• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 23
  • 16
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 48
  • 36
  • 27
  • 27
  • 26
  • 21
  • 19
  • 19
  • 17
  • 16
  • 16
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Computer-aided Computation of Abelian integrals and Robust Normal Forms

Johnson, Tomas January 2009 (has links)
This PhD thesis consists of a summary and seven papers, where various applications of auto-validated computations are studied. In the first paper we describe a rigorous method to determine unknown parameters in a system of ordinary differential equations from measured data with known bounds on the noise of the measurements. Papers II, III, IV, and V are concerned with Abelian integrals. In Paper II, we construct an auto-validated algorithm to compute Abelian integrals. In Paper III we investigate, via an example, how one can use this algorithm to determine the possible configurations of limit cycles that can bifurcate from a given Hamiltonian vector field. In Paper IV we construct an example of a perturbation of degree five of a Hamiltonian vector field of degree five, with 27 limit cycles, and in Paper V we construct an example of a perturbation of degree seven of a Hamiltonian vector field of degree seven, with 53 limit cycles. These are new lower bounds for the maximum number of limit cycles that can bifurcate from a Hamiltonian vector field for those degrees. In Papers VI, and VII, we study a certain kind of normal form for real hyperbolic saddles, which is numerically robust. In Paper VI we describe an algorithm how to automatically compute these normal forms in the planar case. In Paper VII we use the properties of the normal form to compute local invariant manifolds in a neighbourhood of the saddle.
Read more
172

Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτων

Νομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena. Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή. Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0. Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena. A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian. The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0. The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
Read more
173

Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques / Long time behavior of certain Vlasov equations : mathematics and numerics

Horsin, Romain 01 December 2017 (has links)
Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs équations de type Vlasov, comme l’équation de Vlasov-Poisson ou le modèle Vlasov-HMF, et présentant certaines analogies avec le phénomène d’amortissement non visqueux pour l’équation d’Euler 2D. Les résultats qui y sont décrits sont les suivants. Le premier est un théorème d’amortissement Landau pour des solutions numériques du modèle Vlasov-HMF, obtenues par discrétisation en temps de ce dernier via des méthodes de splitting. Nous prouvons en outre la convergence des schémas numériques. Le second est un théorème d’amortissment Landau pour des solutions du modéle Vlasov-HMF linéarisé autour d’états stationnaires inhomogènes. Ce théorème est accompagné de nombreuses simulations numériques destinées à étudier numériquement le cas non-linéaire, et semblant mettre en lumière de nouveaux phénomènes. Enfin, le dernier résultat porte sur la discrétisation en temps de l’équation d’Euler 2D par un intégrateur de Crouch-Grossman symplectique. Nous prouvons la convergence du schéma. / This thesis concerns the long time behavior of certain Vlasov equations, mainly the Vlasov- HMF model. We are in particular interested in the celebrated phenomenon of Landau damp- ing, proved mathematically in various frameworks, foar several Vlasov equations, such as the Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain analogies with the inviscid damping phenomenon for the 2D Euler equation. The results described in the document are the following.The first one is a Landau damping theorem for numerical solutions of the Vlasov-HMF model, constructed by means of time-discretizations by splitting methods. We prove more- over the convergence of the schemes. The second result is a Landau damping theorem for solutions of the Vlasov-HMF model linearized around inhomogeneous stationary states. We provide moreover a quite large amount of numerical simulations, which are designed to study numerically the nonlinear case, and which seem to show new phenomenons. The last result is the convergence of a scheme that discretizes in time the 2D Euler equation by means of a symplectic Crouch-Grossmann integrator.
Read more
174

Hamiltonian Floer theory on surfaces

Connery-Grigg, Dustin 12 1900 (has links)
Dans cette thèse, nous développons de nouveaux outils pour relier les dynamiques qualitatives des systèmes hamiltoniens sur des surfaces aux propriétés algèbriques de leurs complexes de Floer - un objet algébrique qui encode l'information sur la façon dont les orbites 1-périodiques d'un système sont reliées par des cylindres satisfaisant une équation différentielle partielle elliptique appelée l'équation de Floer. L'idée principale est de considérer --- pour un hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) sur une surface symplectique \((\Sigma, \omega)\) --- les graphes des orbites contractiles 1-périodiques de l'isotopie \((\phi^H_t)_{t \in [0,1]}\) comme définissant une tresse \(P^H\) dans \(S^1 \times \Sigma\). En choisissant des capuchons pour chacune de ces orbites 1-périodiques, nous obtenons un objet que nous appelons une tresse encapuchonnée \(\hat{P}^H\), qui est muni d'une fonction d'indexation \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) obtenue en assignant à chaque brin encapuchonné l'indice de Conley-Zehnder de l'orbite encapuchonnée associée. L'idée est alors de s'interroger sur la relation entre l'information topologique encodée dans la tresse encapuchonnée indexée \((\hat{P}^H,\mu_{CZ})\) et la structure du complexe de Floer \(CF_*(H,J)\) pour une structure presque complexe générique \(J\). À cette fin, nous aurons recours à: un nouvel invariant relatif pour les paires de tresses encapuchonnées que nous appelons le nombre d'enlacement homologique, un cercle d'idées concernant le comportement asymptotique des courbes pseudo-holomorphes développé par Hofer-Wysocki-Zehnder dans leur série d'articles [8], [10], [12] et aussi [11] (ainsi qu'un raffinement supplémentaire dans le cas relatif dû à Siefring dans [32]), et une nouvelle technique en basses dimensions pour la construction de morphismes de continuation de Floer qui ont un comportement prescrit. En conséquence de ces techniques, nous établissons l'existence --- pour des systèmes hamiltoniens génériques sur une surface fermée arbitraire --- de certaines feuilletages singulières spéciaux sur \(S^1 \times \Sigma\) dont le comportement est étroitement lié à la fois à la dynamique sous-jacente et à la structure du complexe de Floer du système. La construction de tels feuilletages dans le cas particulier des pseudo-rotations d'un disque, par des méthodes très différentes des nôtres, a été au coeur des progrès significatifs récents de Bramham dans [3] sur une célèbre question de Katok concernant les systèmes conservatifs de basse dimension et d'entropie nulle. Ces feuilletages fournissent également, pour les systèmes hamiltoniens lisses génériques, une construction Floer-théorique des feuilletages positivement transversaux sur \(\Sigma\) qui ont été construits originellement (pour les homéomorphismes de surface généraux) par Le Calvez à travers d'une extension substantielle de la théorie de Brouwer classique pour les homéomorphismes de surface dans [16]. En plus de fournir un pont géométrique entre la dynamique d'une isotopie hamiltonienne et l'information algébrique contenue dans son complexe de Floer, les techniques développées dans cette thèse permettent également de donner une caractérisation --- purement en termes de la dynamique de l'isotopie hamiltonienne sous-jacente --- des cycles de Floer dans \(CF_*(H,J)\) qui représentent la classe fondamentale de la surface et qui de plus se trouvent dans l'image d'un morphisme de PSS au niveau des chaines. Finalement, ces techniques permettent de définir une nouvelle famille d'invariants d'un système hamiltonien (sur une variété symplectique arbitraire) qui se comporte formellement de manière similaire à une famille bien étudiée de tels invariants connue comme les invariants spectraux de Oh-Schwarz. L'avantage de nos nouveaux invariants est que nous sommes capable de calculer explicitement les plus importants d'entre eux pour des systèmes hamiltoniens génériques sur des surfaces arbitraires, ce uniquement en termes de topologie relative des orbites périodiques du système (avec leurs indices de Conley-Zehnder). Ceci généralise un résultat de Humilière-Le Roux-Seyfaddini dans [13] dans lequel ils ont donné une caractérisation dynamique du principal invariant spectral de Oh-Schwarz dans le cas de systèmes hamiltoniens autonomes sur des surfaces de genre positif. / In this thesis, we develop novel tools for relating the qualitative dynamics of Hamiltonian systems on surfaces to the algebraic properties of their Floer complexes --- an algebraic object which encodes information about the ways in which a system’s 1-periodic orbits are connected by cylinders satisfying an elliptic partial differential equation known as Floer’s equation. The main idea is to consider --- for a generic Hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) on a symplectic surface \((\Sigma, \omega)\) --- the graphs of the contractible time-1 periodic orbits of the isotopy \((\phi^H_t)_{t \in [0,1]}\) as defining a braid \(P^H\) in \(S^1 \times \Sigma\). Upon choosing cappings for each such 1-periodic orbit, we obtain an object which we term a capped braid \(\hat{P}^H\), which comes equipped with an indexing function \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) given by assigning to each (capped) strand of the braid the Conley-Zehnder index of the associated capped orbit. The idea is then to enquire into the relation of the topological information encoded in the indexed capped braid \((\hat{P}^H,\mu_{CZ})\) and the structure of the Floer complex \(CF_*(H,J)\) for a generic \(J\). The main tools employed to this end are: a novel relative invariant for pairs of capped braids which we term the homological linking number, a circle of ideas about the asymptotic behaviour of pseudo-holomorphic curves pioneered by Hofer-Wysocki-Zehnder in their series of papers [8], [10], [12] as well as in [11] (along with a further refinement to the relative case by Siefring in [32]), and a novel technique for the construction of regular Floer continuation maps in low-dimensions having prescribed behaviour. As a consequence of these techniques, we establish the existence --- for generic Hamiltonian systems on an arbitrary closed surface \(\Sigma\) --- of certain special singular foliations on \(S^1 \times \Sigma\) whose behaviour is tightly related to both the underlying dynamics, as well as the structure of the system’s Floer complex. The construction of such foliations (by very different methods) in the particular case of pseudo-rotations on a disk was the crux of Bramham’s recent significant progress in [3] on a famous question due to Katok about low-dimensional conservative systems with vanishing entropy. These foliations also provide, for generic smooth Hamiltonian systems, 7 a Floer-theoretic construction of the positively transverse foliations on \(\Sigma\) which were originally constructed (for general surface homeomorphisms) by Le Calvez through a significant extension of classical Brouwer theory for surface homeomorphisms in [16]. In addition to providing a geometric bridge between the dynamics of a Hamiltonian isotopy and the algebraic information contained in its associated Floer complex, the techniques developed in this dissertation also permit a characterization --- purely in terms of the dynamics of the underlying Hamiltonian isotopy --- of those Floer cycles in \(CF_*(H,J)\) which represent the fundamental class of the surface, and which moreover lie in the image of some chain-level PSS map. Finally, these techniques permit the definition of a new family of invariants of a Hamiltonian system (on an arbitrary symplectic manifold) which behave formally similarly to a well-studied family of such invariants known as ‘Oh-Schwarz spectral invariants’ (and which agree with them in all known cases). The advantage of these novel spectral invariants is that we are able to explicitly compute the most important of these spectral invariants for generic Hamiltonian systems on arbitrary surfaces purely in terms of the relative topology of the system’s periodic orbits (together with their Conley-Zehnder indices). This considerably generalizes a result by Humilière-Le Roux-Seyfaddini in [13] in which they gave a dynamical characterization of the main Oh-Schwarz spectral invariant in the case of time-independent Hamiltonian systems on surfaces with positive genus.
Read more
175

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
Read more

Page generated in 0.0628 seconds