS excitation. Eventually, we have investigated the effects of disorder in the waveguide on the decay properties of the TLS. We have found here that the atom-photon bound state is stable for small disorder, but breaks down at sufficiently strong disorder. Furthermore, we have identified a special class of diagrams which render the system non-Markovian even for energies far away from the band edge.
|
5 |
[pt] MÉTODO PROBABILÍSTICO PARA CONSIDERAÇÃO DE INCERTEZAS BASEADO NO MÉTODO DAS FUNÇÕES DE GREEN E NO MÉTODO ESTATÍSTICO FIRST-ORDER SECONDMOMENT / [en] PROBABILISTIC METHOD FOR UNCERTAINTIES CONSIDERATION IN GEOMECHANICAL PROBLEMS BASED ON GREEN S FUNCTION APPROACH AND FIRST-ORDER SECOND-MOMENT METHODLEONARDO CARVALHO MESQUITA 04 May 2023 (has links)
[pt] O presente trabalho propõe um método estatístico computacionalmente
eficiente (chamado Green-FOSM) para consideração de incertezas em problemas
geomecânicos, com o objetivo de melhorar o processo de tomada de decisão ao
analisar problemas associados com o processo de injeção ou depleção de fluídos. A
novidade do método proposto está associada com a utilização do método das
funções de Green (GFA), que, com o auxílio do método estatístico first-order
second-moment (FOSM), é utilizado para propagar as inerentes incertezas
associadas às propriedades mecânicas do material para o campo de deslocamento
da formação geológica. Além disso, através dos conceitos de grid estocástico e
função de autocorrelação, o método proposto permite a consideração da
variabilidade espacial de variáveis aleatórias de entrada que representam essas
propriedades mecânicas. O GFA utiliza as soluções fundamentais da mecânica
clássica (solução fundamental de Kelvin, solução fundamental de Melan, entre
outras) e o teorema da reciprocidade para determinar o campo de deslocamento de
uma formação geológica com geometria irregular e diferentes tipos de materiais. A
grande vantagem deste método em relação ao clássico método dos elementos finitos
(MEF) é que ele não requer a imposição de condições de contorno e a análise do
problema pode ser realizada considerando apenas o domínio do reservatório ou
outras regiões de interesse. Esta estratégia de modelagem diminui os graus de
liberdade do modelo e o tempo de processamento da análise. Desta forma, como o
GFA requer menos esforço computacional, este método torna-se ideal para ser
utilizado na propagação de incertezas em problemas geomecânicos. Inicialmente,
baseado no método das funções de Green original proposto por Peres et al. (2021),
foi proposto uma versão iterativa do método Green-FOSM, que apresenta
resultados estatísticos semelhantes aos encontrados através da clássica simulação
de Monte Carlo (SMC). Nesta versão original, o campo de deslocamento é
PUC-Rio - Certificação Digital Nº 1912634/CA
calculado usando um esquema numérico iterativo que diminui o desempenho
computacional do método e pode gerar problemas de convergência. Tais limitações
tem dificultado a aplicação do GFA original e do método Green-FOSM iterativo
em problemas reais. Assim, o presente trabalho desenvolveu uma nova versão do
GFA que utiliza um esquema numérico não-iterativo. Para os problemas de
validação analisados, o método não-iterativo demonstra ser até 17.5 vezes mais
rápido do que a versão original. Além disso, esta versão demonstra ser capaz de
expandir a aplicabilidade do GFA, pois os problemas de convergência foram
eliminados e os resultados obtidos por este método, ao analisar um perfil geológico
representativo do pré-sal brasileiro, são semelhantes aos encontrados via MEF. Por
fim, a partir do GFA não-iterativo foi proposta uma versão não-iterativa do método
Green-FOSM. Esta versão não-iterativa é capaz de analisar probabilisticamente
formações geológicas complexas, como é o caso das formações geológicas do présal brasileiro. Utilizando os mesmos recursos computacionais, o método GreenFOSM não-iterativo é no mínimo 200 vezes mais rápido que o método iterativo. De
forma geral, os resultados encontrados nas análises realizadas (determinísticas e
probabilísticas) são próximos dos resultados obtidos pelo método de referência
(MEF e SMC, respectivamente). / [en] The present work proposes a computationally efficient stochastic statistical
method (called Green-FOSM) that considers uncertainties in geomechanical
problems, with the objective of improving the decision-making process related to
problems associated with the process of fluid injection or depletion. The novelty of the method lies in the use of the Green s function approach (GFA), which, together, with the first-order second-moment statistical method (FOSM), is used to propagate
uncertainties associated with the mechanical properties of material to the
displacement field of the geological formation. Furthermore, using the concepts of
stochastic grid and autocorrelation function, the proposed method allows the
consideration of the spatial variability of random variables that represent these
mechanical properties. The GFA uses the fundamental solutions of classical
mechanics (Kelvin fundamental solution, Melan fundamental solution, among
others) and the reciprocity theorem to calculate the displacement field of a
geological formation with irregular geometry, and different types of materials. The
great advantage of this method compared to the classical finite element method
(FEM) is that it does not require the imposition of boundary conditions and the
analysis of the problem can be performed considering only the reservoir or other
regions of interest. This modeling strategy decreases the degrees of freedom of the
model and the CPU time of the deterministic analysis. In this way, as the GFA
requires less computational effort, this approach becomes ideal for propagating the
uncertainties in geomechanical problems. Initially, an iterative version of the
Green-FOSM method was proposed, which presents statistical results similar to
those found through the classic Monte Carlo simulation (MCS). In this initial
version, the displacement field is calculated using an iterative numerical scheme,
which decreases the computational performance of the method and can generate
convergence problems. Such limitations would restrict the application of the
PUC-Rio - Certificação Digital number 1912634/CA
original GFA and the iterative Green-FOSM method in real problems. Thus, the
present work also developed a new version of the GFA, which uses a non-iterative
numerical scheme. For the proposed validation problems, the non-iterative method
proved to be up to 17.5 times faster than the original version. This version is able
to expand the applicability of the GFA, since the convergence problems were
eliminated and the results obtained by this method, when analyzing a representative
geological profile of the Brazilian pre-salt, are similar to those found via FEM.
Finally, based on the non-iterative GFA, a non-iterative version of the Green-FOSM
method was proposed. This non-iterative version is capable of probabilistically
analyzing complex geological formations, such as the Brazilian pre-salt geological
formations. Using the same computational resources, the non-iterative GreenFOSM method is at least 200 times faster than the iterative Green-FOSM method.
In general, the results found in the investigated analyzes (deterministic and
probabilistic) are close to the results obtained by the reference method (FEM and
MCS, respectively).
|
Page generated in 0.0901 seconds