Spelling suggestions: "subject:"cybrid matematerials"" "subject:"cybrid datenmaterials""
71 |
NOVEL ULTRA HIGH TEMPERATURE MATERIAL PROCESSING, CHARACTERIZATION, AND MODELINGGlenn R Peterson (16558704) 18 July 2023 (has links)
<p>For many applications within the defense, aerospace, and electricity-producing industries, available material choices for high-performance devices that fulfill necessary requirements are limited. Choosing a metallic material or a ceramic material may be optimal for only some of the required properties. For instance, choosing a metal may optimize ductility but compromise oxidation resistance, yield strength, or creep resistance. Of potential interest, ceramic-metal (cermet) composites can address several fundamental concerns such as high temperature mechanical toughness and stiffness and oxidation/corrosion resistance. However, cost-effective, scalable manufacturing of complex-shaped, high-temperature cermets can be challenging.</p>
<p>A cermet of interest is niobium and yttrium oxide, Y2O3. Both materials exhibit high melting points with similar coefficients of thermal expansion. Basic thermodynamic calculations suggest that these materials are chemically compatible, and that Y2O3/Nb cermets may be generated by reactive melt infiltration using the patented Displacive Compensation of Porosity (DCP) process. With the DCP process, a liquid fills a porous perform, and a displacement reaction occurs to produce products of larger solid volume. This reaction yields the cermet of interest, formed in a reduced-stress condition, while maintaining a generally near net shape and high relative density.</p>
<p>In order to get to the point of designing cermet components for various applications, a focus of this work has been to create a Y2O3/Nb composite by hot pressing powders at high temperatures at the predicted stoichiometric ratios, and then characterizing the thermal and mechanical properties. The reduction reaction between liquid yttrium and solid niobium (IV) oxide (NbO2) was then characterized to evaluate kinetic mechanisms affecting the reaction rate which is necessary for future DCP-based cermet component manufacturing.</p>
<p>Lastly, the mechanical behavior of this cermet was modeled and compared to another cermet processed using liquid metal infiltration using a temperature-dependent elasto-visco-plastic self-consistent model. The effects of cooling from processing temperatures, as well as thermally cycling of these cermets, were quantified. As high temperature experiments can be time intensive with high costs, it is advantageous to have a computationally efficient, desktop design tool to quantify the impacts of changing processing and use conditions on material performance.</p>
|
72 |
Utilizing Embedded Sensing for the Development of Piezoresistive ElastodynamicsJulio Andres Hernandez (14684092) 21 July 2023 (has links)
<p>Obtaining full-field \emph{dynamic} material state awareness would have profound and wide-ranging implications across many fields and disciplines. For example, achieving dynamic state awareness in soft tissues could lead to the early detection of pathophysiological conditions. Applications in geology and seismology could enhance the accuracy of locating mineral and hydrocarbon resources for extraction or unstable subsurface formations. Ensuring safe interaction at the human-machine interfaces in soft robotic applications is another example. And as a final representative example, knowing real-time material dynamics in safety-critical structures and infrastructure can mitigate catastrophic failures. Because many materials (e.g., carbon fiber-reinforced polymers composites, ceramic matrix composites, biological tissues, cementitious and geological materials, and nanocomposites) exhibit coupling between their mechanical state and electrical transport characteristics, self-sensing via the piezoresistive effect is a potential gateway to these capabilities. While piezoresistivity has been mostly explored in static and quasi-static conditions, using piezoresistivity to achieve dynamic material state awareness is comparatively unstudied. Herein lies the significant gap in the state of the art: the piezoresistive effect has yet to be studied for in-situ dynamic sensing.</p>
<p><br></p>
<p>In this thesis, the gap in the state of the art is addressed by studying the piezoresistive effect of carbon nanocomposites subject to high-rate and transient elastic loading. Nanocomposites were chosen merely as a representative self-sensing material in this study because of their ease of manufacturability and our good understanding of their electro-mechanical coupling. Slender rods were manufactured using epoxy, modified with a small weight fraction of nanofillers such as carbon black (CB), carbon nanofibers (CNFs), and multi-walled carbon nanotubes (MWCNTs), and subject to loading states such as steady-state vibration at structural frequencies ($10^2-10^4$ Hz), controlled wave packet excitation, and high-strain rate impact loading in a split-Hopkinson pressure bar. This work discovers foundational principles for dynamic material state awareness through piezoresistivity. </p>
<p><br></p>
<p>Three major scholarly contributions are made in this dissertation. First, an investigation was pursued to establish dynamic, high-strain rate sensing. This investigation clearly demonstrated the ability of piezoresistivity to accurately track rapid and spatially-varying deformation for strain rates up to $10^2$ s$^{-1}$. Second, piezoresistivity was used to detect steady-state vibrations common at structural frequencies. Utilizing simple signal processing techniques, it was possible to extract the excitation frequency embedded into the collected electrical measurements. The third contribution examined the dynamic piezoresistive effect through an array of surface-mounted electrodes on CNF/epoxy rods subject to highly-controlled wave packet excitation. Electrode-spacing adjustments were found to induce artificial signal filtering by containing larger portions of the injected wave packets. The strain state in the rod was found after employing an inverse conductivity-to-mechanics model, thereby demonstrating the possibility of deducing actual in-situ strains via this technique. A digital twin in ABAQUS was constructed, and an elastodynamic simulation was conducted using identical dynamic loading, the results of which showed very good agreement with the piezo-inverted strains. </p>
<p><br></p>
<p>This work creates the first intellectual pathway to full-field dynamic embedded sensing. This work has far-reaching potential applications in many fields, as numerous materials exhibit self-sensing characteristics through deformation-dependent changes to electrical properties. Therefore, \emph{piezoresistive elastodynamics} has the incredible potential to be applied not just in structural applications but in other potentially innovated applications where measuring dynamic behavior through self-sensing materials is possible. </p>
|
73 |
Inorganic-Organic Sol-Gel Derived Hybrid Materials as Abrasion Resistant CoatingsLi, Chenghong 04 August 1999 (has links)
Inorganic-organic hybrid materials have been developed using sol-gel reactions of a trialkoxysilylated organic compound and a metal or semi-metal alkoxide and applied as coatings on polymeric or metallic substrates. Many of these coatings have demonstrated good to excellent abrasion resistance.
Abrasion resistant coatings were prepared by hydrolysis and condensation of mixtures of a triethoxysilylated diethylenetriamine (f-DETA), tetramethoxysilane (TMOS), water and an alcohol in the presence of an acid catalyst (a one-step hydrolysis approach). The influences of many formulation and processing variables on the gelation time, optical properties, hardness and abrasion resistance were investigated. An aminolysis mechanism was also proposed to explain the adhesion between sol-gel derived coatings and polycarbonate substrates promoted by a 3-aminopropyltriethoxysilane (3-APS) primer. FT-IR, GPC, 1H and 13C NMR, XPS experiments were conducted to support this mechanism.
The f-DETA/TMOS system is essentially a binary system of an alkyltriethoxysilane (T) and a tetraalkoxysilane (Q). At pH 0-2 and pH 4-5, the relative condensation reactivities of the T and Q species in this system were compared using 29Si NMR spectroscopy. After thermal curing, 13C or 29Si solid state NMR spectroscopy was used to estimate the extent of hydrolysis of the urea linkages in f-DETA, the concentration of residual alkoxysilane groups, and the extent of condensation for both T and Q species. The dependence of the morphology of f-DETA/TMOS gels on the pH and the water concentration was also investigated using AFM, SEM and SAXS.
Many other trialkoxysilylated organic compounds containing urea, urethane, epoxy and siloxane linkages were also synthesized and utilized to prepare abrasion resistant coatings via a one-step hydrolysis approach, a two-step hydrolysis approach or a moisture-curing approach. Coatings derived from many of these systems or approaches demonstrated abrasion resistance comparable to that of the f-DETA/TMOS coating. Thin coatings were also derived from cubic octasilicate monomers via hydrosilylation or sol-gel reactions. These coatings were very transparent but unfortunately lacked abrasion resistance. / Ph. D.
|
74 |
<b>Enhancing Thermal Conductivity in Bulk Polymer-Matrix Composites</b>Angie Daniela Rojas Cardenas (18546844) 13 May 2024 (has links)
<p dir="ltr">Increasing power density and power consumption in electronic devices require heat dissipating components with high thermal conductivity to prevent overheating and improve performance and reliability. Polymers offer the advantages of low cost and weight over conventional metallic components, but their intrinsic thermal conductivity is low. Previous studies have shown that the thermal conductivity of polymers can be enhanced by aligning the polymer chains or by adding high thermal conductivity fillers to create percolation paths within the polymeric matrix. To further enhance the in-plane thermal conductivity, the conductive fillers can be aligned preferentially, but this leads to a lower increase in performance in the cross-plane direction. Yet, the cross-plane thermal conductivity plays a vital role in dissipating heat from active devices and transmitting it to the surrounding environment. Alternatively, when the fillers are aligned to enhance cross-plane thermal transport, the enhancement in the in-plane direction is limited. There is a need to develop polymer composites with an approximately isotropic increase in thermal performance compared to their neat counterparts.</p><p dir="ltr">To achieve this goal, in this study, I combine conductive fibers and fillers to enhance thermal conductivity of polymers without significantly inducing thermal anisotropy while preserving the mechanical performance of the matrix. I employ three approaches to enhance the thermal conductivity () of thermoset polymeric matrices. In the first approach, I fabricate thermally conductive polymer composites by creating an emulsion consisting of eutectic gallium indium alloy (EGaIn) liquid metal in the uncured polydimethylsiloxane (PDMS) matrix. In the second approach, I infiltrate mats formed from chopped fibers of Ultra High Molecular Weight Polyethylene (UHMWPE) with an uncured epoxy resin. Finally, the third approach combines the two previous methods by infiltrating the UHMWPE fiber mat with an emulsion of the liquid metal and uncured epoxy matrix.</p><p dir="ltr">To evaluate the thermal performance of the composites, I use infrared thermal microscopy with two different experimental setups, enabling independent measurement of in-plane and cross-plane thermal conductivity. The results demonstrate that incorporating thermally conductive fillers enhances the overall conductivity of the polymer composite. Moreover, I demonstrate that the network structure achieved by the fiber mat, in combination with the presence of liquid metal, promotes a more uniform increase in the thermal conductivity of the composite in all directions. Additionally, I assess the impact of filler incorporation and filler concentration on matrix performance through tension, indentation, and bending tests for mechanical characterization of my materials.</p><p dir="ltr">This work demonstrates the potential of strategic composite design to achieve polymeric materials with isotropically high thermal conductivity. These new materials offer a solution to the challenges posed by higher power density and consumption in electronics and providing improved heat dissipation capabilities for more reliable devices.</p>
|
75 |
Application of Functionalized Organosilicas in Adsorption of NitratesAmoako, Stephen 01 August 2024 (has links) (PDF)
This study addresses the critical environmental issue of elevated nitrate levels in water bodies, primarily due to excessive use of nitrogenous fertilizers and improper waste disposal. It focuses on reducing nitrate concentrations in polluted water to permissible levels through the effectiveness of hybrid materials in nitrate adsorption. We synthesized nine amino-functionalized adsorbents using grafting and sol-gel techniques. Batch adsorption tests confirmed the high nitrate adsorption capacities of these adsorbents, with sol-gel materials showing the highest efficiency due to their abundant amino group contents. Among these, the surfactant-free, sol-gel adsorbent was the most effective, combining ease of synthesis with cost-efficiency. Our study of temperature dependence revealed optimal nitrate removal at ambient conditions and decreased capacity at higher temperatures. These adsorbents remained highly efficient over five adsorption/regeneration cycles. This research significantly advances efficient nitrate removal methods, presenting a promising approach for environmental remediation.
|
76 |
<b>Multi-phase Nitride-based Metamaterial Thin Films towards Tunable Microstructure and Coupled Multifunctionalities</b>Jiawei Song (9357755) 16 October 2024 (has links)
<p dir="ltr">Hybrid metamaterials have garnered significant attention in recent years owing to their unique properties not found in natural materials. These materials are engineered by integrating two or more distinct materials at the nanoscale, forming various microstructures such as particle-in-matrix, pillar-in-matrix, and multilayers. The recent development of vertically aligned nanocomposites (VANs) offers a platform in forming pillar-in-matrix metamaterials in a self-assembled fashion. Transition metal nitrides, such as titanium nitride (TiN), are interesting materials for VAN designs due to their outstanding plasmonic properties, chemical stability, and compatibility with various functional materials. However, the current range of material selection and morphological demonstrations in two-phase nitride-based nanocomposites is limited. There is a growing need for a deeper understanding of the self-assembly growth mechanism and greater freedom in structural and property tunability of nitride-based VANs to develop the next generation of integrated photonic and electronic devices.</p><p dir="ltr">This dissertation investigates the design, growth mechanisms, and tunability of nitride-based VANs for advanced metamaterial applications. The first chapter focuses on integrating ferromagnetic CoFe<sub>2</sub> into a plasmonic TiN matrix to achieve anisotropic optical and magnetic properties, as well as coupling effects between the two phases. In the second chapter, a third phase, gold (Au), is introduced into TiN-CoFe<sub>2</sub> VANs in a core-shell configuration, demonstrating enhanced tunability in microstructure and resultant properties, such as distinct hyperbolic behavior and switchable magnetic easy axis. The third chapter extends the exploration into three-dimensional (3D) nanostructured films by combining different VAN films (e.g., TiN-CoFe<sub>2</sub>, TaN-CoFe<sub>2</sub>) in multilayer configurations, demonstrating highly tunable optical properties along with ferromagnetic response. This 3D nanocomposite approach highlights the potential for advanced tunability in metamaterials beyond traditional two-phase VAN designs. The fourth chapter explores the control of stoichiometry and phase composition in TiN-CuO systems. By systematically adjusting oxygen partial pressure during deposition, a gradual transition from metallic to dielectric behavior in these nanocomposite films has been observed. This investigation provides valuable insights into the comprehensive understanding of the interaction processes within hybrid nanocomposites during self-assembly. Overall, this thesis presents diverse methodologies for tuning microstructures and functionalities within nitride-based VAN systems, showing potentials for advanced applications in optics, magnetics, and beyond in metamaterial research.</p>
|
77 |
Organic-inorganic hybrid graft copolymers of polystyrene and polydimethylsiloxaneSutherland, Aimee Celeste 03 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT:
Hybrid graft copolymers of polystyrene (PSty) and polydimethylsiloxane macromonomers (PDMS)
were synthesised. PSty-g-PDMS was synthesised employing the grafting through technique via a
conventionally free radical polymerization (FRP) using a polydimethylsiloxane macromonomer. In
this series the amount of PDMS incorporated into the copolymer was varied by varying the
macromonomer to styrene ratios as well as the length of the PDMS side chain. This allows for the
study of the effect that the macromonomer content and the branching length has on the efficiency
of the grafting process. A second series of PDMS-g-PSty was also synthesized where the PDMS
forms the backbone and the PSty the grafts. Two synthetic techniques were employed for the
formation of these polymers. Firstly, the grafting onto approach was used where functional
polystyrene prepolymers with either an allyl or vinyl end-groups were synthesised anionically
(living anionic polymerization) prior to the coupling of a functional prepolymer using a
hydrosilylation reaction with a Karstedt platinum catalyst. This technique was successful and gave
insight to the effect of the polystyrene prepolymer graft length has on the grafting efficiency as well
as the functional groups needed on the PDMS backbone. Furthermore, the effect of the viscosity
(of the PDMS macromonomer) plays on the grafting efficiency was also elucidated. Lastly, the
grafting from approach was employed for the formation of PDMS-g-PSty. ATRP, atom transfer
radical polymerization, of styrene using a bromoisobutyrate functional PDMS macroinitiator was
used for the synthesis of these copolymers. This was accomplished by reacting commercial silane
functional PDMS molecules via a hydrosilylation reaction (using a Karstedt catalyst) with allyl-2-
bromo-2-methyl-propionate to give a PDMS macroinitiator with bromoisobutyrate functional
groups. This will allow for the initiation and growth of polystyrene branches from the PDMS
backbone (employing ATRP with a suitable catalyst and ligand). The formation of the endproduct,
PDMS-g-PSty, via this route proved to be extremely difficult and largely unsuccessful.
Liquid chromatography (LC) at the critical point (LCCC) of polystyrene was used to separate the
graft material from homo-polymers which might have formed as well as from the PDMS
macromonomer. This technique allows for a very fast chromatographic analysis of the grafting
reaction. Under the critical conditions of PSty it was found that the graft copolymer eluted at a
lower retention time than the unreacted macromonomer and PSty homopolymer. Two-dimensional
chromatography, where LCCC (1st dimension) was coupled to size exclusion chromatography (2nd
dimension), was used for the evaluation of the CCD and MMD (molecular mass distribution) of the
graft material. LC was furthermore coupled off-line to FTIR and TEM using an LC interface. LCFTIR
gave insight to the microstructure of the material, whilst LC-TEM gave insight to the
morphological nanostructure of the material. / AFRIKAANSE OPSOMMING:
Hibried ent-kopolimere is gesintetiseer uit polistireen (PSty) en polidimetielsiloksaan (PDMS).
PSty-g-PDMS is gesintetiseer deur gebruik te maak van die ent-deur tegniek via ‘n konvensionele
vrye radikaal polimerisasie proses (VRP). In die reeks is die hoeveelheid PDMS wat geïnkorporeer
is, gevarieer deur die hoeveelheid PDMS tot PSty verhouding te verander asook die lengte van die
PDMS sytak. Gevolglik het dit toegelaat vir die studie van die effek wat die makromonomeer
inhoud, sowel as die taklengte het op die effektiwiteit van die ent-proses. ‘n Tweede reeks is ook
gesintetiseer, waar die PDMS die ruggraat vorm van die ko-polimeer, en die stireen die takke vorm
van die ko-polimeer. Dus is PDMS-g-PSty gesintetiseer. Twee sintetiese tegnieke is benut vir die
vorming van die kopolimere. In die eerste geval is daar van die ent-op tegniek gebruik gemaak
waar funksionele polistireen prepolimere met ‘n alliel of ‘n silaan end-groep gesintetiseer is deur
gebruik te maak van ‘n anioniese lewendige polimerisasie voor die koppeling van die PDMS
makromonomere deur ‘n hidrosililasie proses met ‘n Karstedt platinum katalisator. Die tegniek
was suksesvol en het in diepte insig gegee van die effek wat die molekulêre lengte van die
polistireen prepolimeer het op die effektiwiteit van die ent-proses, sowel as die minimum
hoeveelheid funksionele groepe wat teenwoordig moet wees op die PDMS ruggraat. Verder is die
effek wat die viskositeit (van die PDMS makromonomeer) op die ent-proses het, bekend gemaak.
Laastens is daar ook van die ent-vanaf tegniek gebruik gemaak vir die vorming van PDMS-g-PSty.
AORP, atoom oordrag radikale polimerisasie, van stireen, deur gebruik te maak van ‘n
bromoisobutiraat funksionele PDMS makro-inisieerder, is gebruik vir die sintese van die
kopolimere. Die makro-inisieerders is bekom deur gebruik te maak van kommersiële silaan
funksionele PDMS, en dit is gereageer deur middel van ‘n hidrosililasie proses met alliel-2-bromo-
2-metiel-propionaat. Dit het PDMS makroinisieerders tot gevolg gehad met bromoisobutiraat
funksionele groepe. Gevolglik kon stireen takke vanaf die PDMS ruggraat gegroei word deur
gebruik te maak van AORP met ‘n geskikte katalisator en ligand. Die vorming van die end-produk,
PDMS-g-PSty, deur middel van hierdie roete was onsuksesvol. Vloeistof chromatografie by die
kritiese punt van polistireen was gebruik om die ent-produk te skei van die homo-polimere en
PDMS makromonomeer. Gevolglik kon die chemiese samestelling van die ent-produk geëvalueer
word. Twee-dimensionele chromatografie, waar vloeistof chromatografie by die kritiese punt van
polistireen in die eerste vlak gekoppel was aan grootte uitsluitings chromatografie in die tweede
vlak, was benut om die chemiese komposisie sowel as die molekul re massa verdeling van die entproduk
te verkry. Verder was vloeistof chromatografie indirek aan Fourier-oordrag infrarooi en
transmissie elektron mikroskopie (TEM) gekoppel. Eergenoemde het insig gegee tot die
mikrostruktuur van die materiaal, terwyl laasgenoemde insig gegee het tot die morfologiese
nanostruktuur van die materiaal.
|
78 |
Solutions de cellulose et matériaux hybrides/composites à base de liquides ioniques et solvants alcalins / Cellulose solutions and hybrid/composite materials from ionic liquid and alkaline solventsLiu, Weiqing 18 January 2013 (has links)
La cellulose, composé organique le plus courant et polysaccharide le plus abondant sur Terre, est une ressource naturelle très importante. Les initiatives pour remplacer totalement ou partiellement les polymères pétrochimiques conventionnels avec des bio-polymères à base de cellulose ont donc attiré l'intérêt des chercheurs ces dernières décennies, non seulement parce que la cellulose est renouvelable et biodégradable, mais aussi en raison de ses propriétés intéressantes telles que la biocompatibilité et la stabilité chimique. De plus, les propriétés de cellulose peuvent être encore améliorées par des procédés chimiques, des modifications physiques ou en préparant des composites avec des charges fonctionnelles.Les études concernant d'étudier plusieurs aspects fondamentaux comme la dissolution de la cellulose afin de produire des matériaux et le test de nouveaux concepts autour de la modification de surface ou des revêtements, à l'échelle du laboratoire. Nous présentons dans ce manuscrit nos travaux concernant la caractérisation de solutions de cellulose dans deux solvants différents (hydroxyde de sodium aqueux et un liquide ionique) et la préparation de deux nouveaux types de matériaux à base de cellulose (un matériau hybride cellulose-amidon et un composite cellulose-noir de carbone), qui sont tous les deux préparés à partir de ces solutions de cellulose. / Cellulose, as the most common organic compounds on Earth, and also the most abundant polysaccharide, is definitely an important natural resource. With the initiatives of replacing (partially) the conventional petrochemical polymers by bio-based polymers, cellulose has regained the researchers' interests in the last few decades, not only because it is renewable and biodegradable, but also due to interesting properties such as biocompatibility and chemical stability. Additionaly, cellulose properties can be further enhanced by chemical/physical modification or making composites with functional fillers.This study was to investigate several fundamental scientific aspects as cellulose dissolution, making cellulose-based materials from solutions, and test of new concepts as surface modification or coating at laboratory scale. We studied and will present in this manuscript the characterization and properties of both cellulose solutions in different solvents (aqueous sodium hydroxide and ionic liquid) and two types of cellulose-based hybrid materials (one with starch and the other with carbon black), which were all prepared from dissolved cellulose.
|
79 |
Complexes binucléaires organofers électro-actifs à pont fonctionnel pour l'électronique moléculaire / Binuclear organoiron redox complexes with a functionnal bridge for molecular electronicsJustaud, Frédéric 15 April 2013 (has links)
Ce manuscrit de thèse décrit la conception, l’élaboration et l’étude de complexes organofers électro-actifs dans lesquels deux unités terminales Cp*(dppe)FeII/III sont reliés par un pont fonctionnel. Dans le premier chapitre, nous avons présenté une réaction à la fois originale et efficace catalysée par le Pd(0) qui permet d’accèder à la [5,5’-{(Cp*(dppe)Fe–C≡C}2-(μ-2,2’-bipy)]. Le deuxième chapitre porte sur la présentation d’une voie de synthèse rapide et efficace du métallo-ligand [6,6’-{Cp*(dppe)Fe–C≡C}2-(μ-2,2’-bipy)]. Le troisième chapitre de ce mémoire est consacré à l’utilisation du ligand 1’,1’’’-bis(éthynyle)biferrocényle comme pont entre deux terminaisons électroactives Cp*(dppe)FeII/III. L’espaceur électro-actif joue le rôle de relais moléculaire favorisant le transfert électronique d’une terminaison à l’autre par sauts successifs. Afin d’ajuster les potentiels redox des terminaisons par rapport à ceux du biferrocényle, les terminaisons Cp(PPh3)2M (M = Ru, Os) ont également été utilisées pour substituer un ou deux sites organofers. Le chapitre quatre est dédié aux travaux réalisés sur le système hybride Cp*(dppe)Fe-C≡C-TTMe3. Dans cette molécule, le site Cp*(dppe)FeII/III interagit à travers le pont acétylure avec le fragment tétrathiafulvalényle. La nouvelle molécule est stable sous trois degrés d’oxydation. L’espèce monocationique se comporte comme un composé à valence mixte de classe II et le couplage électronique entre les deux électrophores a été déterminé (Hab = 320 cm-1). Dans le cinquième et dernier chapitre nous mettrons à profit la découverte d’une réaction d’activation de la liaison C-H du groupement méthyle situé sur le même cycle du TTF et de l’acétylure de fer dans le composé [Cp*(dppe)Fe-C≡C-TTMe3](PF6)3. Cette réaction permet la synthèse du complexe moléculaire multifonctionnel [Cp*(dppe)Fe=C=C=TTFMe2=CH-CH=TTFMe2=C=C=Fe(dppe)Cp*][PF6]2 avec de très bon rendement. Les propriétés physicochimiques de ce nouveau complexe analysées avec le support de la chimie quantique permettent de révéler les caractéristiques originales de ce composé inédit. / This thesis highlights the conception, synthesis and studies of redox-active organoiron complexes in which the two termini Cp*(dppe)FeII/III are linked by a functional bridge. In chapter I, an original and efficient synthetic Pd(0) catalysed homocoupling procedure is reported involving mononuclear organoiron(II) intermediates allowing us to isolate [5,5’-{Cp*(dppe)Fe–C≡C}2-(μ-2,2’-bipy)]. In chapter II, a rapid and efficient synthetic access to the redox-active metallo-ligand [6,6’-{cp*(dppe)Fe–C≡C}2-(μ-2,2’-bipy)] is described. In chapter III, the synthesis and properties of a series of complexes containing bis(ethynyl)biferrocene as a bridge between different redoxactive groups is pointed out. The redox bridge acts as a molecular relay for the electronic exchange between the termini via an electron hopping pathway. In order to tune the redox potential compared with those of biferrocene, one or two organoiron groups have been substituted by the Cp(PPh3)2M (M = Ru, Os) groups. In chapter IV, works are dedicated to the hybrid system Cp*(dppe)Fe-C≡C-TTMe3. In this molecule, electronic interactions take place between the Cp*(dppe)FeII/III center and the tetrathiafulvalene core through the ethynyl bridge. The new molecule is stable under three redox states. The mono-oxidized species behaves as a mixed valence species with an electronic coupling Hab = 320 cm-1 between the two electrophores. In the fifth and final chapter, the discovery of a CH bond activation of a methyl group located on the same cycle of the TTF core and the iron acetylide for the compound [Cp*(dppe)Fe-C≡C-TTMe3](PF6)3 is reported. This new reaction allows the synthesis of the multicomponent molecule [Cp*(dppe)Fe=C=C=TTFMe2=CH-CH=TTFMe2=C=C=Fe(dppe)Cp*][PF6]2 in good yield. The resulting device displays specific properties analysed with the support of the quantum chemistry.
|
80 |
Synthesis and application of porphyrin-POM hybrids for photocatalytic water remediation and solar energy production / Synthèse et applications d’hybrides de porphyrine-POM pour la dépollution de l'eau par photocatalyse et production d'énergie solaireAhmed, Iftikhar 04 June 2013 (has links)
Ø / The dissertation is presented on 252 content pages which has been framed in five chapters and two annexures while the title page opens into a list of abbreviations followed by a foreword on the work. The core theme of the research work is to validate the extended photocatalytic properties of porphyrin-POM materials in evolving from UV to visible light range of solar spectrum. Which describing additional modes for synthesis of hybrid materials (i) electrostatic multilayer’s comprising of Dawson , sandwich Dawson type and preyssler,s POM in combination with free base tetracationic porphyrin [H₂TPhN(Me)₃P⁴⁺] (ii) an easy method of synthesis of two dimers with a pyridinium spacer (abbreviated 4-H₂–Zn and 3-H₂–Zn) (iii) Langmuir Schafer approach for hybrid monolayer. The prepared photoactive thin layers have been characterized by UV-visible spectroscopy and fluorescence spectroscopy for optical properties. Cyclic voltammetry for electrochemistry and ionic permeability studies. Atomic force microscopy (AFM) for surface morphology and its role in physical mechanism of reduction process and shape of nanostructures obtained. Transmission electron microscopy (TEM) has been used to interpret size and shape of dendritic silver nanoparticles obtained as photoreduction product. Although ,the ultimate goal is the photoreduction of heavy metals (Cr(VI), Hg(II), Cd(II), Pb(II) ), reduction of a simpler system like Ag⁺ ion has been chosen as a model system due to single electron simpler oxidation reduction process. A novel application of photocurrent generation from these hybrid films has been demonstrated in the fifth chapter of the manuscript as an initial studies which has enhanced the significance of all previously fabricated systems upto by many folds .The foresaid development of photovoltaic application has paved the way for future studies to enhance the photocurrent yield further by tuning the electron donor-acceptor system. Both components porphyrin and POM can be tuned with different axial substituent’s and stereo chemical properties to achieve maximum yield of solar energy as well as diversified metal nanostructure for nanoelectronics, e.g. silver dendrites for sensor applications. At the end of the manuscript, three appendices describe successively the experimental techniques used to carry out this work, the Job method used to determine the stoichiometry and formation constants of complex electrostatic and coordination, and then finally the origin or Protocols for the synthesis of various compounds used.
|
Page generated in 0.0829 seconds