• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 18
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Lie Symmetries of a Few Classes of Harmonic Functions

Petersen, Willis L. 23 May 2005 (has links) (PDF)
In a differential geometry setting, we can analyze the solutions to systems of differential equations in such a way as to allow us to derive entire classes of solutions from any given solution. This process involves calculating the Lie symmetries of a system of equations and looking at the resulting transformations. In this paper we will give a general background of the theory necessary to develop the ideas of working in the jet space of a given system of equations, applying this theory to harmonic functions in the complex plane. We will consider harmonic functions in general, harmonic functions with constant Jacobian, harmonic functions with fixed convexity and a few other subclasses of harmonic functions.
62

A Study of Smooth Functions and Differential Equations on Fractals

Pelander, Anders January 2007 (has links)
<p>In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers.</p><p>Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f.</p><p>In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions.</p><p>In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.</p>
63

A Study of Smooth Functions and Differential Equations on Fractals

Pelander, Anders January 2007 (has links)
In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers. Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f. In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions. In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.
64

Choquetova teorie a Dirichletova úloha / Choquet Theory and Dirichlet Problem

Omasta, Eduard January 2016 (has links)
In our dissertation we deal with the space H(K) of harmonic functions on a compact space in classical and abstract potential theory. Initially, we prove several equivalent characteristics of this space in classical potential theory. The internal characterization, which describes H(K) as a subspace of those continuous functions on a compact space K which are finely harmonic on the fine interior of K, is then used as the definition of H(K) in abstract potential theory. Further we concentrate on the solution of the Dirichlet problem for open and compact sets mainly with regards to its relation to subclasses of Baire class one functions. The results, proved at first in classical potential theory, are later generalized to abstract potential theory. With a use of more elemen- tary tools we initially prove these results in harmonic spaces with the axiom of dominance and, subsequently, using stronger tools we generalize them to harmonic spaces with the axiom of polarity. We engage also in a more abstract problem of approximation by differen- ces of lower semicontinuous functions in a more general context of binormal topological spaces.
65

Probabilidade e redes elétricas

Chiarelli Junior, Dino January 2014 (has links)
Orientador: Prof. Dr. Rafael de Mattos Grisi / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2014. / O presente trabalho tem por objetivo relacionar o estudo de Passeios Aleatórios em uma e duas dimensões com o funcionamento de redes elétricas, por meio de modelagem matemática, para que tal relação possa ser aplicada ao estudo de conteúdos relativos ao ensino da matemática no Ensino Médio, em especial no que se refere a Probabilidade, Matrizes e Funções. Visando uma melhor organização dos conceitos e conteúdos abordados, o trabalho foi dividido em quatro capítulos. No primeiro capítulo serão apresentados os conceitos de Passeios Aleatórios em uma e duas dimensões, abordando o estudo de funções hamrônicas e de representação matricial de uma função harmônica. No segundo capítulo veremos métodos de resolução de funções harmônicas, em especial os métodos de relaxamentos, fazendo uma descrição e gerando uma motivação para o estudo do método, e o método de reolução por cadeias de Markov. O terceiro capítulo relaciona os conceitos até então estudados com redes elétricas, apresentando redes elétricas em uma e em duas dimensões, e também dando uma interpretação de voltagem e corrente, para na sequência apresentar uma interpretação probabilística de ambos. Por fim, no quarto capítulo são apresentadas atividades que podem ser realizadas em sala de aula, com alunos do Ensino Médio, para o estudo de Passeios Aleatórios, de forma simples e rápida, visando sua efetiva utilização em sala de aula. / This work aims to relate the Random Walks study in one and two dimensions with the operation of electrical networks, through mathematical modeling, that such a relationship can be applied to the study of material related to the teaching of mathematics in high school, in particular refers to Probability, Arrays and functions. For a better organization of the concepts covered and content, the work was divided into four chapters. Random Walks in the first chapter of the concepts will be presented in one and two dimensions, addressing the study hamrÃ'nicas functions and matrix representation of a harmonic function. In the second chapter we resolution methods of harmonic functions, particularly the relaxation methods, thereby generating a description and a motivation for the study of the method and reolução method of Markov chains. The third chapter lists the concepts studied hitherto grids, grids having in one and in two dimensions, and also giving an interpretation of voltage and current in response to forward a probabilistic interpretation of both. Finally, in the fourth chapter contains activities that can be performed in the classroom, with high school students to the study of Random Walks, simply and quickly, for their effective use in the classroom.
66

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg / Around geometric analysis 1) Boundary behavior of harmonic functions 2) Rectifiability in the Heisenberg group

Petit, Camille 19 June 2012 (has links)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière. / In this thesis, we are interested in two topics of geometric analysis. The first one is concerned with the asymptotic behaviour of harmonic functions in connection with geometry on graphs and manifolds. We study criteria for convergence at boundary of harmonic functions such as non-tangential boundedness, finiteness of non-tangential energy or finiteness of the energy density. We deal with Gromov hyperbolic manifolds, Gromov hyperbolic graphs, Diestel-Leader graphs and with an abstract frame to obtain criteria at minimal Martin boundary points. The methods, coming from probability theory and metric geometry, use the relation between harmonic functions and martingales. The second topic concerns the rectifiability properties of 1-dimensional sets in the Heisenberg group in connection with the boundedness of singular integral operators. We extend to this sub-Riemannian setting parts of the theory of uniformly rectifiable sets due to David and Semmes. In particular, we obtain a geometric traveling salesman theorem which provides a condition for an Ahlfors regular set of the first Heisenberg group to be contained in an Ahlfors regular curve.
67

Martingales no fibrado de bases e seções harmonicas via calculo estocastico / Martingales in frame bundles and harmonic sections through stochastic calculus

Stelmastchuk, Simão Nicolau, 1977- 20 September 2007 (has links)
Orientador: Pedro Jose Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-09T00:50:27Z (GMT). No. of bitstreams: 1 Stelmastchuk_SimaoNicolau_D.pdf: 537546 bytes, checksum: f06c81c8cd3b758c84d267af8373abdd (MD5) Previous issue date: 2007 / Resumo: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Abstract: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Doutorado / Geometria Estocastica / Doutor em Matemática
68

The Role Of Potential Theory In Complex Dynamics

Bandyopadhyay, Choiti 05 1900 (has links) (PDF)
Potential theory is the name given to the broad field of analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, Green’s functions, potentials and capacity. In this text, our main goal will be to gain a deeper understanding towards complex dynamics, the study of dynamical systems defined by the iteration of analytic functions, using the tools and techniques of potential theory. We will restrict ourselves to holomorphic polynomials in C. At first, we will discuss briefly about harmonic and subharmonic functions. In course, potential theory will repay its debt to complex analysis in the form of some beautiful applications regarding the Julia sets (defined in Chapter 8) of a certain family of polynomials, or a single one. We will be able to provide an explicit formula for computing the capacity of a Julia set, which in some sense, gives us a finer measurement of the set. In turn, this provides us with a sharp estimate for the diameter of the Julia set. Further if we pick any point w from the Julia set, then the inverse images q−n(w) span the whole Julia set. In fact, the point-mass measures with support at the discrete set consisting of roots of the polynomial, (qn-w) will eventually converge to the equilibrium measure of the Julia set, in the weak*-sense. This provides us with a very effective insight into the analytic structure of the set. Hausdorff dimension is one of the most effective notions of fractal dimension in use. With the help of potential theory and some ergodic theory, we can show that for a certain holomorphic family of polynomials varying over a simply connected domain D, one can gain nice control over how the Hausdorff dimensions of the respective Julia sets change with the parameter λ in D.
69

Applications of One-Point Quadrature Domains

Leah Elaine McNabb (18387690) 16 April 2024 (has links)
<p dir="ltr">This thesis presents applications of one-point quadrature domains to encryption and decryption as well as a method for estimating average temperature. In addition, it investigates methods for finding explicit formulas for certain functions and introduces results regarding quadrature domains for harmonic functions and for double quadrature domains. We use properties of quadrature domains to encrypt and decrypt locations in two dimensions. Results by Bell, Gustafsson, and Sylvan are used to encrypt a planar location as a point in a quadrature domain. A decryption method using properties of quadrature domains is then presented to uncover the location. We further demonstrate how to use data from the decryption algorithm to find an explicit formula for the Schwarz function for a one-point area quadrature domain. Given a double quadrature domain, we show that the fixed points within the area and arc length quadrature identities must be the same, but that the orders at each point may differ between these identities. In the realm of harmonic functions, we demonstrate how to uncover a one-point quadrature identity for harmonic functions from the quadrature identity for a simply-connected one-point quadrature domain for holomorphic functions. We use this result to state theorems for the density of one-point quadrature domains for harmonic functions in the realm of smooth domains with $C^{\infty}$-smooth boundary. These density theorems then lead us to discuss applications of quadrature domains for harmonic functions to estimating average temperature. We end by illustrating examples of the encryption process and discussing the building blocks for future work.</p>
70

Wittgensteins Hase und Roschs Vögel: Sind ›Prototypen‹ ein Thema für die Musiktheorie?

Mey, Stefan 26 October 2023 (has links)
Der Begriff des ›Prototypen‹ ist der deutschsprachigen Musiktheorie nicht fremd, ohne dass jedoch seine Implikationen umfassend rezipiert worden wären. Für die Entwicklung der cognitive sciences hat die Prototypentheorie seit den 1970er Jahren eine wichtige Rolle gespielt, indem sie Prozesse der Kategorisierung untersuchte und diese ins Zentrum der Kognition stellte: »We have categories for everything we can think about. To change the concept of category itself is to change our understanding of the world.« (Lakoff) Ausgehend von einer kurzen Einführung in das Prinzip einer Kategorienbildung mit unscharfen Grenzen, nichtäquivalenten Exemplaren und flexibler Gewichtung von Merkmalen, skizziert der Beitrag das Potenzial der Prototypentheorie für die Klärung bzw. Weiterentwicklung musiktheoretischer Begriffe und schlägt Kriterien zur Beurteilung ihrer Nützlichkeit vor. / The term ›prototype‹ is not unknown in German music theory. Its implications, however, haven’t been thoroughly adopted yet. Prototype theory has played an important part in the development of cognitive sciences since the 1970s by enabling researchers to examine processes of categorization and place them in the center of cognition: »We have categories for everything we can think about. To change the concept of category itself is to change our understanding of the world.« (Lakoff) The article begins with a brief introduction into the concept of categories with vague boundaries, non-equivalent samples and adjustable emphasis of characteristics. It outlines the potential of prototype theory to clarify or further develop music theory terms. Finally, there are suggestions for criteria to evaluate their usefulness.

Page generated in 0.3315 seconds