Spelling suggestions: "subject:"ddc"" "subject:"ccdc""
221 |
Implementation of Nodes in HVDC GridsOlsson, Johanna January 2020 (has links)
This project is made for a deeper understanding ofhow frequency and amplitude of the waves that create the controlwave in a Pulse Width Modulated 2-level inverter affect the powerquality and power losses. The results were that a high frequencyreduces the Total Harmonic Distortion but increases the powerloss. The amplitude, however, reduces both the Total HarmonicDistortion and the power loss as it increases. All the analyseswere done in a simulation program called Simulink. The resultscan be applied when improving High Voltage Direct Currentinverters to develop a functional High Voltage Direct Currentgrid that enables wider use of renewable energy sources. / Projektet syftar till att få en djupare förståelse för hur frekvensen och amplituden på de vågor som skapar kontollvågen i en pulsbreddsmodulerad likspänningsomvandlare med två nivåer påverkar effektkvalitén och effektförlusterna. Resultatet av studien var att en hög frekvens minskar ”Total Harmonic Distortion” men ökar effektförlusterna. Amplituden å andra sidan reducerar både ”Total Harmonic Distortion” och effektförlusterna när den ökar. Alla analyserna är gjorda i simuleringsprogrammet Simulink. Resultaten kan appliceras när högspända likspänningsomvandlare vidareutvecklas för att skapa ett fungerande högspänt-likströms elnät som öppnar upp för en bredare användning av förnyelsebara energikällor. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
|
222 |
Εφαρμογή τεχνικών υπολογιστικής νοημοσύνης για την αδιάλειπτη λειτουργία συστημάτων ηλεκτρικής ενέργειας με ανεμογεννήτριες σε διαταραχές βραχυκυκλωμάτων / Implementation of intelligent control in the fault ride through of grid connected wind generatorΒρυώνης, Θεόδωρος 16 May 2014 (has links)
Στα πλαίσια της διδακτορικής διατριβής μελετήθηκε η αποτελεσματικότητα διαφόρων κυκλωμάτων ελέγχου που βασίζονται στην υπολογιστική νοημοσύνη με σκοπό την αντιμετώπιση βραχυκυκλωμάτων σε δίκτυα διασύνδεσης ανεμογεννητριών με το δίκτυο. Πιο συγκεκριμένα, τα προτεινόμενα συστήματα ελέγχου έχουν σκοπό τη διαμόρφωση κατάλληλων συνθηκών ώστε οι ανεμογεννήτριες να καταφέρουν να συνεχίσουν να είναι συνδεδεμένες στο δίκτυο κατά τη διάρκεια και αμέσως μετά τα βραχυκυκλώματα, συνεισφέροντας στη γρήγορη επαναφορά της τάσης στο Σημείο Κοινής Σύνδεσης με το Δίκτυο (ΣΚΣΔ).
Στο πρώτο μέρος της διατριβής μελετήθηκε ένα προσαρμοζόμενο ασαφές σύστημα ελέγχου με σκοπό τη βελτιωμένη απόκριση Αιολικού Πάρκου (ΑΠ) με επαγωγικές γεννήτριες που τροφοδοτεί ένα ασθενές σύστημα ηλεκτρικής ενέργειας μέσω διασύνδεσης ΕΡ/ΣΡ/ΕΡ με Μετατροπείς Πηγής Τάσης (ΜΠΤ). Το σύστημα αυτό εντοπίζει τη σοβαρότητα του σφάλματος και διαμορφώνει ανάλογα την παλμοδότηση των βαλβίδων των ΜΠΤ κατά τη διάρκεια του σφάλματος. Επίσης, έχει την ιδιότητα να αυτορυθμίζεται κατά τη διάρκεια της μετασφαλματικής περιόδου, επιτυγχάνοντας εξασθένηση της ταλαντωτικής συμπεριφοράς του συστήματος που προκαλείται από τα βραχυκύκλωμα και την παραμονή των ανεμογεννητριών στο δίκτυο.
Το ηλεκτρικό σύστημα που μελετήθηκε στο δεύτερο μέρος της διδακτορικής διατριβής περιλαμβάνει μια επαγωγική ανεμογεννήτρια διπλής τροφοδότησης (γνωστή με την ονομασία double-fed induction machine) η οποία τροφοδοτεί ένα δίκτυο ηλεκτρικής ενέργειας. Στη βιβλιογραφία που έχει δημοσιευθεί μέχρι σήμερα, για την αντιμετώπιση των βραχυκυκλωμάτων σε ανάλογα ηλεκτρικά συστήματα, προτείνονται διατάξεις οι οποίες βασίζονται είτε σε κατάλληλο μηχανικό εξοπλισμό όπως μπάρες βραχυκύκλωσης (crowbars) είτε σε κατάλληλο προγραμματισμό των ελεγκτών. Σε αυτό το μέρος της διατριβής προτείνεται ένα εναλλακτικό σύστημα ελέγχου που βασίζεται στον κατάλληλο προγραμματισμό των ελεγκτών, χωρίς να χρησιμοποιεί κάποιον εξοπλισμό προστασίας. Το σύστημα ελέγχου, το οποίο βασίζεται στους γενετικούς αλγορίθμους, συμβάλει στη βέλτιστη «συνεργασία» των δύο ΜΠΤ της γεννήτριας, επιτυγχάνοντας την εξασθένιση των διακυμάνσεων της τάσης στο ΣΚΣΔ και τη διατήρηση της σύνδεσης της γεννήτριας στο ηλεκτρικό δίκτυο. / This thesis studies the implementation of intelligent control techniques in the Fault Ride-Through (FRT) of grid connected Wind Turbines (WTs).
The first part of the dissertation studies the issue of the fault ride-through capability of a wind farm of induction generators, which is connected to an ac grid through an HVDC link based on Voltage Sourced Converters (VSCs). This work proposes a control strategy which is implemented with adaptive fuzzy controllers and deals with every different type of fault with a corresponding appropriate action, blocking the converter valves for a time interval which depends on the severity of the fault. In addition, after the deblocking of the valves, the proposed control system activates a special controller, which alleviates the oscillations at the electrical system caused by the blocking of the valves. In this way, the overcurrents are limited, the wind turbines manage to remain connected and the ac voltage recovers quickly, as it is imposed by national grid codes.
The second part of the dissertation proposes a Computational Intelligence–based control strategy, to enhance the low voltage ride-through capability of grid-connected WTs with doubly fed induction generators (DFIGs). The conventional crowbar-based systems that were initially applied in order to protect the rotor-side converter at the occurrence of grid faults, do not fulfill the recent requirement of the national GCs that the WTs should supply reactive power to the grid during and after the fault, in order to support the grid voltage. In order to conform to the above mentioned requirement, this work proposes a control scheme, which contributes to the optimal coordination of the two converters, aiming to attenuate the disturbances to the system caused by the fault and ensure system stability. Aiming to encounter the difficulties met due to the uncertainties of the system modeling and considering the non linearity of the system, the controllers were designed based on fuzzy logic and genetic algorithms, which are more efficient in such cases. By this concept the overcurrents at the rotor windings and the dc side overvoltages are effectively eliminated. In addition, the FRT requirement concerning the reactive power supply is fulfilled.
|
223 |
Flexibility in MLVR-VSC back-to-back linkTan, Jiak-San January 2006 (has links)
This thesis describes the flexible voltage control of a multi-level-voltage-reinjection voltage source converter. The main purposes are to achieve reactive power generation flexibility when applied for HVdc transmission systems, reduce dynamic voltage balancing for direct series connected switches and an improvement of high power converter efficiency and reliability. Waveform shapes and the impact on ac harmonics caused by the modulation process are studied in detail. A configuration is proposed embracing concepts of multi level, soft-switching and harmonic cancellation. For the configuration, the firing sequence, waveform analysis, steady-state and dynamic performances and close-loop control strategies are presented. In order not to severely compromise the original advantages of the converter, the modulated waveforms are proposed based on the restrictions imposed mathematically by the harmonic cancellation concept and practically by the synthesis circuit complexity and high switching losses. The harmonic impact on the ac power system prompted by the modulation process is studied from idealistic and practical aspects. The circuit topology being proposed in this thesis is developed from a 12-pulse bridge and a converter used classically for inverting power from separated dc sources. Switching functions are deduced and current paths through the converter are analysed. Safe and steady-state operating regions of the converter are studied in phasor diagrams to facilitate the design of simple controllers for active power transfer and reactive power generations. An investigation into the application of this topology to the back-to-back VSC HVdc interconnection is preformed via EMTDC simulations.
|
224 |
Analysis Of SubSynchronous Resonance With Voltage Source Converter Based FACTS And HVDC ControllersNagesh Prabhu, * 09 1900 (has links) (PDF)
No description available.
|
225 |
Conception d’un module d’électronique de puissance «Fail-to-short» pour application haute tension / Designing a power module with failure to short circuit mode capability for high voltage applicationsDchar, Ilyas 31 May 2017 (has links)
Les convertisseurs de forte puissance sont des éléments critiques des futurs réseaux HVDC. À ce titre, leur fiabilité et leur endurance sont primordiales. La défaillance d’un composant se produit soit en circuit ouvert, ou en court-circuit. Le composant défaillant en circuit ouvert est inadmissible pour les convertisseurs utilisant une topologie de mise en série. En particulier, dans certaines applications HVDC, les modules doivent être conçus de telle sorte que lorsqu'une défaillance se produit, le module défaillant doit se comporter comme un court-circuit et supporter ainsi le courant nominal qui le traverse. Un tel comportement est appelé “défaillance en court-circuit” ou “failure-to-short-circuit”. Actuellement, tous les modules de puissance ayant un mode de défaillance en court-circuit disponibles dans le commerce utilisent des semi-conducteurs en silicium. Les potentialités des semi-conducteurs en carbure de silicium (SiC) poussent, aujourd’hui, les industriels et les chercheurs à mener des investigations pour développer des modules Fail-to-short à base des puces SiC. C’est dans ce contexte que se situe ce travail de thèse, visant à concevoir un module à base de puces SiC offrant un mode de défaillance de court-circuit. Pour cela nous présentons d’abord une étude de l’énergie de défaillance des puces SiC, afin de définir les plages d’activation du mécanisme Fail-to-short. Ensuite, nous démontrons la nécessité de remplacer les interconnexions classiques (fils de bonding) par des contacts massifs sur la puce. Enfin, une mise en œuvre est présentée au travers d’un module “demi pont” à deux transistors MOSFET. / The reliability and endurance of high power converters are paramount for future HVDC networks. Generally, module’s failure behavior can be classified as open-circuit failure and short-circuit failure. A module which fails to an open circuit is considered as fatal for applications requiring series connection. Especially, in some HVDC application, modules must be designed such that when a failure occurs, the failed module still able to carry the load current by the formation of a stable short circuit. Such operation is referred to as short circuit failure mode operation. Currently, all commercially available power modules which offer a short circuit failure mode use silicon semiconductors. The benefits of SiC semiconductors prompts today the manufacturers and researchers to carry out investigations to develop power modules with Fail-to-short-circuit capability based on SiC dies. This represents a real challenge to replace silicon power module for high voltage applications in the future. The work presented in this thesis aims to design a SiC power module with failure to short-circuit failure mode capability. The first challenge of the research work is to define the energy leading to the failure of the SiC dies in order to define the activation range of the Fail-to-short mechanism. Then, we demonstrate the need of replacing the conventional interconnections (wire bonds) by massive contacts. Finally, an implementation is presented through a "half bridge" module with two MOSFETs.
|
226 |
Beitrag zum dielektrischen Verhalten des Öl-Papier-Isoliersystems unter Gleich- und MischspannungsbelastungGabler, Tobias 23 November 2021 (has links)
Stromrichtertransformatoren der Hochspannungsgleichstromübertragung bilden das Bindeglied zwischen Gleichspannungs- und Drehstromsystem. Um den ausfallsicheren Betrieb über die gesamte Lebensdauer zu gewährleisten, muss deren Öl-Papier-Isoliersystem entsprechend dimensioniert werden. Eine optimale Dimensionierung setzt ein detailliertes Verständnis über die Beanspruchung des Isoliersystems sowie deren zuverlässige Modellierung sowohl unter Betriebsspannung als auch bei den überlagerten, transienten Überspannungen
voraus.
Im Rahmen dieser Arbeit wird daher das dielektrische Verhalten des Öl-Papier-Isoliersystems in Anlehnung an dielektrische Prüfungen sowohl unter Gleichspannungsbelastung als auch einer zusammengesetzten Spannungsbelastung aus einer Gleich- und einer Blitzstoßspannung (einer sog. Mischspannungsbelastung) untersucht.
Der Vergleich von numerischen Berechnungen auf Grundlage eines ladungsträgerbasierten Ansatzes nach Poisson-Nernst-Planck (PNP) mit Durchschlagexperimenten gibt dabei Aufschluss über die Beanspruchung des Öl-Papier-Isoliersystems. Weiterhin wird gezeigt, dass der in den etablierten, resistiv-kapazitiven Berechnungsmodellen vernachlässigte Ladungsträgereinfluss in Bezug auf die Beanspruchung des Isoliersystems unzureichende Ergebnisse zur Folge hat und demnach zwingend zu berücksichtigen ist.
Die an realitätsnahen, Öl-Papier-isolierten Anordnungen erzielten Ergebnisse zeigen nicht nur den Einfluss der an Grenzflächen oder im Papier akkumulierten Ladungsträger auf die Beanspruchung des Isoliersystems. Ebenso werden die Annahmen des ladungsträgerbasierten Ansatzes und die Berechnungsergebnisse des PNP-Modells qualitativ bestätigt. Infolge der Ladungsakkumulation im Papier tritt die höchste Beanspruchung im Ölspalt und nicht im Papier auf. Öl-Papier-isolierte Anordnungen werden somit geringer beansprucht, als eine Strömungsfeldberechnung vermuten lässt. Dies widerspricht den Annahmen der etablierten Berechnungsmodelle und wird im Weiteren durch Polaritätseffekte an homogenen, aber unsymmetrischen, papierisolierten Elektrodenanordnungen oder durch den nachweisbaren Einfluss des Ölvolumens im Prüfgefäß auf die Beanspruchung einer Anordnung verdeutlicht.
Unter Mischspannungsbelastung wird weiterhin gezeigt, dass eine Überlagerung der Gleichspannung und damit auch der Polaritätswechsel keine höhere Beanspruchung des Isoliersystems im Vergleich zur reinen Gleichspannungsbelastung zur Folge hat. Die etablierten, resistiv-kapazitiven Modelle ließen jedoch den Polaritätswechsel als kritischste Beanspruchung vermuten.
Somit wird nicht nur die Anwendbarkeit der ladungsträgerbasierten PNP-Modellierung an Öl-Papier-Isolieranordnungen qualitativ verifiziert. Ebenso wird demonstriert, dass die stark vereinfachten Annahmen der etablierten Berechnungsmodelle die Beanspruchungen unter Gleich- und der untersuchten Mischspannungsbelastung nicht abbilden können. Der Einsatz klassischer Strömungsfeldberechnungen zur Nachbildung der Beanspruchung des Öl-Papier-Isoliersystems unter Gleichspannungsbelastung entspricht damit nicht mehr dem Stand der Forschung. / Converter transformers of HVDC transmission systems connect HVDC and HVAC systems. To ensure a reliable operation during the entire lifetime, their oil-paper-insulation system must be designed appropriately. An optimized dielectric design demands a fundamental understanding of the dielectric stresses as well as a reliable modeling of the insulation system both under operating voltages and under superimposed, transient overvoltages.
Hence, in this work the dielectric behavior of the oil-paper-insulation system is investigated. Based on dielectric tests the investigations are performed under DC voltage stress and a composite voltage stress of a DC voltage in stationary conditions superimposed by a lightning impulse voltage.
The comparison of numerical calculations using a charge-carrier-based approach according to Poisson-Nernst-Planck (PNP) with breakdown experiments clarifies the dielectric stress of the oil-paper-insulation system. Furthermore, the comparison with results determined by the established, resistive-capacitive calculation models shows that it is mandatory to take the influence of the charge carrier accumulation into account.
The presented results, which were obtained at oil-paper-insulated arrangements which represent the dielectic stress of real arrangements, show the influence of the charge carriers accumulating at interfaces or in the paper insulationon on the dielectric stress. The results confirm the calculations and the assumptions according to the charge-carrier-based model as well. Due to the charge carrier accumulation, the highest dielectric stress occurs in the mineral oil and not in the paper insulation. In contrast, the findings obtained assuming an ohmic conductivity would results in a higher dielectric stress of the oil-paperinsulated arrangements. Furthermore, polarity effects in homogeneous but asymmetrical, paper-insulated electrode arrangements or the influence of the surrounding oil in the test vessel demonstrate the effects of the charge carriers.
Under composite voltage stresses it is also shown, that the applied superimposed voltage as well as the fast polarity reversal does not lead to a higher dielectric stress of the arrangements compared to the pure DC voltage stress. Commonly used calculation models would determine higher stresses due to the fast polarity reversal instead.
Consequently, the applicability of the charge-carrier-based PNP calculation model is verified qualitatively in the presented investigations. Furthermore, it is demonstrated that the simplified assumptions of the commonly used calculation models cannot simulate the dielectric stresses under DC voltage stress and under the investigated superimposed voltage stresses. Hence, the determination of the dielectric stresses of oil-paper-insulation systems under DC voltage stress according to the commonly used calculation models assuming an ohmic conductivity does not correspond to the current state of research.
|
227 |
Untersuchung des Modularen Mehrpunktstromrichters M2C für MittelspannungsanwendungenRohner, Steffen 07 June 2011 (has links) (PDF)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab.
Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert.
Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht.
Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt.
Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten. / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary.
For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs.
One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model.
The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models.
The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.
|
228 |
Untersuchung des Modularen Mehrpunktstromrichters M2C für MittelspannungsanwendungenRohner, Steffen 25 February 2011 (has links)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab.
Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert.
Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht.
Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt.
Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten.:Kurzbeschreibung i
Abstract iii
Danksagung v
Abbildungsverzeichnis xi
Tabellenverzeichnis xvii
Abkürzungsverzeichnis xix
0 Einleitung 1
1 Stand der Technik bei Mittelspannungsstromrichtern 3
1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5
1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8
1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10
2 Modularer Mehrpunktstromrichter 13
2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15
2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16
2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Modellierung des Modularen Mehrpunktstromrichters 25
3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25
3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30
3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31
3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31
3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem
Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37
4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43
4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45
4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49
4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54
4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58
4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61
4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69
4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren
. . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer
Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86
4.4.3.3 Änderung der gespeicherten Energien unter Verwendung
der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94
4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95
4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter-
Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Messtechnische Überprüfung der Simulationsmodelle 109
5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112
5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123
6 Auslegung des Leistungsteils 133
6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135
6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136
6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143
6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143
6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148
6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157
6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157
6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159
7 Zusammenfassung der Dissertation 163
Literaturverzeichnis 169 / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary.
For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs.
One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model.
The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models.
The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.:Kurzbeschreibung i
Abstract iii
Danksagung v
Abbildungsverzeichnis xi
Tabellenverzeichnis xvii
Abkürzungsverzeichnis xix
0 Einleitung 1
1 Stand der Technik bei Mittelspannungsstromrichtern 3
1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5
1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8
1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10
2 Modularer Mehrpunktstromrichter 13
2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15
2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16
2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Modellierung des Modularen Mehrpunktstromrichters 25
3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25
3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30
3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31
3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31
3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem
Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37
4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43
4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45
4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49
4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54
4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58
4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61
4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69
4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren
. . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer
Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86
4.4.3.3 Änderung der gespeicherten Energien unter Verwendung
der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94
4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95
4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter-
Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Messtechnische Überprüfung der Simulationsmodelle 109
5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112
5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123
6 Auslegung des Leistungsteils 133
6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135
6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136
6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143
6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143
6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148
6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157
6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157
6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159
7 Zusammenfassung der Dissertation 163
Literaturverzeichnis 169
|
229 |
Computational Methods for Renewable Energies: A Multi-Scale PerspectiveDiego Renan Aguilar Alfaro (19195102) 23 July 2024 (has links)
<p dir="ltr">The urgent global shift towards decarbonization necessitates the development of robust frameworks to navigate the complex technological, financial, and regulatory challenges emerging in the clean energy transition. Furthermore, the increased adoption of renewable energy sources (RES) is correlated to the exponential growth in weather data research over the last few years. This circular relationship, where big data drives renewable growth, which feeds back the data pipeline, serves as the primary focus of this study: the development of computational tools across diverse spatial and temporal scales for the optimal design and operation of renewable energy-based systems. Two scales are considered, differentiated by their primary objectives and techniques used. </p><p dir="ltr"> In the first one, the integration of probabilistic forecasts into the operations of RES microgrids (MGs) is studied in detail. It is revealed that longer scheduling horizons can reduce dispatch costs but at the expense of forecast accuracy due to increased prediction accuracy decay (PAD). To address this, a novel method that determines how to split the time horizon into timeblocks to minimize dispatch costs and maximize forecast accuracy is proposed. This forms the basis of an optimal rolling horizon strategy (ORoHS) which schedules distributed energy resources over varying prediction/execution horizons. Results offer Pareto-optimal fronts, showing the trade-offs between cost and accuracy at varying confidence levels. Solar power proved more cost-effective than wind power due to lower variability, despite wind’s higher energy output. The ORoHS strategy outperformed common scheduling methods. In the case study, it achieved a cost of \$4.68 compared to \$9.89 (greedy policy) and \$9.37 (two-hour RoHS). The second study proposes the Caribbean Energy Corridor (CEC) project, a novel, ambitious initiative that aims to achieve total grid connectivity between the Caribbean islands. The analysis makes use of thorough data procedures and optimization methods for the resource assessment and design tasks needed to build such an infrastructure. Renewable energy potentials are quantified under different temporal and spatial coverages to maximize usage. Prioritizing offshore wind development, the CEC’s could significantly surpass anticipated growth in energy demand, with an estimated installed capacity of 34 GW of clean energy upon completion. The corridor is modeled as an HVDC grid with 32 nodes and 31 links. Underwater transmission is optimized with a Submarine-Cable-Dynamic-Programming (SCDP) algorithm that determines the best routes across the bathymetry of the region. It is found that the levelized cost of electricity remains on the low end at \$0.11/kWh, despite high initial capital investments. Projected savings reach \$ 100 billion when compared with ”business-as-usual” scenarios and the current social cost of carbon. Furthermore, this infrastructure has the potential to create around 50,000 jobs in construction, policy, and research within the coming decades, while simultaneously establishing a robust and sustainable energy-water nexus in the region. Finally, the broader implications of these works are explored, highlighting their potential to address global challenges such as energy accessibility, prosperity in conflict zones, and sharing these discoveries with the upcoming generations.</p>
|
Page generated in 0.0348 seconds