Spelling suggestions: "subject:"half bridge"" "subject:"half cridge""
21 |
Návrh spínaného laboratorního zdroje / Design of switching laboratory sourceMoravec, Pavel January 2015 (has links)
In present days there is no scientific laboratory without quality, adjustable and powerful source of voltage and current. Therefore this thesis is focused on creating such power source, which can provide voltage and current high enough for most of experiments or for development electrical devices or parts, which are not connected to power grid. This power source is able to provide symmetric voltage 30 V and current 6 A high in each branch. It is possible to control this power source remotely thanks for USB interface, which is standard equipment of majority of modern devices in these days. LCD display is part of this source, which shows the user set and real parameters at the output as well.
|
22 |
Ultrasonic Generator for Surgical Applications and Non-invasive Cancer Treatment by High Intensity Focused Ultrasound / Générateur d'ultrasons pour les applications chirurgicales et le traitement non-invasif du cancer par High Intensity Focused UltrasoundWang, Xusheng 11 February 2016 (has links)
La technique de haute intensité ultrasons focalisés (HIFU) est maintenant largement utilisée pour le traitement du cancer, grâce à son avantage non-invasif. Dans un système de HIFU, une matrice de transducteurs à ultrasons est pilotée en phase pour produire un faisceau focalisé d'ultrasons (1M ~ 10 MHz) dans une petite zone de l'emplacement de la cible sur le cancer dans le corps. La plupart des systèmes HIFU sont guidées par imagerie par résonance magnétique (IRM) dans de nos jours. Dans cette étude de doctorat, un amplificateur de puissance de classe D en demi-pont et un système d'accord automatique d'impédance sont proposés. Tous deux circuits proposés sont compatibles avec le système IRM. L'amplificateur de puissance proposé a été réalisé par un circuit imprimé (PCB) avec des composants discrets. Selon les résultats du test, il a rendement de conversion en puissance de 82% pour une puissance de sortie conçue de 1,25W à une fréquence de travail de 3MHz. Le système d'accord automatique d'impédance proposé a été conçu en deux versions: une version en PCB et une version en circuit intégré (IC). Contrairement aux systèmes d'accord automatique proposés dans la littérature, il n'y a pas besoin de l'unité de microcontrôleur (MCU) ou de l'ordinateur dans la conception proposée. D'ailleurs, sans l'aide de composants magnétiques volumineux, ce système d'auto-réglage est entièrement compatible avec l'équipement IRM. La version en PCB a été conçue pour vérifier le principe du système proposé, et il est également utilisé pour guider à la conception du circuit intégré. La réalisation en PCB occupe une surface de 110cm². Les résultats des tests ont confirmé la performance attendue. Le système d'auto-tuning proposé peut parfaitement annuler l'impédance imaginaire du transducteur, et il peut également compenser l'impédance de la dérive causée par les variations inévitables (variation de température, dispersion technique, etc.). La conception du système d'auto-réglage en circuit intégré a été réalisé avec une technologie CMOS (C35B4C3) fournies par Austrian Micro Systems (AMS). La surface occupée par le circuit intégré est seulement de 0,42mm². Le circuit intégré conçu est capable de fonctionner à une large gamme de fréquence tout en conservant une consommation d'énergie très faible (137 mW). D'après les résultats de la simulation, le rendement de puissance de ce circuit peut être amélioré jusqu'à 20% comparant à celui utilisant le réseau d'accord statique. / High intensity focused ultrasound (HIFU) technology is now broadly used for cancer treatment, thanks to its non-invasive property. In a HIFU system, a phased array of ultrasonic transducers is utilized to generate a focused beam of ultrasound (1M~10MHz) into a small area of the cancer target within the body. Most HIFU systems are guided by magnetic resonance imaging (MRI) in nowadays. In this PhD study, a half-bridge class D power amplifier and an automatic impedance tuning system are proposed. Both the class D power amplifier and the auto-tuning system are compatible with MRI system. The proposed power amplifier is implemented by a printed circuit board (PCB) circuit with discrete components. According to the test results, it has a power efficiency of 82% designed for an output power of 3W at 1.25 MHz working frequency. The proposed automatic impedance tuning system has been designed in two versions: a PCB version and an integrated circuit (IC) version. Unlike the typical auto-impedance tuning networks, there is no need of microprogrammed control unit (MCU) or computer in the proposed design. Besides, without using bulky magnetic components, this auto-tuning system is completely compatible with MRI equipment. The PCB version was designed to verify the principle of the proposed automatic impedance tuning system, and it is also used to help the design of the integrated circuit. The PCB realization occupies a surface of 110cm². The test results confirmed the expected performance. The proposed auto-tuning system can perfectly cancel the imaginary impedance of the transducer, and it can also compensate the impedance drifting caused by unavoidable variations (temperature variation, technical dispersion, etc.). The IC design of the auto-tuning system is realized in a CMOS process (C35B4C3) provided by Austrian Micro Systems (AMS). The die area of the integrated circuit is only 0.42mm². This circuit design can provide a wide working frequency range while keeping a very low power consumption (137 mW). According to the simulation results, the power efficiency can be improved can up to 20% by using this auto-tuning circuit compared with that using the static tuning network.
|
23 |
Optimization and Up-Gradation of 3-Phase Half-Bridge Inverter BoardShah, Vatsal Sonikbhai January 2021 (has links)
Solar Bora AB is a Linköping based company that provides end to end solution for clean and reliable energy. System developed by them generates high power 230V AC to run electrical appliances. The system consist of string of batteries which are charged by rooftop solar cells and the energy stored in the batteries is converted to AC to provide a grid voltage like experience even though the system is not connected to a grid. Energy stored in the batteries need to be converted from DC to AC efficiently. Inverter used for conversion should be efficient enough to reduce losses. This master thesis deals with optimization and Up-gradation of Half-Bridge inverter board so that switching loss can be minimized to increase efficiency. Initial part of the thesis involves investigation of different parameters which contribute to losses in inverter. Based on that some improvements were suggested in existing design of half-bridge board. Another task involved in the thesis was complete re-design of half-bridge. More efficient and robust components were selected for complete re-design. Based on new components and its specifications a new circuit and PCB was designed in Altium Designer. Lab testing was performed to verify the functionality of new Half-bridge.
|
24 |
Performance Evaluation of Modular Multilevel Converters for Photovoltaic SystemsBalachandran, Arvind January 2019 (has links)
Modular Multilevel Converters (MMCs), over recent years, have gained popularity in high-voltage(HV) and medium-voltage (MV) applications due to their high reliability. Also, with the rapid growth of solar photovoltaics (PV) and energy storage systems, there is a high demand for efficient and reliable power converter solutions. Therefore, due to the seen merits behind MMCs, this thesis assesses their performance for low-voltage (LV) applications. This is accomplished by comparing basic MMC solutions with an equivalent flying capacitors based solution. Such comparison is based on the evaluation of the passive elements requirements, semi-conductor losses, area, voltage, and current stresses, and common-mode voltage. It is worth mentioning that the evaluation is based on utilizing LV MOSFETs. Furthermore, the thesis introduces a modulation scheme for the full-bridge submodule MMC, thus further exploring the different operating regions of the full-bridge based MMC.
|
25 |
Comparative Analysis of Several Designs of Modular Multilevel Converters with Interleaved Half-Bridge SubmodulesChen, Lingyu January 2022 (has links)
The Modular Multilevel Converter (MMC) is one of the most commonly used active converters in the high-/medium-voltage sector due to its many advantages such as high scalability, high efficiency, modularity and low harmonic contents. However, in low-voltage and high-current applications, classical MMC designs are not very economical. Recently there has been interest in a new design of modular multilevel converter with interleaved submodules (ISM-MMC) capable of using lower cost, lower current switches. The aim of this study is to compare several different design configurations for a given ISM-MMC topology including classical MMC and to give the best design approach taking into account the efficiency and energy density of the system. The power loss of ISM-MMC influence the final efficiency. The loss studied in this thesis mainly consists of conduction losses and switching losses in the semiconductor devices and inductor losses. An analytical calculation method is summarized and validated by the simulation result. The simulation result is carried out in PLECS model with different system components. Power density is determined by the output power and the converter dimension. The volume of semiconductor devices and passive components determine the general dimension of the converter. This thesis discusses the selection of semiconductor devices, inductor and capacitor in the system, with semiconductor devices constraining interleaved leg current and submodule voltage, inductor constraining output current ripple and capacitor constraining capacitor voltage fluctuation. After the specific components are designed, their dimensions are evaluated, and thus the power density of different configurations can be compared. / Den modulära multinivåomvandlaren (modular multilevel converter, MMC) är en av de mest använda aktiva omvandlarna inom hög-/mellanspänningssektorn på grund av dess många fördelar som hög skalbarhet, hög verkningsgrad, modularitet och lågt övertonsinnehåll. Men i lågspännings- och högströmsapplikationer är konventionella MMC-konstruktioner inte särskilt ekonomiska. Nyligen har det funnits intresse för en ny design av modulär flernivåomvandlare med interfolierade submoduler (ISM-MMC) som kan uppnå lägre kostnad, och använda mindre halvledarelement. Syftet med denna studie är att jämföra flera olika designkonfigurationer för en given ISM-MMC-topologi inklusive konventionell MMC och att ge den bästa designmetoden med hänsyn till systemets verkningsgrad och energitäthet. Effektförlusten för ISM-MMC påverkar den slutliga verkningsgraden. Förluster som studeras i denna avhandling består huvudsakligen av ledningsförluster och kopplingsförluster i halvledarenheterna och induktorförluster. En analytisk beräkningsmetod sammanfattas och valideras av simuleringsresultatet. Simuleringsresultatet utförs men en PLECS-modell med olika systemkomponenter. Effekttätheten bestäms av uteffekten och omvandlardimensionen. Volymen av halvledarenheter och passiva komponenter bestämmer omvandlarens allmänna dimension. Denna avhandling diskuterar valet av halvledarenheter, induktor och kondensator i systemet, med halvledarenheter som begränsar interfolierad benström och submodulspänning, induktor som begränsar utströmsrippel och kondensatorbegränsande kondensatorspänningsfluktuationer. Efter att de specifika komponenterna har valts utvärderas deras storlek, och därmed kan effekttätheten för olika konfigurationer jämföras.
|
26 |
High Current Density Low Voltage Isolated Dc-dc Converterswith Fast Transient ResponseYao, Liangbin 01 January 2007 (has links)
With the rapid development of microprocessor and semiconductor technology, industry continues to update the requirements for power supplies. For telecommunication and computing system applications, power supplies require increasing current level while the supply voltage keeps decreasing. For example, the Intel's CPU core voltage decreased from 2 volt in 1999 to 1 volt in 2005 while the supply current increased from 20A in 1999 to up to 100A in 2005. As a result, low-voltage high-current high efficiency dc-dc converters with high power-density are demanded for state-of-the-art applications and also the future applications. Half-bridge dc-dc converter with current-doubler rectification is regarded as a good topology that is suitable for high-current low-voltage applications. There are three control schemes for half-bridge dc-dc converters and in order to provide a valid unified analog model for optimal compensator design, the analog state-space modeling and small signal modeling are studied in the dissertation and unified state-space and analog small signal model are derived. In addition, the digital control gains a lot of attentions due to its flexibility and re-programmability. In this dissertation, a unified digital small signal model for half-bridge dc-dc converter with current doubler rectifier is also developed and the digital compensator based on the derived model is implemented and verified by the experiments with the TI DSP chip. In addition, although current doubler rectifier is widely used in industry, the key issue is the current sharing between two inductors. The current imbalance is well studied and solved in non-isolated multi-phase buck converters, yet few discusse this issue in the current doubler rectification topology within academia and industry. This dissertation analyze the current sharing issue in comparison with multi-phase buck and one modified current doubler rectifier topology is proposed to achieve passive current sharing. The performance is evaluated with half bridge dc-dc converter; good current sharing is achieved without additional circuitry. Due to increasing demands for high-efficiency high-power-density low-voltage high current topologies for future applications, the thermal management is challenging. Since the secondary-side conduction loss dominates the overall power loss in low-voltage high-current isolated dc-dc converters, a novel current tripler rectification topology is proposed. Theoretical analysis, comparison and experimental results verify that the proposed rectification technique has good thermal management and well-distributed power dissipation, simplified magnetic design and low copper loss for inductors and transformer. That is due to the fact that the load current is better distributed in three inductors and the rms current in transformer windings is reduced. Another challenge in telecommunication and computing applications is fast transient response of the converter to the increasing slew-rate of load current change. For instance, from Intel's roadmap, it can be observed that the current slew rate of the age regulator has dramatically increased from 25A/uS in 1999 to 400A/us in 2005. One of the solutions to achieve fast transient response is secondary-side control technique to eliminate the delay of optocoupler to increase the system bandwidth. Active-clamp half bridge dc-dc converter with secondary-side control is presented and one industry standard 16th prototype is built and tested; good efficiency and transient response are shown in the experimental section. However, one key issue for implementation of secondary-side control is start-up. A new zero-voltage-switching buck-flyback isolated dc-dc converter with synchronous rectification is proposed, and it is only suitable for start-up circuit for secondary-side controlled converter, but also for house-keeping power supplies and standalone power supplies requiring multi-outputs.
|
27 |
Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric VehiclesMoshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved.
Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
|
28 |
Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric VehiclesMoshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved.
Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
|
29 |
Transformátorová páječka 500W / Power soldering station 500WŠelepa, Jan January 2010 (has links)
This thesis contains a complete description of the design and implementation of a 500W transformer soldering station. This soldering station includes a half-bridge DC/DC converter with a pulse transformer. The device works with a very low voltage and extremely high output current. Therefore some parts have a special design to ensure the proper equipment function. Coaxial transformer with very low leakage inductance (nH units) is unusual. A synchronous rectifier is another special feature working with low voltage and high output current of the transformer. The finished functional prototype consists of a soldering station and a soldering adapter.
|
Page generated in 0.0432 seconds