• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 61
  • 31
  • 21
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 276
  • 165
  • 84
  • 60
  • 48
  • 47
  • 44
  • 43
  • 39
  • 38
  • 35
  • 33
  • 32
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Hematopoietic cell transplant specific comorbidity index (HCT-CI) como ferramenta na avaliação da mortalidade não relacionada a recidiva em pacientes submetidos a transplante de células tronco hematopoiéticas alogênico / Hematopoietic cell transplant specific comorbidity index as a tool in the assessment of non relapse mortality in patients undergoing allogeneic hematopoietic stem cell transplant

Colella, Marcos Paulo, 1980- 26 August 2018 (has links)
Orientadores: Cármino Antonio de Souza, Afonso Celso Vigorito / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-26T14:24:56Z (GMT). No. of bitstreams: 1 Colella_MarcosPaulo_M.pdf: 4664560 bytes, checksum: ce76d7ca7d69ede5a86dc9fe14e7bbca (MD5) Previous issue date: 2014 / Resumo: O Transplante de Células Tronco Hematopoiéticas (TCTH) Alogênico representa uma possibilidade de cura para pacientes portadores de doenças hematológicas malignas e benignas. Porém, como qualquer modalidade de tratamento, apresenta efeitos adversos que podem ser graves, inclusive causando a morte. Com o intuito de se avaliar a influência que as comorbidades teriam na mortalidade não relacionada à recidiva (MNRR), foi criada uma ferramenta, o Índice de Comorbidade específico do Transplante de Células Tronco Hematopoiéticas (Hematopoietic Cell Transplant Specific Comorbidity Index - HCT-CI). Nossos objetivos, portanto, foram validar o HCT-CI na população de pacientes submetidos a TCTH Alogênico em nossa instituição, no período de 1993 a 2010, e avaliar outros fatores de riscos envolvidos na MNRR e na Sobrevida Global (SG). Os prontuários de 457 pacientes foram revistos e as informações referentes às comorbidades contidas no HCT-CI foram registradas. A maioria dos pacientes (59%) recebeu o índice 0, seguido de 30% de pacientes com índice de 1-2 e 11% com índice ? 3. Na análise univariada, os pacientes com HCT-CI igual a zero, comparados aos com HCT-CI ?1, apresentaram uma MNRR de 33% vs. 45% (p=0.01) e SG de 53% vs. 35% (p=0.001); nos pacientes que ao transplante apresentavam doença de baixo risco, comparados aos com doença de alto risco, a MNRR foi de 30% vs. 50% (p<0.0001) e SG de 57% vs. 27% (p<0.0001); o tipo de enxerto (medula óssea vs. sangue periférico) apresentou MNRR de 29% vs. 49% (p<0.0001) e SG de 56% vs. 34% (p<0.0001). A análise multivariada confirmou a influência do HCT-CI na MNRR e na SG, do risco da doença sobre a SG e do tipo de enxerto na MNRR. O tipo de condicionamento (baixa dose vs. alta dose) não teve influência na MNRR e SG, tanto na análise univariada quanto na multivariada. Quanto o grupo foi estratificado pelo HCT-CI (0 e ?1) o risco da doença ao transplante e o tipo de enxerto tiveram influência na MNRR e na SG, na análise univariada e multivariada, tanto nos pacientes com HCT-CI 0 e ?1. Não houve influência do tipo de condicionamento. O HCT-CI foi validado na nossa população de pacientes submetidos ao TCTH alogênico e identificamos outros fatores de risco que tiveram influência na MNRR e na SG. O HCT-CI, portanto, deve ser utilizado como guia no planejamento da estratégia terapêutica em pacientes portadores de comorbidades / Abstract: Allogeneic hematopoietic stem cell transplant is an important modality of treatment for patients bearing malignant and benign hematologic diseases, representing a chance of cure. As every treatment, it has a treatment-related mortality, possibly influenced by comorbidities. To better evaluate the influence of comorbidities on Non-Relapse Mortality (NRM) and Overall Survival (OS), the Hematopoietic Cell Transplant Specific Comorbidity Index (HCT-CI) was developed. Our objective was to apply the HCT-CI and to find risk factors for NRM and OS in patients who underwent an allogeneic hematopoietic stem cell transplant in our institution, between 1993 and 2010. Medical charts from 457 patients were reviewed. Most patients (59%) were classified in score 0, followed by 30% of cases with score 1-2 and 11% score 3-7. In a univariate analysis, patients with comorbidity score 0, compared with score ?1 had a NRM of 33% vs. 45% (p=0.01) and OS at 5 years of 53% vs. 35% (p=0.001); patients with low risk disease at transplant, compared with high risk disease, had a NRM of 30% vs. 50% (p<0.0001) and OS of 57% vs. 27% (p<0.0001); graft source (bone marrow vs. peripheral blood) had a NRM of 29% vs. 49% (p<0.0001) and OS 56% vs. 34% (p<0.0001). The multivariate analysis confirmed the influence of HCT-CI score on NRM and OS, disease risk at transplant on OS and graft source on NRM. The conditioning type (low dose vs. high dose) did not influence the NRM and OS in both univariate and multivariate analysis. When stratified by comorbidity (0 and ?1), disease status at transplant and graft source influenced NRM and OS in univariate and multivariate analysis, either in the group of patients with HCT-CI 0 and ?1. The conditioning type had no impact. Based on our data, we were able to validate de HCT-CI in our institution and to identify other risk factors with influence on NRM and OS. The HCT-CI, therefore, could be used to guide the treatment strategy of patients with comorbidities / Mestrado / Clinica Medica / Mestre em Clinica Medica
162

Mécanismes par lesquels la recombinaison homologue prévient les défauts mitotiques induits par le stress réplicatif / Mechanisms by which homologous recombination prevents mitotic defects in response to replication stress

Ait Saada, Anissia 26 June 2018 (has links)
Des stress réplicatifs sont rencontrés à chaque phase S du cycle cellulaire et différents mécanismes permettent leur prise en charge. La recombinaison homologue (RH) tient un rôle important dans le maintien de la stabilité du génome au cours de la réplication. En effet, la RH escorte la progression des fourches et prévient les défauts mitotiques. Toutefois, le lien moléculaire entre le stress réplicatif et les défauts mitotiques n’est pas élucidé. De façon générale, les fourches de réplication bloquées peuvent être sauvées grâce à leur fusion avec la fourche convergente ou au redémarrage de fourche par la RH. Le laboratoire a développé un essai génétique reposant sur l’utilisation d’une barrière de réplication conditionnelle afin d’étudier le mécanisme par lequel la RH contribue au sauvetage des fourches de réplication bloquées. L’équipe a montré que le redémarrage des fourches bloquées par la RH est conditionné par l’exposition d’un ADNsb et non d’une cassure double-brin. Ainsi, les fonctions de la RH au cours de la gestion du stress réplicatif peuvent être adressées indépendamment de sa fonction de réparation des cassures (fonction relativement bien documentée). Les travaux décrits dans ce manuscrit s’inscrivent autour des mécanismes que la RH engage afin d’assurer la stabilité génétique en réponse au stress réplicatif. Plus précisément, je me suis intéressée à l’implication des facteurs de la RH dans la protection des fourches de réplication bloquées au niveau moléculaire et cellulaire. En absence de la recombinase Rad51 ou de son chargeur Rad52, le blocage d’une seule fourche de réplication est suffisant pour induire des défauts mitotiques, incluant des ponts anaphasiques (lien physique entre chromatides sœurs). Il s’avère que les fourches bloquées sont extensivement dégradées par la nucléase Exo1 en absence de Rad51/Rad52. De manière intéressante, l’accumulation excessive d’ADNsb à la fourche est à l’origine de la non-disjonction des chromatides sœurs en mitose et ce malgré l’arrivée de fourches convergente. Ainsi, les fourches de réplication non protégées sont le siège de terminaison pathologique mettant à mal la ségrégation des chromosomes. La RH étant impliquée dans la protection et le redémarrage des fourches de réplication, l’utilisation du mutant de séparation de fonction Rad51-3A a permis de montrer que ces deux fonctions sont génétiquement séparables. Les fourches de réplication protégées et incapables d’être redémarrées par la RH ne présentent pas de symptômes de terminaison pathologique. Ainsi, au-delà de sa capacité à redémarrer les fourches inactivées, les facteurs de la RH assurent la complétion de de la réplication en maintenant les fourches de réplication dans une conformation propice à une fusion avec la fourche convergente. Ces résultats contribuent à une meilleure compréhension des mécanismes moléculaires invoqués par la RH afin de maintenir la stabilité génétique au cours du stress réplicatif. / At each cell cycle, cells undertaking the DNA replication process face several sources of replication stress (RS) compromising the progression of the replicating forks and threatening both chromosome duplication fidelity and their correct segregation during mitosis. Replication stresses emerged as a major source of genetic instability and cancer development. Several mechanisms, among which homologous recombination (HR), operate to buffer the deleterious effects of RS. HR acts as an escort to fork progression and prevents mitotic defects. Nonetheless, the molecular connection between replication stress and mitotic defects remains elusive. A conditional replication fork barrier (RFB) acting in a polar manner was developed in the lab to terminally-arrest fork progression. In this system, HR functions handling replication stress can be assessed independently of its well-known function in double strand break repair. The work described here aims to understanding the mechanism that HR performs to ensure genetic stability in response to replication stress. In general, blocked replication forks can be rescued either by fork convergence or by active HR-mediated fork restart. However, in absence of Rad51 recombinase or it loader Rad52, a single activated RFB is sufficient to induce mitotic abnormalities including anaphase bridges. The involvement of HR factors in fork protection was explored at the molecular and cellular levels. It turns out that terminally-arrested forks are extensively resected by the Exo1 nuclease in the absence of Rad51/Rad52. Interestingly, the excess of ssDNA accumulation at the fork triggers sister chromatid non-disjunction in mitosis despite the arrival of an uncorrupted converging fork to rescue replication. Thus, unprotected replication forks are prone to pathological termination threatening chromosome segregation. HR being involved in fork protection and restart, the use of a Rad51 mutant showed that these two functions are genetically separable. Indeed, protected forks unable to restart by HR do not show any pathological termination. Thus, beyond their ability to restart inactivated forks, HR factors ensure replication completion by maintaining the forks in a suitable conformation for a fusion with the converging fork. Overall, these results shed light on the molecular events engaged by RH to ensure genome stability in response to replication stress.
163

Mechanistic Study of D-loop Formation during Homologous Recombination by Molecular Microscopy / Étude mécanistique de la formation de la D-loop au cours de la recombinaison homologue par microscopies moléculaires

Moreira Tavares, Eliana 02 October 2018 (has links)
La Recombinaison Homologue (RH) est une des voies majeures, hautement fidèle, de réparation des cassures double brin de l’ADN et du redémarrage des fourches de réplication arrêtées ou bloquées. La RH utilise une séquence homologue pour réparer avec précision l'ADN. Elle est essentielle pour le maintien de la stabilité des génomes dans tous les organismes et également pour assurer la transmission et l'échange de l'information génétique pendant la méiose. L'étude mécanistique de la RH est importante pour comprendre l'instabilité génétique, la perte d'hétérozygotie, les aberrations chromosomiques, la mort cellulaire et la cancérogenèse associée à une RH déficiente. Les étapes clés de la RH et les protéines impliquées sont très conservées dans toutes les espèces. Chez Saccharomyces cerevisiae, la recombinase Rad51 forme un filament présynaptique avec l’ADNsb qui est capable de rechercher les homologies de séquences dans tout le génome, en partenariat avec d'autres partenaires protéiques. Une fois l'homologie identifiée, une structure de D-loop (pour Displacement loop) est formée pour favoriser l'échange de brins. Le moteur moléculaire Rad54 assiste Rad51 dans la formation de la D-loop. Son rôle dans la recherche d'homologie et la formation des complexes synaptiques, avant mêle la formation de la D-loop reste un sujet de débat. Cette thèse porte sur mes travaux d’étude in vitro des mécanismes de formation de la D-Loop, en utilisant des protéines de la RH purifiées Rad51 et Rad54 avec d'autres partenaires protéiques et des substrats d'ADN synthétisés, mimant les structures de la RH. J'ai utilisé la microscopie électronique (ME) pour visualiser directement l'ADN et les complexes ADN-protéines intervenant au cours de la formation de D-loop in vitro avec Rad51, Rad54 et un mutant de Rad54. Ces approches d’imagerie, combinées à la biochimie suggèrent que Rad54 est crucial pour la recherche d'homologie et la formation du complexe synaptique, avant la formation de la D-loop, dans une coopération étroite avec Rad51. J'ai également montré que les paralogues de Rad51, Rad55-Rad57, stimulent la formation de la D-loop et que cet hétérodimère présente une activité ATPase dix fois plus forte que Rad51. Par ailleurs, j'ai également développé d'autres outils méthodologiques en ME et en microscopie à force atomique à haute vitesse (HS-AFM) pour mieux caractériser différents intermédiaires de la RH. / Homologous recombination (HR) is a major high-fidelity DNA repair pathway of double-stranded breaks and recovery of stalled and collapsed replication forks. HR uses a homologous template to accurately repair DNA that is essential for maintaining genomic stability in all organisms and to ensure the transmission and exchange of the genetic information during meiosis. The importance of HR study is highlighted by genetic instability, loss of heterozygosity, chromosomal aberrations, cell death and carcinogenesis associated with a defected HR. The key recombinational stages and proteins are well conserved throughout species. In Saccharomyces cerevisiae, the Rad51 recombinase forms a presynaptic filament with ssDNA that along with other protein partners is able to search for homology within the entire genome. Once homology is identified, a Displacement-loop (D-loop) is formed to promote strand-exchange. The Rad54 molecular motor assists Rad51 in the D-loop formation, and it is still a matter of debate whether it also plays a key role in homology search and synaptic complex formation, prior to D-loop. This dissertation covers my in vitro assays using purified key HR proteins Rad51 and Rad54, other protein partners and designed DNA substrates, mimicking HR structures.I used electron microscopy (EM) to directly visualize the HR DNA and DNA-protein complexes generated by D-loop in vitro assay with Rad51, Rad54 and a Rad54 mutant, and these studies combined with biochemistry suggest Rad54 is crucial to homology search and synaptic complex formation, prior to D-loop formation, in a tight intercooperation by Rad51 and Rad54. In a multiprotein system, I also showed the Rad51 paralogs Rad55-Rad57 stimulate the D-loop formation and that this heterodimer presents a ten times stronger ATPase activity than Rad51. I also developed other EM and high speed atomic force microscopy (HS-AFM) methodological tools to characterize other HR intermediates.
164

Régulation de la réponse à divers stress et réparation des cassures double brin de l’ADN chez la bactérie Deinococcus radiodurans / Response regulation to various stresses and DNA double strand break repair in the bacterium Deinococcus radiodurans

Meyer, Laura 07 December 2018 (has links)
La bactérie Deinococcus radiodurans se distingue par sa résistance exceptionnelle aux rayonnements γ, UV, à la dessiccation et au stress oxydant. La radiorésistance de D.radiodurans résulte de l’association de plusieurs mécanismes, dont des systèmes efficaces de réparation de l’ADN et de détoxification des ROS, la protection des protéines contre l’oxydation, une structure compacte du nucléoïde et des protéines spécifiques aux Deinococcaceae, qui sont fortement induites après l’exposition des cellules au rayonnement γ. Le gène ddrI (DNA damage response) est fortement induit après exposition des cellules au rayonnement γ et code un régulateur transcriptionnel appartenant à la sous-famille CRP (cAMP receptor protein). Comparée à la souche sauvage, la souche privée de DdrI présente des défauts de division cellulaire et/ou de ségrégation de l’ADN, et est sensible aux agents génotoxiques, au stress oxydant et au choc thermique. La prédiction in silico des cibles potentielles de DdrI suggère que cette protéine régule l’expression d’une centaine de gènes impliqués dans la réplication, la réparation de l’ADN, la transduction de signal, la réponse au stress oxydant et au choc thermique. La séquence consensus 5’TGTGA(N6)TCACA3’, extrapolée à partir des 115 séquences cibles potentielles de DdrI, est spécifiquement fixée par DdrI uniquement en présence d’AMPc. Après un choc thermique, DdrI induit directement ou indirectement l’expression de nombreux gènes codant des protéases, des protéines du métabolisme de l’ADN, des lipides, des carbohydrates ainsi qu’un inhibiteur de la traduction. PprA, une protéine spécifique aux Deinococcaceae, joue un rôle crucial dans la radiorésistance et est impliquée dans la ségrégation des chromosomes et/ou la division cellulaire après réparation de l’ADN. De manière intéressante, l’absence de RecN, une protéine de la famille SMC, supprime la sensibilité du mutant ΔpprA aux agents génotoxiques, aux inhibiteurs de l’ADN gyrase et les défauts de ségrégation observés dans le mutant ΔpprA après irradiation des cellules. Après exposition des cellules au rayonnement γ, l’absence de RecN réduit la fréquence de recombinaison entre ADN chromosomique et plasmidique, suggérant que RecN intervienne dans la réparation de l’ADN par recombinaison homologue. Nous proposons un modèle, dans lequel RecN, en favorisant la réparation de l’ADN par recombinaison homologue, nécessite la présence de PprA pour favoriser le recrutement des ADN topoisomérases et la résolution des contraintes topologiques engendrées par ce mécanisme de réparation d’ADN. / The Deinococcus radiodurans bacterium exhibits resistance to γ and UV radiation, desiccation and oxidative stress. The molecular mechanisms contributing to the radioresistance of D. radiodurans include very efficient DNA repair mechanisms and ROS detoxification systems, protein protection against oxidation, a compact nucleoid structure and a subset of Deinococcus specific genes which are strongly induced after γ radiation. The ddrI (DNA damage response) gene is highly up-regulated after exposure to γ radiation and encodes a transcription factor belonging to the CRP (cAMP receptor protein) family. Compared to wild type cells, cells devoid of DdrI display defects in cell division and/or DNA segregation and is sensitive to DNA damaging agents, oxidative stress and heat shock treatment. In silico predictions of putative DdrI targets suggest that hundreds of genes,belonging to various cellular processes (DNA replication and repair, oxidative stress and heat shock responses, regulation of transcription and signal transduction) may be regulated by DdrI. The pseudopalindromic 5’TGTGA(N6)TCACA3’ consensus sequence, extrapolated from 115 potential DdrI binding sites, is specifically bound by DdrI only in presence of cAMP. After heat shock treatment, DdrI is involved directly or indirectly, in the induction of heat shock response genes coding proteases, proteins involved in DNA, lipid, carbohydrate metabolism and a translation inhibitor. Among the Deinococcus specific proteins required for radioresistance, the PprA protein was shown to play a major role for accurate chromosome segregation and cell division after completion of DNA repair. Here, we analyzed the cellular role of the RecN protein belonging to the SMC family and, surprisingly, observed that the absence of the RecN protein suppressed the sensitivity of cells devoid of the PprA protein to γ- and UV-irradiation and to treatment with mitomycin C or DNA gyrase inhibitors. The absence of RecN also alleviated the DNA segregation defects displayed by the ΔpprA cells recovering from irradiation. After irradiation, the absence of RecN reduced recombination between chromosomal and plasmid DNA, indicating that the RecN protein is important for recombinational repair of DNA lesions. Here, we propose a model in which RecN, by favoring recombinational repair of DNA double strand breaks, requires the PprA protein to facilitate the recruitment of the DNA topoisomerases to resolve the topological constraints generated by DNA double strand break repair through homologous recombination.
165

Characterization of a novel DNA binding domain in the N-terminus of BRCA2 and evaluation of BRCA2 variants identified in breast cancer patients in the same region / Caractérisation d’un nouveau domaine de fixation à l’ADN dans le N-terminus de BRCA2 et évaluation des variantes BRCA2 non-classifiées identifiées dans les patients de cancer du sein dans la même région

Nicolai, Catharina von 13 June 2016 (has links)
Les mutations héréditaires dans le gène BRCA2 sont associées à une forte susceptibilité au développement du cancer du sein et de l’ovaire. La protéine suppresseur de tumeur BRCA2 est essentielle pour préserver l’intégrité des chromosomes après endommagement de l’ADN. BRCA2 est impliquée dans la recombinaison homologue (RH), une voie fiable de réparation des cassures de l’ADN. BRCA2 exerce aussi un rôle pendant la mitose afin d’assurer un point de contrôle et une division cellulaire correcte. Bien que le rôle de BRCA2 dans la RH soit bien établi, la littérature décrive une restauration partielle de la fonction de RH dans des cellules ne possédant pas le site de liaison à l’ADN en C-terminal (CT-DBD), ce que nous a encouragé à voir s’il existait un domaine secondaire de liaison à l'ADN. L'analyse in silico a révélé un domaine zf-PARP putatif dans la région N-terminale. Normalement, ce type de domaine s’associe à l’ADN, ce que nous a porté à l’examiner. En utilisant des fragments purifiés de la partie N-terminale comprenant le site putatif dans des analyses de changements de mobilité électrophorétique, nous avons montré une activité de liaison à l’ADN. En comparaison avec le CT-DBD canonique, le site de liaison à l’ADN en N-terminal (NT-DBD) manifeste une affinité plus forte pour divers substrats et contrairement du CT-DBD il est capable de s’associer à l’ADN à double brin. En utilisant des tests d’échange de brin, nous avons également montré que le NT-DBD peut stimuler la fonction de recombinaison de RAD51. De plus, des variantes faux-sens dans le NT-DBD trouvé chez les patients atteints de cancer du sein ont montré une activité réduite d’association à l’ADN et une stimulation diminuée de l’activité de RAD51 ce qui implique que ces amino-acides sont importants pour les deux fonctions. Ce travail révèle un nouveau sitede liaison à l’ADN, ce qui contrairement au CT-DBD est capable de s’associer à l’ADN double-bras(db) et stimuler l’activité de recombinaison de RAD51. Nous proposons que le NT-DBD positionne RAD51 à la jonction entre ADNdb et ADNsb, ce qui facilite le chargement de RAD51 sur l’ADN recouvert de RPA. Cette activité pourrait promouvoir la RH pendant la réparation des cassures de l’ADN (von Nicolai, C et al., 2016, under revision).Afin de définir la prévalence des mutations de NT-DBD pour la prédisposition au cancer, nous avons sélectionné des variants faux-sens non-classifiés (variants of unknown clinical significance), identifiés dans des familles à risque élevé de développer un cancer du sein. Nous avons effectué des tests afin d’étudier l’impact de ces variants sur la fonction de BRCA2 dans la RH et la mitose. Certains de ces variants ont conduit à une hypersensibilité aux agents endommageant l’ADN et aux inhibiteurs de PARP, caractéristique d’une RH défectueuse alors qu’un de ces variants était compétent pour la réparation. Tous les variants ont induit une duplication normale des centrosomes, mais la cytokinèse était défectueuse. Ce phénotype suggère un défaut dans la formation du midbody et de l’abscission. Cette étude aidera à classifier les VUS dans le NT-DBD et facilitera la consultation génétique pour des individus. BRCA2 est un médiateur de la RH dépendante de RAD51. Son homologue méiotique, DMC1, partage structure et fonction similaire et s’associe à BRCA2. Néanmoins, la pertinence fonctionnelle de cette interaction reste élusive. Nous avons montré que BRCA2 interagit avec DMC1 au travers des répétitions BRC et promeut la formation de molécules d'adhérence. Cet effet stimulant est dû au renforcement de la liaison de DMC1 à l’ADN. BRCA2 complet et fonctionnel était surtout capable de stimuler l’activité d’échange de brin de DMC1, ce qui confirme les résultats obtenus avec les répétitions BRC. Nos résultats identifient BRCA2 comme une protéine de médiation de la recombinaison méiotique et renforcent le rôle des répetitions BRC dans cette fonction (Martinez, von Nicolai, et al., PNAS, 2016). / Germline mutations in the BRCA2 gene lead to high susceptibility to the development of breast and ovarian cancer. The tumor suppressor protein BRCA2 is essential for preserving chromosome integrity after DNA damage emerging from endogenous or exogenous sources. BRCA2 functions in Homologous Recombination (HR), the most reliable pathway to repair DNA double strand breaks. BRCA2 exerts its tumor suppressor role also at several stages during mitosis where it ensures checkpoint control and proper cell division.Although the function of BRCA2 in HR is well established, evidence from the literature describing a partial restoration of HR function in cells lacking the C-terminal DNA binding domain (CT-DBD) brought us to test the hypothesis of a secondary DNA binding domain in BRCA2.In silico analysis of the protein revealed a putative zinc finger-PARP domain in exon 10 of the N-terminal region. This type of domain usually binds DNA which prompted us to examine this activity in vitro. Using purified N-terminal fragments comprising the putative DNA binding domain in electrophoresis mobility shift assay we demonstrated the DNA binding activity of the N-terminus of BRCA2. When compared to the canonical CT-DBD, the N-terminal DNA binding domain (NT-DBD) exhibits stronger affinity for various DNA substrates and unlike the CT-DBD, it can also associate with dsDNA. Using a DNA strand exchange assay we also showed that the NT-DBD stimulates the recombination function of RAD51. In addition, BRCA2 missense variants in the NT-DBD found in breast cancer patients showed reduced dsDNA binding and decreased stimulation of RAD51 recombination activity on dsDNA/ssDNA containing substrates, implying that these residues are important for both functions. This work revealed a novel DNA binding domain in the N-terminus of BRCA2 that, in contrast to the CT-DBD, can associate with dsDNA and promote RAD51 recombination activity. We propose that the NT-DBD positions RAD51 at the ssDNA/dsDNA junction facilitating RAD51 loading onto the RPA-coated ssDNA. This activity may promote HR in DSB repair and in daughter strand gap repair (von Nicolai, C et al., 2016 submitted).To define the relevance of NT DBD on cancer predisposition, we selected several missense variants of unknown clinical significance (VUS) found in families at high risk to develop breast cancer located in this region. We used in vitro and in vivo functional assays to study the impact of the mutations on BRCA2 function in HR and mitosis. Some of the variants exhibited hypersensitivity to DNA damaging agents and PARP inhibitors, a hallmark of defective HR while one variant was proficient in repair. All variants showed normal centrosome duplication, but exhibited delayed or failed cytokinesis. This phenotype suggests a defect of the variants in midbody formation and abscission as a consequence of impaired BRCA2 function. It remains to be established if the defects in HR and cytokinesis are related. In the future, this study will help to classify VUS in the NT-DBD and facilitate genetic counselling of individuals carrying these mutations.BRCA2 is a mediator protein in RAD51-dependent HR. Its meiotic counterpart, DMC1, shares similar structure and function and binds BRCA2. However, the functional relevance of this interaction remained elusive. In this work, we showed that through the BRC repeats, BRCA2 interacts with DMC1 and promotes joint molecule formation. This stimulatory effect is due to the enhancement of DMC1 assembly on ssDNA. Importantly, full-length BRCA2 also stimulated the DNA strand exchange activity of DMC1, confirming the results with the isolated BRC repeats. Our results identify BRCA2 as a mediator of meiotic recombination and underline the role of the BRC repeats on this function (Martinez, von Nicolai, et al., 2016, PNAS).
166

Bioinformatic approaches for detecting homologous genes in the genomes of non-model organisms : A case study of wing development genes in insect genomes

Mesilaakso, Lauri January 2019 (has links)
Identifying homologous genes, that is genes from a common ancestor, is important in comparative genomic studies for understanding gene annotation and the predicted function of a gene. Several pieces of software, of which the most well-known is BLAST, have been developed for identifying homologues, but this can be challenging in non-model organisms where sometimes poor quality of genome assemblies and lack of annotation make it difficult to robustly identify homologues. The aim of this project was to build a bioinformatic framework for homology detection using genomes from non-model organisms. The approach developed used genome annotations, annotated polypeptide sequences and genome assembly sequences to detect homologous genes.The framework was applied to identify Drosophila melanogaster homologous wing development genes in the genomes of nine other insect species with the aim to understand the evolution of loss of wings. To identify changes related to wing loss, the homologous protein sequences obtained were aligned and phylogenetic trees were built from them. The aim of creating the multiple protein alignments and phylogenetic trees was to shed light on whether changes in gene sequences can be related to presence or absence of wings. From the set of 21 candidate wing development genes identified with literature and subsequent database searches, I tested eight and was successful in identifying homologues for all of them in eight of the 10 in sectgenomes. This was done using a combination of text searches in genome annotations, searches with Exonerate v. 2.4.0 alignment program in annotated polypeptide sequences and in genome assemblies. The eight genes chosen for testing the framework were based on initial finding of putative homologues in the eight insect genomes when using the first two steps of the framework. For the set of homologous wing development genes examined I was not able to identify any conclusive pattern of potential protein coding changes that correlated with loss of wings in these species. Improvement to the current pipeline could include using query sequences from closer relatives of the 8 test species than D. melanogaster and, of course, testing of the remaining wing development genes as well as further literature study of wing development genes. Together these could improve future studies on the evolution of wing loss in insects.
167

Metabolic analysis and development of efficient gene-targeting systems in oleaginous fungi for useful lipid production / 有用油脂生産のための油糧糸状菌の代謝解析と効率的遺伝子ターゲティングシステムの構築

Kikukawa, Hiroshi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19047号 / 農博第2125号 / 新制||農||1032(附属図書館) / 学位論文||H27||N4929(農学部図書室) / 31998 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 小川 順, 教授 喜多 恵子, 教授 栗原 達夫 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
168

Smarcal1 promotes double-strand-break repair by nonhomologous end-joining / Smarcal1は非相同末端結合によるDNA二重鎖切断修復を促進する

Shamima, Keka Islam 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19401号 / 医博第4052号 / 新制||医||1012(附属図書館) / 32426 / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙田 穣, 教授 平岡 眞寛, 教授 松本 智裕 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
169

Role DNA reparačních mechanismů v patogenezi myelodysplastického syndromu. / The role of DNA repair mechanisms in the pathogenesis of myelodysplastic syndrome.

Válka, Jan January 2019 (has links)
Background: The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests the involvement of DNA repair mechanism defects in the pathogenesis of this disorder. The first part of this work was focused on monitoring of gene expression of DNA repair genes in MDS patients and on their alterations during disease progression. In the second part, next generation sequencing was used to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with MDS development was evaluated. Methods: Expression profiling of 84 DNA repair genes was performed on bone marrow CD34+ cells of patients with MDS. Screening cohort consisted of 28 patients and expression of selected genes was further validated on larger cohort of 122 patients with all subtypes of MDS. Paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 recombinase protein was done on samples acquired by trephine-biopsy. Targeted enrichment resequencing of exonic parts of 84 DNA repair genes was performed on the screening cohort of MDS patients. Real-time PCR was used for genotyping of selected SNPs in the population study. Results: RAD51 and XRCC2 genes showed...
170

Novel Roles of Replication Protein A Phosphorylation in Cellular Response to DNA Damage

Serrano, Moises A 01 August 2013 (has links) (PDF)
Human replication protein A (RPA) is an eukaryotic single-stranded DNA binding protein directly involved in a variety of DNA metabolic pathways including replication, recombination, DNA damage checkpoints and signaling, as well as all DNA repair pathways. This project presents 2 novel roles of RPA in the cellular response to DNA damage. The first elucidates the regulation of RPA and p53 interaction by DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) in homologous recombination (HR). HR and nonhomologous end joining (NHEJ) are 2 distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-PK, the core component of NHEJ, partners with DNA-damage checkpoint kinases ATM, and ATR to synergistically regulate HR repair of DSBs. The regulation was accomplished through modulation of the p53-RPA interaction. We show that upon DNA damage p53 and RPA are freed from the p53–RPA complex. This is done through simultaneous phosphorylation of RPA by DNA-PK, and p53 by ATR and ATM. Neither the phosphorylation of RPA nor that of p53 alone could dissociate the p53-RPA complex; furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR and NHEJ repair through the coregulation of p53–RPA interaction by DNA-PK, ATM and ATR. The second part of this project reveals a novel role of RPA32 phosphorylation in suppressing the signaling of programmed cell death, also known as apoptosis. Our results show that deficiency in RPA32 phosphorylation leads to increased apoptosis after genotoxic stress. Specifically, PARP-1 cleavage, Caspase-3 activation, sub-G1 cell population, annexin V staining and the loss of mitochondrial membrane potential were significantly increased in the phospho-deficient RPA32 cells (PD-RPA32). The lack of RPA phosphorylation also promoted activation of initiator Caspase-9 and effector Caspase-3 and -7. This regulation is dependent on the kinase activity of DNA-PK and is mediated by PUMA through the ATM-p53 pathway. Our results suggest a novel role of RPA phosphorylation in apoptosis that illuminates a new target that lies on the crossroads of DNA repair and cell death, a pivotal point that could be of importance for sensitizing cancer cells to chemotherapy.

Page generated in 0.0318 seconds