• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 14
  • 11
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 150
  • 49
  • 41
  • 25
  • 19
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Pulsed Laser Deposition of Iridate and YBiO3 Thin Films

Jenderka, Marcus 30 January 2017 (has links)
Die vorliegende Arbeit befasst sich mit dem Dünnfilmwachstum der ternären Oxide Na2IrO3, Li2IrO3, Y2Ir2O7 und YBiO3. All diesen oxidischen Materialien ist gemein, dass sie Verwirklichungen sogenannter Topologischer Isolatoren oder Spin-Flüssigkeiten sein könnten. Diese neuartigen Materiezustände versprechen eine zukünftige Anwendung in der Quantencomputation, in magnetischen Speichern und in elektrischen Geräten mit geringer Leistungsaufnahme. Die Herstellung der hier gezeigten Dünnfilme ist daher ein erster Schritt zur Umsetzung dieser Anwendungen in der Zukunft. Alle Dünnfilme werden mittels gepulster Laserplasmaabscheidung auf verschiedenen einkristallinen Substraten hergestellt. Die strukturellen, optischen und elektrischen Eigenschaften der Filme werden mittels etablierter experimenteller Verfahren wie Röntgenbeugung, spektroskopischer Ellipsometrie und elektrischenWiderstandsmessungen untersucht. Die strukturellen Eigenschaften von erstmalig in der Masterarbeit des Authors verwirklichten Na2IrO3-Dünnfilmen können durch Abscheidung einer ZnO-Zwischenschicht deutlich verbessert werden. Einkristalline Li2IrO3-Dünnfilme mit einer definierten Kristallausrichtung werden erstmalig hergestellt. Die Messung der dielektrischen Funktion gibt Einblick in elektronische Anregungen, die gut vergleichbar mit Li2IrO3-Einkristallen und verwandten Iridaten sind. Des Weiteren wird aus den Daten eine optische Energielücke von ungefähr 300 meV bestimmt. In Y2Ir2O7-Dünnfilmen wird eine mögliche (111)-Vorzugsorientierung in Wachstumsrichtung gefunden. Im Vergleich mit der chemischen Lösungsabscheidung zeigen die hier mittels gepulster Laserplasmaabscheidung hergestellten YBiO3-Dünnfilme eine definierte, biaxiale Kristallausrichtung in der Wachstumsebene bei einer deutlich höheren Schichtdicke. Über die gemessene dielektrische Funktion können eine direkte und indirekte Bandlücke bestimmt werden. Deren Größe gibt eine notwendige experimentelle Rückmeldung an theoretische Berechnungen der elektronischen Bandstruktur von YBiO3, welche zur Vorhersage der oben erwähnten, neuartigen Materiezuständen verwendet werden. Nach einer Einleitung und Motivation dieser Arbeit gibt das zweite Kapitel einen Überblick über den gegenwärtigen Forschungsstand der hier untersuchten Materialien. Die folgenden zwei Kapitel beschreiben die Probenherstellung und die verwendeten experimentellen Untersuchungsmethoden. Anschließend werden für jedes Material einzeln die experimentellen Ergebnisse dieser Arbeit diskutiert. Die Arbeit schließt mit einer Zusammenfassung und einem Ausblick. / The present thesis reports on the thin film growth of ternary oxides Na2IrO3, Li2IrO3, Y2Ir2O7 and YBiO3. All of these oxides are candidate materials for the so-called topological insulator and spin liquid, respectively. These states of matter promise future application in quantum computation, and in magnetic memory and low-power electronic devices. The realization of the thin films presented here, thus represents a first step towards these future device applications. All thin films are prepared by means of pulsed laser deposition on various single-crystalline substrates. Their structural, optical and electronic properties are investigated with established experimental methods such as X-ray diffraction, spectroscopic ellipsometry and resistivity measurements. The structural properties of Na2IrO3 thin films, that were previously realized in the author’s M. Sc. thesis for the first time, are improved significantly by deposition of an intermediate ZnO layer. Single-crystalline Li2IrO3 thin films are grown for the first time and exhibit a defined crystal orientation. Measurement of the dielectric function gives insight into electronic excitations that compare well with single crystal samples and related iridates. From the data, an optical energy gap of about 300 meV is obtained. For Y2Ir2O7 thin films, a possible (111) out-of-plane preferential crystal orientation is obtained. Compared to chemical solution deposition, the pulsed laser-deposited YBiO3 thin films presented here exhibit a biaxial in-plane crystal orientation up to a significantly larger film thickness. From the measured dielectric function, a direct and indirect band gap energy is determined. Their magnitude provides necessary experimental feedback for theoretical calculations of the electronic structure of YBiO3, which are used in the prediction of the novel states of matter mentioned above. After the introduction and motivation of this thesis, the second chapter reviews the current state of the science of the studied thin film materials. The following two chapters introduce the sample preparation and the employed experimental methods, respectively. Subsequently, the experimental results of this thesis are discussed for each material individually. The thesis concludes with a summary and an outlook.
102

Damage resistance and tolerance investigation of carbon/epoxy skinned honeycomb sandwich panels

Hill, Michelle Denise January 2007 (has links)
This thesis documents the findings of a three year experimental investigation into the impact damage resistance and damage tolerance of composite honeycomb sandwich panels. The primary area of work focuses on the performance of sandwich panels under quasi-static and low-velocity impact loading with hemispherical and flat-ended indenters. The damage resistance is characterised in terms of damage mechanisms and energy absorption. The effects of varying the skin and core materials, skin thickness, core density, panel boundary conditions and indenter shape on the transverse strength and energy absorption of a sandwich panel have been examined. Damage mechanisms are found to include delamination of the impacted skin, core crushing, limited skin-core de bonding and top skin fibre fracture at high loads. In terms of panel construction the skin thickness is found to dominate the panel strength and energy absorption with core density having a lesser influence. Of the external factors considered the indenter noseshape has the largest effect on both failure load and associated damage area. An overview of existing analytical prediction methods is also included and the most significant theories applied and compared with the experimental results from this study. The secondary area of work expands the understanding obtained from the damage resistance study and assesses the ability of a sandwich panel to withstand in-plane compressive loading after sustaining low-velocity impact damage. The importance of the core material is investigated by comparing the compression-after-impact strength of both monolithic carbon-fibre laminates and sandwich panels with either an aluminium or nomex honeycomb core. The in-plane compressive strength of an 8 ply skinned honeycomb sandwich panel is found to be double that of a 16 ply monolithic laminate, with the type of honeycomb also influencing the compressive failure mechanisms and residual compressive strength. It is concluded that under in-plane loading the stabilising effect of the core opposes the de-stabilising effect of any impact damage.
103

Artificial Graphene in Nano-patterned GaAs Quantum Wells and Graphene Growth by Molecular Beam Epitaxy

Wang, Sheng January 2016 (has links)
In this dissertation I present advances in the studies of artificial lattices with honeycomb topology, called artificial graphene (AG), in nano-patterned GaAs quantum wells (QWs). AG lattices with very small lattice constants as low as 40 nm are achieved for the first time in GaAs. The high quality AG lattices are created by optimized electron-beam (E-beam) lithography followed by inductively coupled plasma reactive-ion etching (ICP-RIE) process. E-beam lithography is used to define a honeycomb lattice etch mask on the surface of the GaAs QW sample and the optimized anisotropic ICP-RIE process is developed to transfer the pattern into the sample and create the AG lattices. Such high-resolution AG lattices with small lattice constants are essential to form AG miniband structures and create well-developed Dirac cones. Characterization of electron states in the nanofabricated artificial lattices is by optical experiments. Optical emission (photoluminescence) yields a determination of the Fermi energy of the electrons. A significant reduction of the Fermi energy is due to the nano-patterning process. Resonant inelastic light scattering (RILS) spectra reveal novel transitions related to the electron band structures of the AG lattices. These transitions exhibit a remarkable agreement with the predicted joint density of states (JDOS) based on the band structure calculation for the honeycomb topology. I calculate the electron band structures of AG lattices in nano-patterned GaAs QWs using a periodic muffin-tin potential model. The evaluations predict linear energy-momentum dispersion and Dirac cones, where the massless Dirac fermions (MDFs) appear, occur in the band structures. Requirements of the parameters of the AG potential to achieve isolated and well-developed Dirac cones are discussed. Density of states (DOS) and JDOS from AG band structures are calculated, which provide a basis to interpret quantitatively observed transitions of electrons involving AG bands. RILS of intersubband transitions reveal intriguing satellite peaks that are not present in the as-grown QWs. These additional peaks are interpreted as combined intersubband transitions with simultaneous change of QW subband and AG band index. The calculated JDOS for the electron transitions within the AG lattice model provide a remarkably accurate description of the combined intersubband excitations. Novel low-lying excitation peaks in RILS spectra, interpreted as direct transitions between AG bands without change in QW subband, provide a more direct insight on the AG band structures. We discovered that RILS transitions around the Dirac cones are resonantly enhanced by varying the incident photon energies. The spectral lineshape of these transitions provides insights into the formation of Dirac cones that are characteristic of the honeycomb symmetry of the AG lattices. The results confirm the formation of AG miniband structures and well-developed Dirac cones. The realization of AG lattices in a nanofabricated high mobility semiconductor offers the advantage of tunability through methods suitable for device scalability and integration. The last part of this thesis describes the growth of nanocrystalline single layer and bilayer graphene on sapphire substrates by molecular beam epitaxy (MBE) with a solid carbon source. Raman spectroscopy reveals that fabrication of single layer, bilayer or multilayer graphene crucially depends on MBE growth conditions. Etch pits revealed by atomic force microscopy indicate a removal mechanism of carbon by reduction of sapphire. Tuning the interplay between carbon deposition and its removal, by varying the incident carbon flux and substrate temperature, should enable the growth of high quality graphene layers on large area sapphire substrates.
104

On the crushing of honeycomb under axial compression

Wilbert, Adrien 15 February 2011 (has links)
This thesis presents a comprehensive study of the compressive response of hexagonal honeycomb panels from the initial elastic regime to a fully crushed state. Expanded aluminum alloy honeycomb panels with a cell size of 0.375 in (9.53 mm), a relative density of 0.026, and a height of 0.625 in (15.9 mm) are laterally compressed quasi statically between rigid platens under displacement control. The cells buckle elastically and collapse at a higher stress due to inelastic action. Deformation then first localizes at mid-height and the cells crush by progressive formation of folds; associated with each fold family is a stress undulation. The response densifies when the whole panel height is consumed by folds. The buckling, collapse, and crushing events are simulated numerically using finite element models involving periodic domains of a single or several characteristic cells. The models idealize the microstructure as hexagonal, with double walls in one direction. The nonlinear behavior is initiated by elastic buckling while inelastic collapse that leads to the localization observed in the experiments occurs at a significantly higher load. The collapse stress is found to be mildly sensitive to various problem imperfections. For the particular honeycomb studied, the collapse stress is 67% higher than the buckling stress. It was also shown that all aspects of the compressive behavior can be reproduced numerically using periodic domains with a fine mesh capable of capturing the complexity of the folds. The calculated buckling stress is reduced when considering periodic square domains as the compatibility of the buckles between neighboring cells tends to make the structure more compliant. The mode consisting of three half waves is observed in every simulation but its amplitude is seen to be accented at the center of the domains. The calculated crushing response is shown to better resemble measured ones when a 4x4 cell domain is used, which is smoother and reproduces decays in the amplitude of load peaks. However, the average crushing stress can be captured with engineering accuracy even from a single cell domain. / text
105

Dynamic enhancement and multi-axial behavior of honeycombs under combined shear-compression

Hou, Bing 26 March 2011 (has links) (PDF)
The study consists mainly of two parts. The first part is related to the dynamic strength enhancement of honeycombs under uniaxial compression. We firstly study numerically this particular phenomenon of thin-walled structure by using three micro-size FE models and this allows us to reveal the role played by lateral inertia in the dynamic enhancement. Further more, the dynamic enhancement of a series of honeycombs with different cell-size, cell-wall thickness and base material is studied experimentally and the influence of these geometric parameters and the base material on honeycomb strength as well as the dynamic enhancement rate is investigated. The second part of this study concerns the biaxial behavior of honeycombs under combined shear-compression. We firstly present a combined dynamic shear-compression loading device basing on a large-diameter Nylon Split Hopkinson Pressure Bar system. Then, a series of quasi-static and dynamic experiments on an aluminium honeycomb is performed with loading angles ranging from 0o to 60o (part of shear more and more important). It shows a strong effect of the additional shear loading to honeycomb overall strength. A notable strength enhancement under impact loading is observed for all the honeycomby b specimens. Images captured during tests permit for the determination of the two co-existing deforming patterns under combined shear-compression. Finally, the combined shear-compression tests on honeycombs are reproduced by a numerical virtual model and the separated normal and shear behaviors of honeycombs under combined shear-compression are obtained. A crushing envelope in normal strength vs. shear strength plane was obtained on the basis of these simulations, which shows an isotropic expansion behavior from the quasi-static loading to the dynamic loading.
106

Synthesis and investigation of frustrated Honeycomb lattice iridates and rhodates

Manni, Soham 27 June 2014 (has links)
No description available.
107

Numerical simulation of elastic wave propagation in honeycomb core sandwich plates / Modélisation de la propagation d'ondes élastiques dans des plaques sandwichs en nid d'abeilles

Tian, Biyu 17 September 2012 (has links)
Des panneaux sandwichs en nid d'abeilles sont largement utilisés, notamment dans l’industrie aérospatiale et aéronautique, à cause du très bon rapport entre rigidité en flexion et poids. Concernant leur modélisation, ils sont considérés classiquement comme de milieux homogénéisés équivalents afin d'éviter des modèles numériques prohibitifs en coûts de calculs. Cependant, des travaux précédents ont montré que, si le comportement dynamique en membrane des sandwichs peut être correctement représenté par des modèles homogénéisés classiques dans une large gamme de fréquences, ces mêmes modèles ne permettent malheureusement pas de bien décrire le comportement en flexion dans le domaine de hautes fréquences (HF). En effet, la couche centrale en nid d'abeilles joue un rôle important dans le comportement en flexion du sandwich, il est donc indispensable de la modéliser de manière appropriée. Or, lorsque les longueurs d’onde impliquées deviennent aussi petites que les longueurs caractéristiques des cellules du nid d’abeilles, cette microstructure cellulaire interagit fortement avec les ondes et génère des effets d’interaction non négligeables, qui ne sont malheureusement pas pris en compte par des modèles homogénéisés classiques. Dans le cadre de cette thèse, on s’intéresse donc à l'amélioration de l’analyse théorique et numérique de la propagation d’ondes élastiques HF dans ces panneaux composites. On exploite les caractéristiques périodiques du nid d'abeilles en utilisant sur une approche numérique basée sur la théorie des ondes de Bloch. En effet, en décomposant des solutions non périodiques sur une base composée de modes périodiques de Bloch, il est possible de développer des modèles numériques, qui considèrent des phénomènes de propagation des ondes à l’intérieur d’une seule cellule de base et captent toutes les interactions. Ces modèles numériques sont donc de taille raisonnable, par rapport aux dimensions souvent très importantes des structures industrielles. Des analyses théoriques et des outils de modélisation ont été développés pour des milieux périodiques composés de structures minces : poutres ou plaques. Notre approche a été développée et validée pour des structures périodiques uni- puis bi-dimensionnelles composées de poutres. Pour les cas 2D, la forme de la cellule est hexagonale ou rectangulaire. Nous avons aussi considéré des plaques sandwichs en nid d’abeilles. Pour toutes ces structures, en identifiant les valeurs propres et les modes propres de Bloch sur une cellule primitive pour tous les vecteurs d’onde de Bloch situés dans la première zone de Brillouin dans l’espace de phase, la relation de dispersion entre le vecteur d'onde de Bloch et la valeur propre est calculée. En analysant cette relation de dispersion, les résultats importants sont obtenus, tels que les bandes de fréquences passantes et bloquantes et les caractéristiques d'anisotropie et dispersives des structures périodiques, la comparaison quantitative entre les premiers modes de Bloch et ceux des modèles homogénéisés classiques en vue d’une définition précise du domaine validation en fréquence de ceux-derniers et la mise en évidence des modes de Bloch « rétro-propagatifs » munis d’une vitesse de groupe négative. / Honeycomb core sandwich panels are widely used in the aeronautic industry due to their excellent flexural stiffness to weight ratio. Generally, classical homogenized model is used to model honeycomb core sandwiches in order to have an efficient but not expensive numerical modeling. However, previous works have shown that, while the homogenized models could correctly represent the membrane waves’ behavior of sandwiches in a large frequency range, they could not give satisfying simulation results for the flexural waves’ behavior in the high frequency range (HF). In fact, the honeycomb core layer plays an important role in the propagation of the flexural waves, so that when the involved wavelengths become close to the characteristic lengths of honeycomb cells, the cellular microstructure starts interacting strongly with the waves and its effect should no longer be neglected, which is unfortunately not the case of the homogenized models. In the present work, we are interested in improving the theoretical and numerical analysis of HF elastic waves’ propagation in honeycomb core sandwich panels by a numerical approach based on the Bloch wave theorem, which allows taking into account the periodic characteristics of the honeycomb core. In fact, by decomposing non-periodic wave solutions into their periodic Bloch wave basis modes, numerical models are defined on a basic cell and solved in a efficient way, and provide a better description and so a better understanding of the interaction between HF wave propagation phenomena and the periodic structures. Our numerical approach is developed and validated in the cases of one-dimensional periodic beam structures, of two-dimensional periodic hexagonal and rectangular beam structures and of honeycomb core sandwich plates. By solving the eigenvalue problem of the Bloch wave modes in one primitive cell of the periodic structure for all the wave vectors located in the corresponding first Brillouin zone in the phase space, the dispersion relation between the wave vector and the eigenvalue is calculated. The analysis of the dispersion relation provides important results such as: the frequency bandgaps and the anisotropic and dispersive characteristics of periodic structures, the comparison between the first Bloch wave modes to those of the classical equivalent homogenized models and the existence of the retro-propagating Bloch wave modes with a negative group velocity.
108

Amortissement des vibrations de réflecteur d'antenne de satellite par micro-perforations / Vibration damping of antenna's reflector of satellite by microperforations

Régniez, Margaux 04 May 2015 (has links)
Ce travail de thèse porte sur l'étude de l'influence des micro-perforations sur la réponse vibratoire d'une structure cellulaire de type panneau sandwich NIDA (nid d'abeille). Les réflecteurs d'antenne de satellites placés sur les satellites de télécommunication, comme beaucoup d'autres éléments, sont fabriqués avec ce type de matériaux. Lors du décollage du lanceur pour la mise en orbite du satellite, les sollicitations mécaniques appliquées au système sont de nature acoustique et solidienne. La sollicitation acoustique liée au champ acoustique diffus et de très fort niveau présent dans la coiffe du lanceur est la plus importante. Elle joue un rôle important dans le dimensionnement et la conception du réflecteur d'antenne. L'enjeu de la thèse est d'évaluer le potentiel d'un traitement de ce panneau par micro-perforations pour en réduire les vibrations. L'effet des micro-perforations sur la réponse vibratoire du réflecteur d'antenne est double. D'une part, le chargement acoustique que constitue la pression excitatrice est réduit par un mécanisme d'absorption du à la présence des micro-perforations, couplées aux cavités formées par les cellules NIDA du matériau. Cet effet, connu dans la littérature est décrit notamment par le modèle d'impédance acoustique de D.-Y. Maa, couplé à un modèle d'impédance de la cavité NIDA et prenant en compte les rayonnements interne et externe à la micro-perforation. D'autre part, un effet, de nature vibro-acoustique est induit par le couplage entre les vibrations du panneau et les mouvements acoustiques dans les micro-perforations. La modélisation de cet effet, mal décrit dans la littérature constitue un élément original du travail : un modèle discret construit à partir de l'impédance acoustique d'un orifice permet le calcul d'une force d'amortissement élémentaire, puis, après homogénéisation, à une estimation de l'amortissement modal du panneau micro-perforé. Les modélisations proposées pour la réduction de chargement acoustique et de l'amortissement ajouté par micro-perforation montrent que la réponse vibratoire du panneau est faiblement réduite dans la plage de fréquence d'intérêt, ce que confirment plusieurs tests expérimentaux : comparaison de réponse de panneau micro-perforé ou non en chambre réverbérante et en chambre à bruit. La modification de chargement acoustique apportée par la micro-perforation des deux faces du panneau sandwich NIDA est modélisée dans le dernier chapitre et donne lieu à une augmentation de l'effet dans la gamme de fréquence visée. / This thesis work is about the study of the microperforations influence on the vibratory response of a cellular structure as a honeycomb sandwich panel. Satellites' antenna's reflectors placed on telecommunication satellites, as many satellites' elements, are manufactured in this kind of materials. During the launcher take-off for putting satellite into orbit, the mechanical stresses applied to the system are acoustical and vibration borne stress. The acoustic stress, linked to the high level diffuse acoustic field inside the launcher fairing is the most important. It plays a part in the antenna's reflector size and conception. The issue of the thesis is to evaluate the potential of a treatment using microperforations on this panel in order to reduce its vibration. The microperforations effect on the vibration response of the antenna's reflector is double. On one hand, the acoustic loading applied by the exciter pressure is reduced by an absorption mechanism due to the presence of microperforations, coupled to cavities formed by honeycomb cells. This effect, well known in the litterature, is for instance described by the acoustic impedance model developped by D.-Y. Maa, coupled to an impedance model of honeycomb cavity and taking into account the inner and outer radiations of the microperforation. On the other hand, a vibro-acoustical effect is induced by the coupling between panel vibrations and acoustic movements inside microperforations. The modelling of this effect, not well described in the litterature, constitutes an original element of the thesis work: a discrete model constructed using the acoustic impedance of an orifice, allows the computation of an elementary damping force and then leads, after an homogenisation, to an estimation of the modal damping of the microperforated panel. Both modellings proposed for the acoustic loading reduction and the damping added by microperforations, show that the panel vibration response is weakly reduced in the frequency band of interest, which confirms experimental tests like: response comparison of non microperforated and microperforated panels placed in reverberant room and noise chamber. The acoustic loading modification induced by the microperforation of both sides of the honeycomb sandwich panel is modelling in the thesis last chapter and allows an increase of the effect on the frequency band aimed.
109

Generalized Circular and Elliptical Honeycomb Structures/Bundled Tubes : Effective Transverse Elastic Moduli

Gotkhindi, Tejas Prakash January 2016 (has links) (PDF)
Omnipresence of heterogeneity is conspicuous in all creations of nature. Heterogeneity manifests itself in many forms at different scales, both in time and space. Engineering domain being an exotic fusion of human creativity and ever-increasing demands exemplifies the ubiquity of heterogeneity. Surprisingly, the plethora of materials we see around seem to stem from myriad combination of few base materials identified as elements in chemistry. Further, a simple rearrangement of atoms in these materials leads to allotropes with startling contrasts in properties. Similarly, micro- and meso-scales in heterogeneous materials also dis-play this phenomenon. Human requirements propelled by necessities and wants have leveraged heterogeneity deliberately or naively. In the context of engineering materials, light weight heterogeneous materials like composites and cellular solids are outstanding inventions from the last century. The present thesis highlights this phenomenon on a meso-scale to explore generalized variants of circular and elliptical honeycomb structures (HCSs) with an emphasis on their effective transverse elastic responses, a crucial pillar of engineering design and analysis. Homogenized or effective properties are an extension of continuum hypothesis, conceived for ease in analyses. E ective properties are employed in multi-scale analyses resulting in less complex models for analysis, for example, for predicting the speed of wave propogation. The thesis extends and generalizes existing close-packed circular and elliptical HCSs to more broader configurations. Simpler periodic arrangement of the unit cells from numerous exotic possibilities directly incorporates Design for Manufacture and Assembly (DFMA) philosophy and o ers a potential scope for analysis by simpler tools resulting in handy expressions which are of great utility for designer engineers. In this regard, analytical expressions for moduli having compact forms in the case of circular HCS are developed by technical theories and rigorous theory of elasticity. Regression analysis expressions for the moduli of elliptical HCS are presented, and the elasticity solutions for the same are highlighted. The thesis consists of seven chapters with Chapter 1 presenting generalized circular and elliptical HCSs as a potential avenue beyond composite materials. Following a survey of pertinent HCS literature of these HCSs, research gaps and scope are delineated. Chapter 2 briefly y summarizes the ideas, concepts and tools including analytical and numerical methods. This chapter sets the ground for the analysis of generalized circular and elliptical HCS in the following four chapters. Following the classification of the circular HCSs, Chapter 3 assesses the complete transverse elastic responses of generalized circular HCS through technical theories which are a first-order approximation. Here, thin ring theory and the more elaborate curved beam theory are employed as models to assess the moduli. Normal moduli - E and - are obtained by employing Castigliano method, while shear moduli (G ) are obtained by solving the differential equations derived in terms of displacements. Compact expressions for moduli presented wherever possible furnish the designer with a range of moduli for different configurations and modular ratios (Ey=Ex). The results show the range of applicability of technical theories within 5% of FEA. For hexagonal arrays, these results are more refined than those in literature; while the same are new for other configurations. Surprisingly, the more elaborate curved beam theory offers no better results than the thin ring theory. Chapter 4 extends the aforementioned task of assessing the complete trans-verse elastic moduli of generalized circular HCS by employing rigorous theory of elasticity (TOE) which is a second-order approximation. Utilizing Airy stress function in polar coordinates, the boundary value problems resulting from modeling of the circular HCS under different loads are solved analytically in conjunction with FEA employing contact elements. Contact elements circumvent the point loads which give finite values of displacements in technical theories and singular values in TOE. A widely used idea of employing distributed load, statically equivalent to point load, is invoked to empower TOE. The distributed load is assumed a priori and the contact length is obtained from FEA employing con-tact elements. Thus, FEA compliments the present analytical methods. Results demonstrate a very good match between analytical method in conjunction with FEA and numerical results from FEA; the error is within 5% for very thick ring (thickness-radius ratio 0.5). Further, computationally and numerically efficient expressions for displacements give better results with same computational facility. To illustrate the effect of coating on effective moduli, a limited study based on thin ring theory and elasticity theories is undertaken in Chapter 4. The study explores the effects of moduli and thickness ratios of substrate to coating on the effective normal moduli. Employing thin ring theory with only flexure as the bending mode, we get compact expressions giving good match for very thin rings in all confifigurations. The elasticity approach presented for square array demonstrates a very good match with FEA for thick rings. Coatings offer a strategy to increase the effective moduli with same dimensions. Chapter 5 broadens the scope of circular HCS by considering elliptical HCSs. While generalized circular HCS can cater to anisotropic requirement to an extent, larger spectrum is offered by considering elliptical honeycomb structures. In this regard, a generalized version of concentric thin coated elliptical HCS is investigated for transverse moduli. Thin HCSs are explored by technical theories as in circular HCS. However, a lack of exact compact-form expressions necessitates the use of regression analysis. The resulting expressions are presented in terms of ellipticity ratio describing the ovality of the ellipse and geometric parameters. Normal moduli are obtained by Castigliano method implemented in MATHE-MATICA, but shear moduli are obtained from FEA employing beam elements. The need for FEA employing beam elements stems from the subtle fact that Castigliano method implicitly assumes preclusion of rigid body motions, while shear loading for shear moduli evaluation entails rigid body motions. Interestingly, curved beam theory, as in circular HCS, offers no better refinement in assessing the moduli as compared to thin ring theory. The graphs showing the moduli with respect to thickness and modular ratios are presented as design maps to aid the designer. Chapter 6 extends the works of thin concentric coated elliptical to thicker concentric and a novel confocal elliptical HCS, a variant of elliptical HCS. In this regard, thick concentric and confocal elliptical HCS by elasticity approach are attempted for a simple case. Airy stress function in polar coordinates is tried for concentric elliptical HCS. Confocal HCS analysis employs stress function in terms of elliptical coordinate system. After proving the correctness of the stress function for both the cases by comparing the reconstructed boundary conditions with actual boundary conditions, the restrictions in solving the case of rings under load over a small region is highlighted. A parametric study for moduli is under-taken by employing FEA. These are presented as design graphs which compare and contrast the two variants of elliptical HCS on the same graphs. The modular ratio (Ey=Ex) is conspicuously more for confocal elliptical HCS than concentric elliptical HCS. Chapter 7 gives the conclusions in a nutshell, and explores the feasibility of stress evaluation of heterogeneous media on the lines of effective media theory.
110

Modélisation et optimisation de l’assise d’un fauteuil roulant pour handicapé afin d’améliorer le confort d’un point de vue médical / Modeling and optimization of the wheelchair cushion for handicapped to improve the comfort and prevention pressure ulcers from a medical point of view.

Bui, He Thong 17 January 2018 (has links)
Ma thèse a pour objectifs d’étudier et d’améliorer le confort d’un coussin d’assise dans le cas d’un fauteuil roulant pour handicapé, afin de limiter au mieux, l’apparition des escarres.Mes travaux ont pour principal objectif de modéliser et de simuler numériquement un coussin de type nid d’abeille de marque ‘‘Stimulite® Honeycomb Cushion’’ en contact avec un fessier afin de pouvoir (i) modéliser le comportement mécanique de contact, (ii) d’évaluer la pression ainsi que la distribution des contraintes à l’interface coussin/fessier, et (iii) d’intégrer les échanges thermomécaniques.Par ailleurs, des essais expérimentaux ont été effectués pour quantifier les lois de comportement des matériaux constituants le coussin nid d’abeille. J’ai également utilisé une nappe permettant de mesurer la pression à l’interface coussin/fessier. Parallèlement, une caméra infrarouge a été utilisée pour mesurer la répartition de la température sur le coussin et le fessier pour une personne assise pendant une durée variable. / The aim of this thesis is to study and improve the comfort of a wheelchair cushion for handicapped, to reduce the appearance of pressure ulcers.In the study, the main objective is to model and simulate numerically a type of cushion, namely ‘‘Stimulite® Honeycomb Cushion Classis’’, in contact with a buttocks-tissue in order to (i) model the mechanical behavior of contact, (ii) evaluate the pressure and the stress distribution at the interface cushion/buttock-tissue, and (iii) integrate thermo-mechanical exchanges.Moreover, the experimental tests were carried out to quantify the law of behavior of material constituent of the honeycomb cushion. I also used a pressure-mapping sensor TexiMat® to measure the pressure at the interface cushion/buttocks-tissue.Meanwhile, an infrared camera was used to measure the temperature distribution on the cushion and buttocks-tissue of a person sitting during variable periods.

Page generated in 0.0289 seconds